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Chapter 8

Feedback Motion Planning

So far in Part II it has been assumed that a continuous path sufficiently solves
a motion planning problem. In many applications, such as computer-generated
animation and virtual prototyping, there is no need to challenge this assumption
because models in a virtual environment usually behave as designed. In applica-
tions that involve interaction with the physical world, future configurations may
not be predictable. A traditional way to account for this in robotics is to use the
refinement scheme that was shown in Figure 1.19 to design a feedback control law
that attempts to follow the computed path as closely as possible. Sometimes this
is satisfactory, but it is important to recognize that this approach is highly de-
coupled. Feedback and dynamics are neglected in the construction of the original
path; the computed path may therefore not even be usable.

Section 8.1 motivates the consideration of feedback in the context of motion
planning. Section 8.2 presents the main concepts of this chapter, but only for the
case of a discrete state space. This requires less mathematical concepts than the
continuous case, making it easier to present feedback concepts. Section 8.3 then
provides the mathematical background needed to extend the feedback concepts
to continuous state spaces (which includes C-spaces). Feedback motion planning
methods are divided into complete methods, covered in Section 8.4, and sampling-
based methods, covered in Section 8.5.

8.1 Motivation

For most problems involving the physical world, some form of feedback is needed.
This means the actions of a plan should depend in some way on information
gathered during execution. The need for feedback arises from the unpredictability
of future states. In this chapter, every state space will be either discrete, orX = C,
which is a configuration space as considered in Chapter 4.

Two general ways to model uncertainty in the predictability of future states
are

1. Explicitly: Develop models that explicitly account for the possible ways
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Figure 8.1: By separating the issue of dynamics from feedback, two less-
investigated topics emerge.

that the actual future state can drift away from the planned future state. A
planning algorithm must take this uncertainty directly into account. Such
explicit models of uncertainty are introduced and incorporated into the plan-
ning model in Part III.

2. Implicitly: The model of state transitions indicates that no uncertainty is
possible; however, a feedback plan is constructed to ensure that it knows
which action to apply, just in case it happens to be in some unexpected
state during execution. This approach is taken in this chapter.

The implicit way to handle this uncertainty may seem strange at first; therefore,
some explanation is required. It will be seen in Part III that explicitly mod-
eling uncertainty is extremely challenging and complicated. The requirements
for expressing reliable models are much stronger; the complexity of the problem
increases, making algorithm design more difficult and leading to greater oppor-
tunities to make modeling errors. The implicit way of handling uncertainty in
predictability arose in control theory [14, 15, 71]. It is well known that a feedback
control law is needed to obtain reliable performance, yet it is peculiar that the for-
mulation of dynamics used in most contexts does not explicitly account for this.
Classical control theory has always assumed that feedback is crucial; however,
only in modern branches of the field, such as stochastic control and robust control,
does this uncertainty get explicitly modeled. Thus, there is a widely accepted and
successful practice of designing feedback control laws that use state feedback to
implicitly account for the fact that future states may be unpredictable. Given the
widespread success of this control approach across numerous applications over the
past century, it seems valuable to utilize this philosophy in the context of motion
planning as well (if you still do not like it, then jump to Chapter 10).

Due to historical reasons in the development of feedback control, it often seems
that feedback and dynamics are inseparable. This is mainly because control theory
was developed to reliably alter the behavior of dynamical systems. In traditional
motion planning, neither feedback nor dynamics is considered. A solution path
is considered open loop, which means there is no feedback of information during
execution to close the loop. Dynamics are also not handled because the additional
complications of differential constraints and higher dimensional phase spaces arise
(see Part IV).

By casting history aside and separating feedback from dynamics, four separate
topics can be made, as shown in Figure 8.1. The topic of open-loop planning that
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involves dynamics has received increasing attention in recent years. This is the
focus throughout most of Part IV. Those fond of classical control theory may
criticize it for failing to account for feedback; however, such open-loop trajectories
(paths in a phase space) are quite useful in applications that involve simulations.
Furthermore, a trajectory that accounts for dynamics is more worthwhile in a
decoupled approach than using a path that ignores dynamics, which has been an
acceptable practice for decades. These issues will be elaborated upon further in
Part IV.

The other interesting topic that emerges in Figure 8.1 is to develop feedback
plans for problems in which there are no explicit models of dynamics or other
differential constraints. If it was reasonable to solve problems in classical motion
planning by ignoring differential constraints, one should certainly feel no less guilty
designing feedback motion plans that still neglect differential constraints.1 This
uses the implicit model of uncertainty in predictability without altering any of the
other assumptions previously applied in traditional motion planning.

Even if there are no unpredictability issues, another important use of feedback
plans is for problems in which the initial state is not known. A feedback plan
indicates what action to take from every state. Therefore, the specification of
an initial condition is not important. The analog of this in graph algorithms is
the single-destination shortest-path problem, which indicates how to arrive at a
particular vertex optimally from any other vertex. Due to this connection, the
next section presents feedback concepts for discrete state spaces, before extending
the ideas to continuous spaces, which are needed for motion planning.

For these reasons, feedback motion planning is considered in this chapter. As
a module in a decoupled approach used in robotics, feedback motion plans are at
least as useful as a path computed by the previous techniques. We expect feedback
solutions to be more reliable in general, when used in the place of open-loop paths
computed by traditional motion planning algorithms.

8.2 Discrete State Spaces

This section is provided mainly to help to explain similar concepts that are coming
in later sections. The presentation is limited to discrete spaces, which are much
simpler to formulate and understand. Following this, an extension to configuration
spaces and other continuous state spaces can be made. The discussion here is also
relevant background for the feedback planning concepts that will be introduced in
Section 8.4.1. In that case, uncertainty will be explicitly modeled. The resulting
formulation and concepts can be considered as an extension of this section.

1Section 8.4.4 will actually consider some simple differential constraints, such as acceleration
bounds; the full treatment of differential constraints is deferred until Part IV.
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8.2.1 Defining a Feedback Plan

Consider a discrete planning problem similar to the ones defined in Formulations
2.1 and 2.3, except that the initial state is not given. Due to this, the cost
functional cannot be expressed only as a function of a plan. It is instead defined
in terms of the state history and action history. At stage k, these are defined as

x̃k = (x1, x2, . . . , xk) (8.1)

and
ũk = (u1, u2, . . . , uk), (8.2)

respectively. Sometimes, it will be convenient to alternatively refer to x̃k as the
state trajectory.

The resulting formulation is

Formulation 8.1 (Discrete Optimal Feedback Planning)

1. A finite, nonempty state space X.

2. For each state, x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state, f(x, u) ∈ X, for every
x ∈ X and u ∈ U(x). Let U denote the union of U(x) for all x ∈ X.

4. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

5. A goal set, XG ⊂ X.

6. Let L denote a stage-additive cost functional,

L(x̃F , ũK) =
K
∑

k=1

l(xk, uk) + lF (xF ), (8.3)

in which F = K + 1.

There is one other difference in comparison to the formulations of Chapter 2. The
state space is assumed here to be finite. This facilitates the construction of a
feedback plan, but it is not necessary in general.

Consider defining a plan that solves Formulation 8.1. If the initial condition
is given, then a sequence of actions could be specified, as in Chapter 2. Without
having the initial condition, one possible approach is to determine a sequence of
actions for each possible initial state, x1 ∈ X. Once the initial state is given, the
appropriate action sequence is known. This approach, however, wastes memory.
Suppose some x is given as the initial state and the first action is applied, leading
to the next state x′. What action should be applied from x′? The second action
in the sequence at x can be used; however, we can also imagine that x′ is now the
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initial state and use its first action. This implies that keeping an action sequence
for every state is highly redundant. It is sufficient at each state to keep only the
first action in the sequence. The application of that action produces the next
state, at which the next appropriate action is stored. An execution sequence can
be imagined from an initial state as follows. Start at some state, apply the action
stored there, arrive at another state, apply its action, arrive at the next state, and
so on, until the goal is reached.

It therefore seems appropriate to represent a feedback plan as a function that
maps every state to an action. Therefore, a feedback plan π is defined as a function
π : X → U . From every state, x ∈ X, the plan indicates which action to apply.
If the goal is reached, then the termination action should be applied. This is
specified as part of the plan: π(x) = uT , if x ∈ XG. A feedback plan is called a
solution to the problem if it causes the goal to be reached from every state that
is reachable from the goal.

If an initial state x1 and a feedback plan π are given, then the state and action
histories can be determined. This implies that the execution cost, (8.3), also can
be determined. It can therefore be alternatively expressed as L(π, x1), instead of
L(x̃F , ũK). This relies on future states always being predictable. In Chapter 10,
it will not be possible to make this direct correspondence due to uncertainties (see
Section 10.1.3).

Feasibility and optimality The notions of feasible and optimal plans need to
be reconsidered in the context of feedback planning because the initial condition
is not given. A plan π is called a solution to the feasible planning problem if
from every x ∈ X from which XG is reachable the goal set is indeed reached by
executing π from x. This means that the cost functional is ignored (an alternative
to Formulation 8.1 can be defined in which the cost functional is removed). For
convenience, π will be called a feasible feedback plan.

Now consider optimality. From a given state x, it is clear that an optimal plan
exists using the concepts of Section 2.3. Is it possible that a different optimal plan
needs to be associated with every x ∈ X that can reach XG? It turns out that
only one plan is needed to encode optimal paths from every initial state to XG.
Why is this true? Suppose that the optimal cost-to-go is computed over X using
Dijkstra’s algorithm or value iteration, as covered in Section 2.3. Every cost-to-
go value at some x ∈ X indicates the cost received under the implementation
of the optimal open-loop plan from x. The first step in this optimal plan can
be determined by (2.19), which yields a new state x′ = f(x, u). From x′, (2.19)
can be applied once again to determine the next optimal action. The cost at x′

represents both the optimal cost-to-go if x′ is the initial condition and also the
optimal cost-to-go when continuing on the optimal path from x. The two must
be equivalent because of the dynamic programming principle. Since all such costs
must coincide, a single feedback plan can be used to obtain the optimal cost-to-go
from every initial condition.
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Figure 8.2: a) A 2D grid-planning problem. b) A solution feedback plan.

A feedback plan π is therefore defined as optimal if from every x ∈ X, the total
cost, L(π, x), obtained by executing π is the lowest among all possible plans. The
requirement that this holds for every initial condition is important for feedback
planning.

Example 8.1 (Feedback Plan on a 2D Grid) This example uses the 2D grid
model explained in Example 2.1. A robot moves on a grid, and the possible actions
are up (↑), down (↓), left (←), right (→), and terminate (uT ); some directions
are not available from some states. A solution feedback plan is depicted in Figure
8.2. Many other possible solutions plans exist. The one shown here happens to
be optimal in terms of the number of steps to the goal. Some alternative feedback
plans are also optimal (figure out which arrows can be changed). To apply the
plan from any initial state, simply follow the arrows to the goal. In each stage,
the application of the action represented by the arrow leads to the next state. The
process terminates when uT is applied at the goal. �

8.2.2 Feedback Plans as Navigation Functions

It conveniently turns out that tools for computing a feedback plan were already
given in Chapter 2. Methods such as Dijkstra’s algorithm and value iteration
produce information as a side effect that can be used to represent a feedback
plan. This section explains how this information is converted into a feedback
plan. To achieve this, a feedback plan will be alternatively expressed as a potential
function over the state space (recall potential functions from Section 5.4.3). The
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potential values are computed by planning algorithms and can be used to recover
the appropriate actions during execution. In some cases, an optimal feedback plan
can even be represented using potential functions.

Navigation functions Consider a (discrete) potential function, defined as φ :
X → [0,∞]. The potential function can be used to define a feedback plan through
the use of a local operator, which is a function that selects the action that reduces
the potential as much as possible. First, consider the case of a feasible planning
problem. The potential function, φ, defines a feedback plan by selecting u through
the local operator,

u∗ = argmin
u∈U(x)

{

φ(f(x, u))
}

, (8.4)

which means that u∗ ∈ U(x) is chosen to reduce φ as much as possible. The local
operator yields a kind of greedy descent of the potential. Note that the action
u∗ may not be unique. In the continuous-space analog to this, the corresponding
local operator performs a descent along the negative gradient (often referred to
as gradient descent).

In the case of optimal planning, the local operator is defined as

u∗ = argmin
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.5)

which looks similar to the dynamic programming condition, (2.19). It becomes
identical to (2.19) if φ is interpreted as the optimal cost-to-go. A simplification of
(8.5) can be made if the planning problem is isotropic, which means that the cost
is the same in every direction: l(x, u) = l(x, u′) for all u, u′ ∈ U(x) \ {uT}. In this
case, the cost term l(x, u) does not affect the minimization in (8.5). A common
example in which this assumption applies is if the cost functional counts the
number of stages required to reach the goal. The costs of particular actions chosen
along the way are not important. Using the isotropic property, (8.5) simplifies
back to (8.4).

When is a potential function useful? Many useless potential functions can be
defined that fail to reach the goal, or cause states to cycle indefinitely, and so
on. The most desirable potential function is one that for any initial state causes
arrival in XG, if it is reachable. This requires only a few simple properties. A
potential function that satisfies these will be called a navigation function.2

Suppose that the cost functional is isotropic. Let x′ = f(x, u∗), which is the
state reached after applying the action u∗ ∈ U(x) that was selected by (8.4). A
potential function, φ, is called a (feasible) navigation function if

1. φ(x) = 0 for all x ∈ XG.

2This term was developed for continuous configuration spaces in [58, 79]; it will be used more
broadly in this book but still retains the basic idea.
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Figure 8.3: The cost-to-go values serve as a navigation function.

2. φ(x) =∞ if and only if no point in XG is reachable from x.

3. For every reachable state, x ∈ X \XG, the local operator produces a state
x′ for which φ(x′) < φ(x).

The first condition requires the goal to have zero potential (this condition is actu-
ally not necessary but is included for convenience). The second condition requires
that∞ serves as a special indicator that the goal is not reachable from some state.
The third condition means that the potential function has no local minima except
at the goal. This means that the execution of the resulting feedback plan will
progress without cycling and the goal region will eventually be reached.

An optimal navigation function is defined as the optimal cost-to-go, G∗. This
means that in addition to the three properties above, the navigation function must
also satisfy the principle of optimality:

φ(x) = min
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.6)

which is just (2.18) with G∗ replaced by φ. See Section 15.2.1 for more on this
connection.

Example 8.2 (Navigation Function on a 2D Grid) Return to the planning
problem in Example 8.1. Assume that an isotropic cost model is used: l(x, u) = 1
if u 6= uT . Figure 8.3 shows a navigation function. The numbers shown in the
tiles represent φ. Verify that φ satisfies the three requirements for a navigation
function.

At any state, an action is applied that reduces the potential value. This
corresponds to selecting the action using (8.4). The process may be repeated from
any state until XG is reached. This example clearly illustrates how a navigation
function can be used as an alternative definition of a feedback plan. �
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Example 8.3 (Airport Terminal) You may have found yourself using a nav-
igation function to find the exit after arriving in an unfamiliar airport terminal.
Many terminals are tree-structured, with increasing gate numbers as the distance
to the terminal exit increases. If you wish to leave the terminal, you should nor-
mally walk toward the lower numbered gates. �

Computing navigation functions There are many ways to compute naviga-
tion functions. The cost-to-go function determined by Dijkstra’s algorithm work-
ing backward from XG yields an optimal navigation function. The third condition
of a navigation function under the anisotropic case is exactly the stationary dy-
namic programming equation, (2.18), if the navigation function φ is defined as the
optimal cost-to-go G∗. It was mentioned previously that the optimal actions can
be recovered using only the cost-to-go. This was actually an example of using a
navigation function, and the resulting procedure could have been considered as a
feedback plan.

If optimality is not important, then virtually any backward search algorithm
from Section 2.2 can be used, provided that it records the distance to the goal
from every reached state. The distance does not have to be optimal. It merely
corresponds to the cost obtained if the current vertex in the search tree is traced
back to the root vertex (or back to any vertex in XG, if there are multiple goal
states).

If the planning problem does not even include a cost functional, as in Formu-
lation 2.1, then a cost functional can be invented for the purposes of constructing
a navigation function. At each x ∈ X from which XG is reachable, the number
of edges in the search graph that would be traversed from x to XG can be stored
as the cost. If Dijkstra’s algorithm is used to construct the navigation function,
then the resulting feedback plan yields executions that are shortest in terms of
the number of stages required to reach the goal.

The navigation function itself serves as the representation of the feedback
plan, by recovering the actions from the local operator. Thus, a function, π :
X → U , can be recovered from a navigation function, φ : X → [0,∞]. Likewise,
a navigation function, φ, can be constructed from π. Therefore, the π and φ can
be considered as interchangeable representations of feedback plans.

8.2.3 Grid-Based Navigation Functions for Motion Plan-
ning

To consider feedback plans for continuous spaces, vector fields and other basic
definitions from differential geometry will be needed. These will be covered in
Section 8.3; however, before handling such complications, we first will describe
how to use the ideas presented so far in Section 8.2 as a discrete approximation
to feedback motion planning.
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WAVEFRONT PROPAGATION ALGORITHM

1. Initialize W0 = XG; i = 0.

2. Initialize Wi+1 = ∅.

3. For every x ∈ Wi, assign φ(x) = i and insert all unexplored neighbors of x
into Wi+1.

4. If Wi+1 = ∅, then terminate; otherwise, let i := i+ 1 and go to Step 2.

Figure 8.4: The wavefront propagation algorithm is a specialized version of Dijk-
stra’s algorithm that optimizes the number of stages to reach the goal.

Examples 8.1 and 8.2 have already defined feedback plans and navigation func-
tions for 2D grids that contain obstacles. Imagine that this model is used to ap-
proximate a motion planning problem for which C ⊂ R

2. Section 5.4.2 showed
how to make a topological graph that approximates the motion planning prob-
lem with a grid of samples. The motions used in Example 8.1 correspond to the
1-neighborhood definition, (5.37). This idea was further refined in Section 7.7.1
to model approximate optimal motion planning by moving on a grid; see Formu-
lation 7.4. By choosing the Manhattan motion model, as defined in Example 7.4,
a grid with the same motions considered in Example 8.1 is produced.

To construct a navigation function that may be useful in mobile robotics, a
high-resolution (e.g., 50 to 100 points per axis) grid is usually required. In Section
5.4.2, only a few points per axis were needed because feedback was not assumed.
It was possible in some instances to find a collision-free path by investigating only
a few points per axis. During the execution of a feedback plan, it is assumed
that the future states of the robot are not necessarily predictable. Wherever the
robot may end up, the navigation function in combination with the local operator
must produce the appropriate action. If the current state (or configuration) is
approximated by a grid, then it is important to reduce the approximation error
as much as possible. This is accomplished by setting the grid resolution high. In
the feedback case, the grid can be viewed as “covering” the whole configuration
space, whereas in Section 5.4.2 the grid only represented a topological graph of
paths that cut across the space.3

Wavefront propagation algorithms Once the approximation has been made,
any of the methods discussed in Section 8.2.2 can be used to compute a navigation
function. An optimal navigation function can be easily computed using Dijkstra’s

3Difficulty in distinguishing between these two caused researchers for many years to believe
that grids yield terrible performance for the open-loop path planning problems of Chapter 5.
This was mainly because it was assumed that a high-resolution grid was necessary. For many
problems, however, they could terminate early after only considering a few points per axis.
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algorithm from the goal. If each motion has unit cost, then a useful simplification
can be made. Figure 8.4 describes a wavefront propagation algorithm that com-
putes an optimal navigation function. It can be considered as a special case of
Dijkstra’s algorithm that avoids explicit construction of the priority queue. In Di-
jkstra’s algorithm, the cost of the smallest element in the queue is monotonically
nondecreasing during the execution of the algorithm. In the case of each motion
having unit cost, there will be many states in the queue that have the same cost.
Dijkstra’s algorithm could remove in parallel all elements that have the same,
smallest cost. Suppose the common, smallest cost value is i. These states are
organized into a wavefront, Wi. The initial wavefront is W0, which represents the
states in XG. The algorithm can immediately assign an optimal cost-to-go value
of 1 to every state that can be reached in one stage from any state in W0. These
must be optimal because no other cost value is optimal. The states that receive
cost 1 can be organized into the wavefront W1. The unexplored neighbors of W1

are assigned cost 2, which also must be optimal. This process repeats inductively
from i to i+1 until all reachable states have been reached. In the end, the optimal
cost-to-go is computed in O(n) time, in which n is the number of reachable grid
states. For any states that were not reached, the value φ(x) =∞ can be assigned.
The navigation function shown in Figure 8.3 can actually be computed using the
wavefront propagation algorithm.

Maximum clearance One problem that typically arises in mobile robotics is
that optimal motion plans bring robots too close to obstacles. Recall from Section
6.2.4 that the shortest Euclidean paths for motion planning in a polygonal envi-
ronment must be allowed to touch obstacle vertices. This motivated the maximum
clearance roadmap, which was covered in Section 6.2.3. A grid-based approximate
version of the maximum clearance roadmap can be made. Furthermore, a naviga-
tion function can be defined that guides the robot onto the roadmap, then travels
along the roadmap, and finally deposits the robot at a specified goal. In [63], the
resulting navigation function is called NF2.

Assume that there is a single goal state, xG ∈ X. The computation of a
maximum clearance navigation function proceeds as follows:

1. Instead of XG, assign W0 to be the set of all states from which motion in at
least one direction is blocked. These are the states on the boundary of the
discretized collision-free space.

2. Perform wavefront iterations that propagate costs in waves outward from
the obstacle boundaries.

3. As the wavefronts propagate, they will meet approximately at the location of
the maximum clearance roadmap for the original, continuous problem. Mark
any state at which two wavefront points arrive from opposing directions as
a skeleton state. It may be the case that the wavefronts simply touch each
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other, rather than arriving at a common state; in this case, one of the two
touching states is chosen as the skeleton state. Let S denote the set of all
skeleton states.

4. After the wavefront propagation ends, connect xG to the skeleton by insert-
ing xG and all states along the path to the skeleton into S. This path can
be found using any search algorithm.

5. Compute a navigation function φ1 over S by treating all other states as if
they were obstacles and using the wavefront propagation algorithm. This
navigation function guides any point in S to the goal.

6. Treat S as a goal region and compute a navigation function φ2 using the
wavefront propagation algorithm. This navigation function guides the state
to the nearest point on the skeleton.

7. Combine φ1 and φ2 as follows to obtain φ. For every x ∈ S, let φ(x) = φ1(x).
For every remaining state, the value φ(x) = φ1(x

′) + φ2(x) is assigned, in
which x′ is the nearest state to x such that x′ ∈ S. The state x′ can easily
be recorded while φ2 is computed.

If Cfree is multiply connected, then there may be multiple ways to each xG by
traveling around different obstacles (the paths are not homotopic). The method
described above does not take into account the problem that one route may have
a tighter clearance than another. The given approach only optimizes the distance
traveled along the skeleton; it does not, however, maximize the nearest approach
to an obstacle, if there are multiple routes.

Dial’s algorithm Now consider generalizing the wavefront propagation idea.
Wavefront propagation can be applied to any discrete planning problem if l(x, u) =
1 for any x ∈ X and u ∈ U(x) (except u = uT ). It is most useful when the
transition graph is sparse (imagine representing the transition graph using an
adjacency matrix). The grid problem is a perfect example where this becomes
important. More generally, if the cost terms assume integer values, then Dial’s
algorithm [33] results, which is a generalization of wavefront propagation, and a
specialization of Dijkstra’s algorithm. The idea is that the priority queue can
be avoided by assigning the alive vertices to buckets that correspond to different
possible cost-to-go values. In the wavefront propagation case, there are never
more than two buckets needed at a time. Dial’s algorithm allows all states in the
smallest cost bucket to be processed in parallel. The scheme was enhanced in [88]
to yield a linear-time algorithm.

Other extensions Several ideas from this section can be generalized to produce
other navigation functions. One disadvantage of the methods discussed so far is
that undesirable staircase motions (as shown in Figure 7.40) are produced. If the
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2-neighborhood, as defined in (5.38), is used to define the action spaces, then the
motions will generally be shorter. Dial’s algorithm can be applied to efficiently
compute an optimal navigation function in this case.

A grid approximation can be made to higher dimensional configuration spaces.
Since a high resolution is needed, however, it is practical only for a few dimensions
(e.g., 3 or 4). If the 1-neighborhood is used, then wavefront propagation can be
easily applied to compute navigation functions. Dial’s algorithm can be adapted
for general k-neighborhoods.

Constructing navigation functions over grids may provide a practical solution
in many applications. In other cases it may be unacceptable that staircase motions
occur. In many cases, it may not even be possible to compute the navigation
function quickly enough. Factors that influence this problem are 1) very high
accuracy, and a hence high-resolution grid may be necessary; 2) the dimension of
the configuration space may be high; and 3) the environment may be frequently
changing, and a real-time response is required. To address these issues, it is
appealing to abandon grid approximations. This will require defining potential
functions and velocities directly on the configuration space. Section 8.3 presents
the background mathematical concepts to make this transition.

8.3 Vector Fields and Integral Curves

To consider feedback motion plans over continuous state spaces, including con-
figuration spaces, we will need to define a vector field and the trajectory that is
obtained by integrating the vector field from an initial point. A vector field is
ideal for characterizing a feedback plan over a continuous state space. It can be
viewed as providing the continuous-space analog to the feedback plans on grids,
as shown in Figure 8.2b.

This section presents two alternative presentations of the background mathe-
matical concepts. Section 8.3.1 assumes that X = R

n, which leads to definitions
that appear very similar to those you may have learned in basic calculus and dif-
ferential equations courses. Section 8.3.2 covers the more general case of vector
fields on manifolds. This requires significantly more technical concepts and builds
on the manifold definitions of Section 4.1.2.

Some readers may have already had some background in differentiable man-
ifolds. If, however, you are seeing it for the first time, then it may be difficult
to comprehend on the first reading. In addition to rereading, here are two other
suggestions. First, try studying background material on this subject, which is
suggested at the end of the chapter. Second, disregard the manifold technicalities
in the subsequent sections and pretend that X = C = R

n. Nearly everything will
make sense without the additional technicalities. Imagine that a manifold is de-
fined as a cube, [0, 1]n, with some sides identified, as in Section 4.1.2. The concepts
that were presented for Rn can be applied everywhere except at the boundary of
the cube. For example, if S1 is defined as [0, 1]/ ∼, and a function f is defined on
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S
1, how can we define the derivative at f(0)? The technical definitions of Section

8.3.2 fix this problem. Sometimes, the technicalities can be avoided in practice by
cleverly handling the identification points.

8.3.1 Vector Fields on R
n

This section revisits some basic concepts from introductory courses such as calcu-
lus, linear algebra, and differential equations. You may have learned most of these
for R2 and R

3. We eventually want to describe velocities in R
n and on manifolds,

and then use the notion of a vector field to express a feedback plan in Section
8.4.1.

Vector spaces Before defining a vector field, it is helpful to be precise about
what is meant by a vector. A vector space (or linear space) is defined as a set,
V , that is closed under two algebraic operations called vector addition and scalar
multiplication and satisfies several axioms, which will be given shortly. The vector
space used in this section is Rn, in which the scalars are real numbers, and a vector
is represented as a sequence of n real numbers. Scalar multiplication multiplies
each component of the vector by the scalar value. Vector addition forms a new
vector by adding each component of two vectors.

A vector space V can be defined over any field F (recall the definition from
Section 4.4.1). The field F represents the scalars, and V represents the vectors.
The concepts presented below generalize the familiar case of the vector space Rn.
In this case, V = R

n and F = R. In the definitions that follow, you may make
these substitutions, if desired. We will not develop vector spaces that are more
general than this; the definitions are nevertheless given in terms of V and F to
clearly separate scalars from vectors. The vector addition is denoted by +, and the
scalar multiplication is denoted by ·. These operations must satisfy the following
axioms (a good exercise is to verify these for the case of Rn treated as a vector
space over the field R):

1. (Commutative Group Under Vector Addition) The set V is a com-
mutative group with respect to vector addition, +.

2. (Associativity of Scalar Multiplication) For any v ∈ V and any α, β ∈
F, α(βv) = (αβ)v.

3. (Distributivity of Scalar Sums) For any v ∈ V and any α, β ∈ F, (α +
β)v = αv + βv.

4. (Distributivity of Vector Sums) For any v, w ∈ V and any α ∈ F,
α(v + w) = αv + αw.

5. (Scalar Multiplication Identity) For any v ∈ V , 1v = v for the multi-
plicative identity 1 ∈ F.
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The first axiom allows vectors to be added in any order. The rest of the axioms
require that the scalar multiplication interacts with vectors in the way that we
would expect from the familiar vector space R

n over R.
A basis of a vector space V is defined as a set, v1,. . .,vn, of vectors for which

every v ∈ V can be uniquely written as a linear combination:

v = α1v1 + α2v2 + · · ·+ αnvn, (8.7)

for some α1, . . . , αn ∈ F. This means that every vector has a unique representation
as a linear combination of basis elements. In the case of R3, a familiar basis is
[0 0 1], [0 1 0], and [1 0 0]. All vectors can be expressed as a linear combination
of these three. Remember that a basis is not necessarily unique. From linear
algebra, recall that any three linearly independent vectors can be used as a basis
for R3. In general, the basis must only include linearly independent vectors. Even
though a basis is not necessarily unique, the number of vectors in a basis is the
same for any possible basis over the same vector space. This number, n, is called
the dimension of the vector space. Thus, we can call Rn an n-dimensional vector
space over R.

Example 8.4 (The Vector Space R
n Over R) As indicated already, Rn can

be considered as a vector space. A natural basis is the set of n vectors in which,
for each i ∈ {1, . . . , n}, a unit vector is constructed as follows. Let xi = 1 and
xj = 0 for all j 6= i. Since there are n basis vectors, Rn is an n-dimensional vector
space. The basis is not unique. Any set of n linearly independent vectors may be
used, which is familiar from linear algebra, in which nonsingular n × n matrices
are used to transform between them. �

To illustrate the power of these general vector space definitions, consider the
following example.

Example 8.5 (A Vector Space of Functions) The set of all continuous, real-
valued functions f : [0, 1]→ R, for which

∫ 1

0

f(x)dx (8.8)

is finite, forms a vector space over R. It is straightforward to verify that the vector
space axioms are satisfied. For example, if two functions f1 and f2 are added, the
integral remains finite. Furthermore, f1+f2 = f2+f1, and all of the group axioms
are satisfied with respect to addition. Any function f that satisfies (8.8) can be
multiplied by a scalar in R, and the integral remains finite. The axioms that
involve scalar multiplication can also be verified.

It turns out that this vector space is infinite-dimensional. One way to see this is
to restrict the functions to the set of all those for which the Taylor series exists and
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converges to the function (these are called analytic functions). Each function can
be expressed via a Taylor series as a polynomial that may have an infinite number
of terms. The set of all monomials, x, x2, x3, and so on, represents a basis. Every
continuous function can be considered as an infinite vector of coefficients; each
coefficient is multiplied by one of the monomials to produce the function. This
provides a simple example of a function space; with some additional definitions,
this leads to a Hilbert space, which is crucial in functional analysis, a subject that
characterizes spaces of functions [82, 83]. �

The remainder of this chapter considers only finite-dimensional vector spaces
over R. It is important, however, to keep in mind the basic properties of vector
spaces that have been provided.

Vector fields A vector field looks like a “needle diagram” over Rn, as depicted
in Figure 8.5. The idea is to specify a direction at each point p ∈ R

n. When used
to represent a feedback plan, it indicates the direction that the robot needs to
move if it finds itself at p.

For every p ∈ R
n, associate an n-dimensional vector space called the tangent

space at p, which is denoted as Tp(R
n). Why not just call it a vector space at

p? The use of the word “tangent” here might seem odd; it is motivated by the
generalization to manifolds, for which the tangent spaces will be “tangent” to
points on the manifold.

A vector field4 ~V on R
n is a function that assigns a vector v ∈ Tp(R

n) to every

p ∈ R
n. What is the range of this function? The vector ~V (p) at each p ∈ R

n

actually belongs to a different tangent space. The range of the function is therefore
the union

T (Rn) =
⋃

p∈Rn

Tp(R
n), (8.9)

which is called the tangent bundle on R
n. Even though the way we describe vectors

from Tp(R
n) may appear the same for any p ∈ R

n, each tangent space is assumed to
produce distinct vectors. To maintain distinctness, a point in the tangent bundle
can be expressed with 2n coordinates, by specifying p and v together. This will
become important for defining phase space concepts in Part IV. In the present
setting, it is sufficient to think of the range of ~V as Rn because Tp(R

n) = R
n for

every p ∈ R
n.

A vector field can therefore be expressed using n real-valued functions on R
n.

Let fi(x1, . . . , xn) for i from 1 to n denote such functions. Using these, a vector
field is specified as

f(x) = [f1(x1, . . . , xn) f2(x1, . . . , xn) · · · fn(x1, . . . , xn)]. (8.10)

4Unfortunately, the term field appears in two unrelated places: in the definition of a vector
space and in the term vector field. Keep in mind that this is an accidental collision of terms.
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Figure 8.5: (a) A constant vector field, f(x, y) = [1 1]. (b) A vector field,
f(x, y) = [−x − y] in which all vectors point to the origin.

In this case, it appears that a vector field is a function f from R
n into R

n. There-
fore, standard function notation will be used from this point onward to denote a
vector field.

Now consider some examples of vector fields over R
2. Let a point in R

2 be
represented as p = (x, y). In standard vector calculus, a vector field is often
specified as [f1(x, y) f2(x, y)], in which f1 and f2 are functions on R

2

Example 8.6 (Constant Vector Field) Figure 8.5a shows a constant vector
field, which assigns the vector [1 2] to every (x, y) ∈ R

2. �

Example 8.7 (Inward Flow) Figure 8.5b depicts a vector field that assigns
[−x − y] to every (x, y) ∈ R

2. This causes all vectors to point to the ori-
gin. �

Example 8.8 (Swirl) The vector field in Figure 8.6 assigns [(y − x) (−x− y)]
to every (x, y) ∈ R

2. �

Due to obstacles that arise in planning problems, it will be convenient to
sometimes restrict the domain of a vector field to an open subset of Rn. Thus, for
any open subset O ⊂ R

n, a vector field f : O → R
n can be defined.
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Figure 8.6: A swirling vector field, f(x, y) = [(y − x) (−x− y)].

Smoothness A function fi from a subset of Rn into R is called a smooth function
if derivatives of any order can be taken with respect to any variables, at any point
in the domain of fi. A vector field is said to be smooth if every one of its n defining
functions, f1, . . ., fn, is smooth. An alternative name for a smooth function is
a C∞ function. The superscript represents the order of differentiation that can
be taken. For a Ck function, its derivatives can be taken at least up to order k.
A C0 function is an alternative name for a continuous function. The notion of a
homeomorphism can be extended to a diffeomorphism, which is a homeomorphism
that is a smooth function. Two topological spaces are called diffeomorphic if there
exists a diffeomorphism between them.

Vector fields as velocity fields We now give a particular interpretation to
vector fields. A vector field expressed using (8.10) can be used to define a set of
first-order differential equations as

dx1
dt

= f1(x1, . . . , xn)

dx2
dt

= f2(x1, . . . , xn)

...

dxn
dt

= fn(x1, . . . , xn).

(8.11)
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Each equation represents the derivative of one coordinate with respect to time.
For any point x ∈ R

n, a velocity vector is defined as

dx

dt
=

[

dx1
dt

dx2
dt
· · ·

dxn
dt

]

. (8.12)

This enables f to be interpreted as a velocity field.
It is customary to use the short notation ẋ = dx/dt. Each velocity component

can be shortened to ẋi = dxi/dt. Using f to denote the vector of functions f1,
. . ., fn, (8.11) can be shorted to

ẋ = f(x). (8.13)

The use of f here is an intentional coincidence with the use of f for the state
transition equation. In Part IV, we will allow vector fields to be parameterized by
actions. This leads to a continuous-time state transition equation that looks like
ẋ = f(x, u) and is very similar to the transition equations defined over discrete
stages in Chapter 2.

The differential equations expressed in (8.11) are often referred to as au-
tonomous or stationary because f does not depend on time. A time-varying
vector field could alternatively be defined, which yields ẋ = f(x(t), t). This will
not be covered, however, in this chapter.

An integral curve If a vector field f is given, then a velocity vector is defined at
each point using (8.10). Imagine a point that starts at some x0 ∈ R

n at time t = 0
and then moves according to the velocities expressed in f . Where should it travel?
Its trajectory starting from x0 can be expressed as a function τ : [0,∞)→ R

n, in
which the domain is a time interval, [0,∞). A trajectory represents an integral
curve (or solution trajectory) of the differential equations with initial condition
τ(0) = x0 if

dτ

dt
(t) = f(τ(t)) (8.14)

for every time t ∈ [0,∞). This is sometimes expressed in integral form as

τ(t) = x0 +

∫ t

0

f(τ(s))ds (8.15)

and is called a solution to the differential equations in the sense of Caratheodory.
Intuitively, the integral curve starts at x0 and flows along the directions indicated
by the velocity vectors. This can be considered as the continuous-space analog of
following the arrows in the discrete case, as depicted in Figure 8.2b.

Example 8.9 (Integral Curve for a Constant Velocity Field) The simplest
case is a constant vector field. Suppose that a constant field x1 = 1 and x2 = 2
is defined on R

2. The integral curve from (0, 0) is τ(t) = (t, 2t). It can be easily
seen that (8.14) holds for all t ≥ 0. �
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Example 8.10 (Integral Curve for a Linear Velocity Field) Consider a ve-
locity field on R

2. Let ẋ1 = −2x1 and ẋ2 = −x2. The function τ(t) = (e−2t, e−t)
represents the integral curve from (1, 1). At t = 0, τ(0) = (1, 1), which is the
initial state. If can be verified that for all t > 0, (8.14) holds. This is a simple
example of a linear velocity field. In general, if each fi is a linear function of
the coordinate variables x1, . . ., xn, then a linear velocity field is obtained. The
integral curve is generally found by determining the eigenvalues of the matrix A
when the velocity field is expressed as ẋ = Ax. See [23] for numerous examples. �

A basic result from differential equations is that a unique integral curve exists
to ẋ = f(x) if f is smooth. An alternative condition is that a unique solution exists
if f satisfies a Lipschitz condition. This means that there exists some constant
c ∈ (0,∞) such that

‖f(x)− f(x′)‖ ≤ c‖x− x′‖ (8.16)

for all x, x′ ∈ X, and ‖ · ‖ denotes the Euclidean norm (vector magnitude). The
constant c is often called a Lipschitz constant. Note that if f satisfies the Lipschitz
condition, then it is continuous. Also, if all partial derivatives of f over all of X
can be bounded by a constant, then f is Lipschitz. The expression in (8.16) is
preferred, however, because it is more general (it does not even imply that f is
differentiable everywhere).

Piecewise-smooth vector fields It will be important to allow vector fields
that are smooth only over a finite number of patches. At a switching boundary
between two patches, a discontinuous jump may occur. For example, suppose that
an (n− 1)-dimensional switching boundary, S ⊂ R

n, is defined as

S = {x ∈ R
n| s(x) = 0}, (8.17)

in which s is a function s : Rn → R. If Rn has dimension n and s is not singular,
then S has dimension n− 1. Define

S+ = {x ∈ R
n| s(x) > 0} (8.18)

and

S− = {x ∈ R
n| s(x) < 0}. (8.19)

The definitions are similar to the construction of implicit models using geometric
primitives in Section 3.1.2. Suppose that f(x) is smooth over S+ and S− but
experiences a discontinuous jump at S. Such differential equations model hybrid
systems in control theory [18, 47, 65]. The task there is to design a hybrid control
system. Can we still determine a solution trajectory in this case? Under special
conditions, we can obtain what is called a solution to the differential equations in
the sense of Filipov [45, 84].
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Let B(x, δ) denote an open ball of radius δ centered at x. Let f(B(x, δ))
denote the set

f(B(x, δ)) = {x′ ∈ X | ∃x′′ ∈ B(x, δ) for which x′ = f(x′′)}. (8.20)

Let X0 denote any subset of Rn that has measure zero (i.e., µ(X0) = 0). Let
hull(A) denote the convex hull of a set, A, of points in R

n. A path τ : [0, tf ]→ R
n

is called a solution in the sense of Filipov if for almost all t ∈ [0, tf ],

dτ

dt
(t) ∈

⋂

δ>0

{

⋂

X0

hull(f(B(τ(t), δ) \X0))

}

, (8.21)

in which the intersections are taken over all possible δ > 0 and sets, X0, of measure
zero. The expression (8.21) is actually called a differential inclusion [7] because a
set of choices is possible for ẋ. The “for almost all” requirement means that the
condition can even fail to hold on a set of measure zero in [0, tf ]. Intuitively, it
says that almost all of the velocity vectors produced by τ must point “between”
the velocity vectors given by f in the vicinity of τ(x(t)). The “between” part
comes from using the convex hull. Filipov’s sense of solution is an incredible
generalization of the solution concept in the sense of Caratheodory. In that case,
every velocity vector produced by τ must agree with f(x(t)), as given in (8.14).
The condition in (8.21) allows all sorts of sloppiness to appear in the solution,
even permitting f to be discontinuous.

Many bizarre vector fields can yield solutions in the sense of Filipov. The
switching boundary model is relatively simple among those permitted by Fil-
ipov’s condition. Figure 8.7 shows various cases that can occur at the switching
boundary S. For the case of consistent flow, solutions occur as you may intu-
itively expect. Filipov’s condition, (8.21), requires that at S the velocity vector
of τ points between vectors before and after crossing S (for example, it can point
down, which is the average of the two directions). The magnitude must also be
between the two magnitudes. For the inward flow case, the integral curve moves
along S, assuming the vectors inside of S point in the same direction (within
the convex hull) as the vectors on either side of the boundary. In applications
that involve physical systems, this may lead to oscillations around S. This can
be alleviated by regularization, which thickens the boundary [84] (the subject of
sliding-mode control addresses this issue [40]). The outward flow case can lead to
nonuniqueness if the initial state lies in S. However, trajectories that start outside
of S will not cross S, and there will be no such troubles. If the flow is tangent
on both sides of a boundary, then other forms of nonuniqueness may occur. The
tangent-flow case will be avoided in this chapter.

8.3.2 Smooth Manifolds

The manifold definition given in Section 4.1.2 is often called a topological manifold.
A manifold defined in this way does not necessarily have enough axioms to ensure
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Outward flow Tangent flow

Figure 8.7: Different kinds of flows around a switching boundary.

that calculus operations, such as differentiation and integration, can be performed.
We would like to talk about velocities on the configuration space C or in general for
a continuous state space X. As seen in Chapter 4, the configuration space could
be a manifold such as RP3. Therefore, we need to define some more qualities that
a manifold should possess to enable calculus. This leads to the notion of a smooth
manifold.

Assume that M is a topological manifold, as defined in Section 4.1.2. For
example, M could represent SO(3), the set of all rotation matrices for R

3. A
simpler example that will be helpful to keep in mind is M = S

2, which is a sphere
in R

3. We want to extend the concepts of Section 8.3.1 from R
n to manifolds.

One of the first definitions will be the tangent space Tp(M) at a point p ∈ M .
As you might imagine intuitively, the tangent vectors are tangent to a surface,
as shown in Figure 8.8. These will indicate possible velocities with which we can
move along the manifold from p. This is more difficult to define for a manifold
than for Rn because it is easy to express any point in R

n using n coordinates, and
all local coordinate frames for the tangent spaces at every p ∈ R

n are perfectly
aligned with each other. For a manifold such as S2, we must define tangent spaces
in a way that is not sensitive to coordinates and handles the fact that the tangent
plane rotates as we move around on S

2.
First think carefully about what it means to assign coordinates to a manifold.

Suppose M has dimension n and is embedded in R
m. For M = SO(3), n = 3 and

m = 9. For M = S
2, n = 2 and m = 3. The number of coordinates should be n,
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M

Tp(M)

Figure 8.8: Intuitively, the tangent space is a linear approximation to the manifold
in a neighborhood around p.

the dimension of M ; however, manifolds embedded in R
m are often expressed as

a subset of Rm for which some equality constraints must be obeyed. We would
like to express some part of M in terms of coordinates in R

n.

Coordinates and parameterizations For any open set U ⊆M and function
φ : U → R

n such that φ is a homeomorphism onto a subset of Rn, the pair (U, φ)
is called a coordinate neighborhood (or chart in some literature). The values φ(p)
for some p ∈ U are called the coordinates of p.

Example 8.11 (Coordinate Neighborhoods on S
1) A simple example can be

obtained for the circle M = S
1. Suppose M is expressed as the unit circle embed-

ded in R
2 (the set of solutions to x2+y2 = 1). Let (x, y) denote a point in R

2. Let
U be the subset of S1 for which x > 0. A coordinate function φ : U → (−π/2, π/2),
can be defined as φ(x, y) = tan−1(y/x).

LetW = φ(U) (the range of φ) for some coordinate neighborhood (U, φ). Since
U and W are homeomorphic via φ, the inverse function φ−1 can also be defined.
It turns out that the inverse is the familiar idea of a parameterization. Continuing
Example 8.11, φ−1 yields the mapping θ 7→ (cos θ, sin θ), which is the familiar
parameterization of the circle but restricted to θ ∈ (−π/2, π/2). �

To make differentiation work at a point p ∈M , it will be important to have a
coordinate neighborhood defined over an open subset of M that contains p. This
is mainly because defining derivatives of a function at a point requires that an
open set exists around the point. If the coordinates appear to have no boundary,
then this will be possible. It is unfortunately not possible to cover all ofM with a
single coordinate neighborhood, unless M = R

n (or M is at least homeomorphic
to R

n). We must therefore define multiple neighborhoods for which the domains
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Figure 8.9: An illustration of a change of coordinates.

cover all of M . Since every domain is an open set, some of these domains must
overlap. What happens in this case? We may have two or more alternative
coordinates for the same point. Moving from one set of coordinates to another is
the familiar operation used in calculus called a change of coordinates. This will
now be formalized.

Suppose that (U, φ) and (V, ψ) are coordinate neighborhoods on some manifold
M , and U ∩ V 6= ∅. Figure 8.9 indicates how to change coordinates from φ to ψ.
This change of coordinates is expressed using function composition as ψ ◦ φ−1 :
R

n → R
n (φ−1 maps from R

n into M , and ψ maps from a subset of M to R
n).

Example 8.12 (Change of Coordinates) Consider changing from Euler an-
gles to quaternions for M = SO(3). Since SO(3) is a 3D manifold, n = 3. This
means that any coordinate neighborhood must map a point in SO(3) to a point in
R

3. We can construct a coordinate function φ : SO(3)→ R
3 by computing Euler

angles from a given rotation matrix. The functions are actually defined in (3.47),
(3.48), and (3.49). To make this a coordinate neighborhood, an open subset U of
M must be specified.

We can construct another coordinate function ψ : SO(3) → R
3 by using

quaternions. This may appear to be a problem because quaternions have four
components; however, the fourth component can be determined from the other
three. Using (4.24) to (4.26), the a, b, and c coordinates can be determined.

Now suppose that we would like to change from Euler angles to quaternions
in the overlap region U ∩ V , in which V is an open set on which the coordinate
neighborhood for quaternions is defined. The task is to construct a change of
coordinates, ψ ◦ φ−1. We first have to invert φ over U . This means that we
instead need a parameterization of M in terms of Euler angles. This is given
by (3.42), which yields a rotation matrix, φ−1(α, β, γ) ∈ SO(3) for α, β, and γ.
Once this matrix is determined, then ψ can be applied to it to determine the
quaternion parameters, a, b, and c. This means that we have constructed three
real-valued functions, f1, f2, and f3, which yield a = f1(α, β, γ), b = f2(α, β, γ),
and c = f3(α, β, γ). Together, these define ψ ◦ φ−1. �
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There are several reasons for performing coordinate changes in various con-
texts. Example 8.12 is motivated by a change that frequently occurs in motion
planning. Imagine, for example, that a graphics package displays objects using
quaternions, but a collision-detection algorithm uses Euler angles. It may be nec-
essary in such cases to frequently change coordinates. From studies of calculus,
you may recall changing coordinates to simplify an integral. In the definition of a
smooth manifold, another motivation arises. Since coordinate neighborhoods are
based on homeomorphisms of open sets, several may be required just to cover all
ofM . For example, even if we decide to use quaternions for SO(3), several coordi-
nate neighborhoods that map to quaternions may be needed. On the intersections
of their domains, a change of coordinates is necessary.

Now we are ready to define a smooth manifold. Changes of coordinates will
appear in the manifold definition, and they must satisfy a smoothness condition.
A smooth structure5 on a (topological) manifold M is a family6 U = {Uα, φα} of
coordinate neighborhoods such that:

1. The union of all Uα contains M . Thus, it is possible to obtain coordinates
in R

n for any point in M .

2. For any (U, φ) and (V, ψ) in U , if U∩V 6= ∅, then the changes of coordinates,
ψ ◦ φ−1 and φ ◦ ψ−1, are smooth functions on U ∩ V . The changes of
coordinates must produce diffeomorphisms on the intersections. In this case,
the coordinate neighborhoods are called compatible.

3. The family U is maximal in the sense that if some (U, φ) is compatible with
every coordinate neighborhood in U , then (U, φ) must be included in U .

A well-known theorem (see [17], p. 54) states that if a set of compatible neighbor-
hoods covers all ofM , then a unique smooth structure exists that contains them.7

This means that a differential structure can often be specified by a small number
of neighborhoods, and the remaining ones are implied.

A manifold, as defined in Section 4.1.2, together with a smooth structure is
called a smooth manifold.8

Example 8.13 (Rn as a Smooth Manifold) We should expect that the con-
cepts presented so far apply to R

n, which is the most straightforward family of
manifolds. A single coordinate neighborhood R

n → R
n can be used, which is the

identity map. For all integers n ∈ {1, 2, 3} and n > 4, this is the only possible
smooth structure on R

n. It is truly amazing that for R4, there are uncountably

5Alternative names are differentiable structure and C∞ structure.
6In literature in which the coordinate neighborhoods are called charts, this family is called

an atlas.
7This is under the assumption that M is Hausdorff and has a countable basis of open sets,

which applies to the manifolds considered here.
8Alternative names are differentiable manifold and C∞ manifold.
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many incompatible smooth structures, called exotic R
4 [38]. There is no need to

worry, however; just use the one given by the identity map for R4. �

Example 8.14 (Sn as a Smooth Manifold) One way to define Sn as a smooth
manifold uses 2(n+1) coordinate neighborhoods and results in simple expressions.
Let Sn be defined as

S
n = {(x1, . . . , xn+1) ∈ R

n+1| x21 + · · ·+ x2n+1 = 1}. (8.22)

The domain of each coordinate neighborhood is defined as follows. For each i
from 1 to n+ 1, there are two neighborhoods:

U+
i = {(x1, . . . , xn+1) ∈ R

n+1| xi > 0} (8.23)

and
U−

i = {(x1, . . . , xn+1) ∈ R
n+1| xi < 0}. (8.24)

Each neighborhood is an open set that covers half of Sn but misses the great circle
at xi = 0. The coordinate functions can be defined by projection down to the
(n− 1)-dimensional hyperplane that contains the great circle. For each i,

φ+
i (x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn) (8.25)

over U+
i . Each φ

−

i is defined the same way, but over U−

i . Each coordinate function
is a homeomorphism from an open subset of S

n to an open subset of R
n, as

required. On the subsets in which the neighborhoods overlap, the changes of
coordinate functions are smooth. For example, consider changing from φ+

i to φ−

j

for some i 6= j. The change of coordinates is a function φ−

j ◦ (φ
+
i )

−1. The inverse
of φ+

i is expressed as

(φ+
i )

−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x
2
i−1 − x

2
i+1 − · · · − x

2
n, xi+1, . . . , xn+1).

(8.26)

When composed with φ−

j , the jth coordinate is dropped. This yields

φ−

k ◦ (φ
+
i )

−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x
2
i−1 − x

2
i+1 − · · · − x

2
n,

xi+1, . . . , xj−1, xj+1, . . . , xn),

(8.27)

which is a smooth function over the domain U+
i . Try visualizing the changes of

coordinates for the circle S
1 and sphere S

2.
The smooth structure can alternatively be defined using only two coordinate

neighborhoods by using stereographic projection. For S2, one coordinate function
maps almost every point x ∈ S

2 to R
2 by drawing a ray from the north pole to
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x and mapping to the point in the x3 = 0 plane that is crossed by the ray. The
only excluded point is the north pole itself. A similar mapping can be constructed
from the south pole. �

Example 8.15 (RPn as a Smooth Manifold) This example is particularly im-
portant because RP3 is the same manifold as SO(3), as established in Section 4.2.2.
Recall from Section 4.1.2 that RPn is defined as the set of all lines in R

n+1 that
pass through the origin. This means that for any α ∈ R such that α 6= 0, and
any x ∈ R

n+1, both x and αx are identified. In projective space, scale does not
matter.

A smooth structure can be specified by only n+ 1 coordinate neighborhoods.
For each i from 1 to n+ 1, let

φi(x1, . . . , xn+1) = (x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi), (8.28)

over the open set of all points in R
n+1 for which xi 6= 0. The inverse coordinate

function is given by

φ−1
i (z1, . . . , zn) = (z1, . . . , zi−1, 1, zi, . . . , zn+1). (8.29)

It is not hard to verify that these simple transformations are smooth on overlap-
ping neighborhoods.

A smooth structure over SO(3) can be derived as a special case because SO(3)
is topologically equivalent to RP

3. Suppose elements of SO(3) are expressed using
unit quaternions. Each (a, b, c, d) is considered as a point on S

3. There are four
coordinate neighborhoods. For example, one of them is

φb(a, b, c, d) = (a/b, c/b, d/b), (8.30)

which is defined over the subset of R4 for which b 6= 0. The inverse of φb(a, b, c, d)
needs to be defined so that a point on SO(3) maps to a point in R

4 that has unit
magnitude. �

Tangent spaces on manifolds Now consider defining tangent spaces on man-
ifolds. Intuitively, the tangent space Tp(M) at a point p on an n-dimensional
manifold M is an n-dimensional hyperplane in R

m that best approximates M
around p, when the hyperplane origin is translated to p. This is depicted in Fig-
ure 8.8. The notion of a tangent was actually used in Section 7.4.1 to describe
local motions for motion planning of closed kinematic chains (see Figure 7.22).

To define a tangent space on a manifold, we first consider a more complicated
definition of the tangent space at a point in R

n, in comparison to what was given in
Section 8.3.1. Suppose that M = R

2, and consider taking directional derivatives
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of a smooth function f : R2 → R at a point p ∈ R
2. For some (unnormalized)

direction vector, v ∈ R
2, the directional derivative of f at p can be defined as

∇v(f)
∣

∣

∣

p
= v1

∂f

∂x1

∣

∣

∣

p
+ v2

∂f

∂x2

∣

∣

∣

p
. (8.31)

The directional derivative used here does not normalize the direction vector (con-
trary to basic calculus). Hence, ∇v(f) = ∇(f) · v, in which “·” denotes the inner
product or dot product, and∇(f) denotes the gradient of f . The set of all possible
direction vectors that can be used in this construction forms a two-dimensional
vector space that happens to be the tangent space Tp(R

2), as defined previously.
This can be generalized to n dimensions to obtain

∇v(f)
∣

∣

∣

p
=

n
∑

i=1

vi
∂f

∂xi

∣

∣

∣

p
, (8.32)

for which all possible direction vectors represent the tangent space Tp(R
n). The

set of all directions can be interpreted for our purposes as the set of possible
velocity vectors.

Now consider taking (unnormalized) directional derivatives of a smooth func-
tion, f :M → R, on a manifold. For an n-dimensional manifold, the tangent space
Tp(M) at a point p ∈ M can be considered once again as the set of all unnor-
malized directions. These directions must intuitively be tangent to the manifold,
as depicted in Figure 8.8. There exists a clever way to define them without even
referring to specific coordinate neighborhoods. This leads to a definition of Tp(M)
that is intrinsic to the manifold.

At this point, you may accept that Tp(M) is an n-dimensional vector space
that is affixed to M at p and oriented as shown in Figure 8.8. For the sake of
completeness, however, a technical definition of Tp(M) from differential geometry
will be given; more details appear in [17, 86]. The construction is based on
characterizing the set of all possible directional derivative operators. Let C∞(p)
denote the set of all smooth functions that have domains that include p. Now
make the following identification. Any two functions f, g ∈ C∞(p) are defined
to be equivalent if there exists an open set U ⊂ M such that for any p ∈ U ,
f(p) = g(p). There is no need to distinguish equivalent functions because their
derivatives must be the same at p. Let C̃∞(p) denote C∞ under this identification.
A directional derivative operator at p can be considered as a function that maps
from C̃∞(p) to R for some direction. In the case of Rn, the operator appears as
∇v for each direction v. Think about the set of all directional derivative operators
that can be made. Each one must assign a real value to every function in C̃∞(p),
and it must obey two axioms from calculus regarding directional derivatives. Let
∇v denote a directional derivative operator at some p ∈ M (be careful, however,
because here v is not explicitly represented since there are no coordinates). The
directional derivative operator must satisfy two axioms:
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1. Linearity: For any α, β ∈ R and f, g ∈ C̃∞(p),

∇v(αf + βg) = α∇vf + β∇vg. (8.33)

2. Leibniz Rule (or Derivation): For any f, g ∈ C̃∞(p),

∇v(fg) = ∇vf g(p) + f(p)∇vg. (8.34)

You may recall these axioms from standard vector calculus as properties of the
directional derivative. It can be shown that the set of all possible operators that
satisfy these axioms forms an n-dimensional vector space [17]. This vector space
is called the tangent space, Tp(M), at p. This completes the definition of the
tangent space without referring to coordinates.

It is helpful, however, to have an explicit way to express vectors in Tp(M). A
basis for the tangent space can be obtained by using coordinate neighborhoods.
An important theorem from differential geometry states that if F : M → N
is a diffeomorphism onto an open set U ⊂ N , then the tangent space, Tp(M), is
isomorphic to TF (p)(N). This means that by using a parameterization (the inverse
of a coordinate neighborhood), there is a bijection between velocity vectors in
Tp(M) and velocity vectors in TF (p)(N). Small perturbations in the parameters
cause motions in the tangent directions on the manifold N . Imagine, for example,
making a small perturbation to three quaternion parameters that are used to
represent SO(3). If the perturbation is small enough, motions that are tangent to
SO(3) occur. In other words, the perturbed matrices will lie very close to SO(3)
(they will not lie in SO(3) because SO(3) is defined by nonlinear constraints on
R

9, as discussed in Section 4.1.2).

Example 8.16 (The Tangent Space for S
2) The discussion can be made more

concrete by developing the tangent space for S2, which is embedded in R
3 as the set

of all points (x, y, z) ∈ R
3 for which x2 + y2 + z2 = 1. A coordinate neighborhood

can be defined that covers most of S2 by using standard spherical coordinates. Let
f denote the coordinate function, which maps from (x, y, z) to angles (θ, φ). The
domain of f is the open set defined by θ ∈ (0, 2π) and φ ∈ (0, π) (this excludes
the poles). The standard formulas are θ = atan2(y, x) and φ = cos−1 z. The
inverse, f−1, yields a parameterization, which is x = cos θ sinφ, y = sin θ sinφ,
and z = cosφ.

Now consider different ways to express the tangent space at some point p ∈ S
2,

other than the poles (a change of coordinates is needed to cover these). Using
the coordinates (θ, φ), velocities can be defined as vectors in R

2. We can imagine
moving in the plane defined by θ and φ, provided that the limits θ ∈ (0, 2π) and
φ ∈ (0, π) are respected.

We can also use the parameterization to derive basis vectors for the tangent
space as vectors in R

3. Since the tangent space has only two dimensions, we must
obtain a plane that is “tangent” to the sphere at p. These can be found by taking
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derivatives. Let f−1 be denoted as x(θ, φ), y(θ, φ), and z(θ, φ). Two basis vectors
for the tangent plane at p are

[

dx(θ, φ)

dθ

dy(θ, φ)

dθ

dz(θ, φ)

dθ

]

(8.35)

and
[

dx(θ, φ)

dφ

dy(θ, φ)

dφ

dz(θ, φ)

dφ

]

. (8.36)

Computing these derivatives and normalizing yields the vectors [− sin θ cos θ 0]
and [cos θ cosφ sin θ cosφ − sinφ]. These can be imagined as the result of
making small perturbations of θ and φ at p. The vector space obtained by taking
all linear combinations of these vectors is the tangent space at R2. Note that the
direction of the basis vectors depends on p ∈ S

2, as expected.
The tangent vectors can now be imagined as lying in a plane that is tangent

to the surface, as shown in Figure 8.8. The normal vector to a surface specified
as g(x, y, z) = 0 is ∇g, which yields [x y z] after normalizing. This could
alternatively be obtained by taking the cross product of the two vectors above
and using the parameterization f−1 to express it in terms of x, y, and z. For a
point p = (x0, y0, z0), the plane equation is

x0(x− x0) + y0(y − y0) + z0(z − z0) = 0. (8.37)

�

Vector fields and velocity fields on manifolds The notation for a tangent
space on a manifold looks the same as for R

n. This enables the vector field
definition and notation to extend naturally from R

n to smooth manifolds. A
vector field on a manifold M assigns a vector in Tp(M) for every p ∈ M . It can
once again be imagined as a needle diagram, but now the needle diagram is spread
over the manifold, rather than lying in R

n.
The velocity field interpretation of a vector field can also be extended to smooth

manifolds. This means that ẋ = f(x) now defines a set of n differential equations
over M and is usually expressed using a coordinate neighborhood of the smooth
structure. If f is a smooth vector field, then a solution trajectory, τ : [0,∞)→M ,
can be defined from any x0 ∈M . Solution trajectories in the sense of Filipov can
also be defined, for the case of piecewise-smooth vector fields.

8.4 Complete Methods for Continuous Spaces

A complete feedback planning algorithm must compute a feedback solution if
one exists; otherwise, it must report failure. Section 8.4.1 parallels Section 8.2 by
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defining feedback plans and navigation functions for the case of a continuous state
space. Section 8.4.2 indicates how to define a feasible feedback plan from a cell
complex that was computed using cell decomposition techniques. Section 8.4.3
presents a combinatorial approach to computing an optimal navigation function
and corresponding feedback plan in R

2. Sections 8.4.2 and 8.4.3 allow the feedback
plan to be a discontinuous vector field. In many applications, especially those in
which dynamics dominate, some conditions need to be enforced on the naviga-
tion functions and their resulting vector fields. Section 8.4.4 therefore considers
constraints on the allowable vector fields and navigation functions. This coverage
includes navigation functions in the sense of Rimon-Koditschek [79], from which
the term navigation function was introduced.

8.4.1 Feedback Motion Planning Definitions

Using the concepts from Section 8.3, we are now ready to define feedback mo-
tion planning over configuration spaces or other continuous state spaces. Recall
Formulation 4.1, which defined the basic motion planning problem in terms of
configuration space. The differences in the current setting are that there is no
initial condition, and the requirement of a solution path is replaced by a solu-
tion vector field. The formulation here can be considered as a continuous-time
adaptation to Formulation 8.1.

Formulation 8.2 (Feedback Motion Planning)

1. A state space, X, which is a smooth manifold. The state space will most
often be Cfree, as defined in Section 4.3.1.9

2. For each state, x ∈ X, an action space, U(x) = Tx(X). The zero velocity,
0 ∈ Tx(X), is designated as the termination action, uT . Using this model,
the robot is capable of selecting its velocity at any state.10

3. An unbounded time interval, T = [0,∞).

4. A state transition (differential) equation,

ẋ = u, (8.38)

which is expressed using a coordinate neighborhood and yields the velocity,
ẋ, directly assigned by the action u. The velocity produced by uT is 0 ∈
Tx(X) (which means “stop”).

9Note that X already excludes the obstacle region. For some problems in Part IV, the state
space will be X = C, which includes the obstacle region.

10This allows discontinuous changes in velocity, which is unrealistic in many applications.
Additional constraints, such as imposing acceleration bounds, will also be discussed. For a
complete treatment of differential constraints, see Part IV.

400 S. M. LaValle: Planning Algorithms

5. A goal set, XG ⊂ X.

A feedback plan, π, for Formulation 8.2 is defined as a function π, which pro-
duces an action u ∈ U(x) for each x ∈ X. A feedback plan can equivalently be
considered as a vector field on X because each u ∈ U(x) specifies a velocity vector
(uT specifies zero velocity). Since the initial state is not fixed, it becomes slightly
more complicated to define what it means for a plan to be a solution to the prob-
lem. Let Xr ⊂ X denote the set of all states from which XG is reachable. More
precisely, a state xI belongs to Xr if and only if a continuous path τ : [0, 1]→ X
exists for which τ(0) = xI and τ(1) = xG for some xG ∈ XG. This means that a
solution path exists from xI for the “open-loop” motion planning problem, which
was considered in Chapter 4.

Solution concepts

A feedback plan, π, is called a solution to the problem in Formulation 8.2 if from
all xI ∈ Xr, the integral curves of π (considered as a vector field) arrive in XG,
at which point the termination action is applied. Some words of caution must be
given about what it means to “arrive” in XG. Notions of stability from control
theory [51, 84] are useful for distinguishing different cases; see Section 15.1. If
XG is a small ball centered on xG, then the ball will be reached after finite time
using the inward vector field shown in Figure 8.5b. Now suppose that XG is a
single point, xG. The inward vector field produces velocities that bring the state
closer and closer to the origin, but when is it actually reached? It turns out that
convergence to the origin in this case is only asymptotic; the origin is reached in the
limit as the time approaches infinity. Such stability often arises in control theory
from smooth vector fields. We may allow such asymptotic convergence to the goal
(if the vector field is smooth and the goal is a point, then this is unavoidable).
If any integral curves result in only asymptotic convergence to the goal, then a
solution plan is called an asymptotic solution plan. Note that in general it may
be impossible to require that π is a smooth (or even continuous) nonzero vector
field. For example, due to the hairy ball theorem [81], it is known that no such
vector field exists for Sn for any even integer n. Therefore, the strongest possible
requirement is that π is smooth except on a set of measure zero; see Section 8.4.4.
We may also allow solutions π for which almost all integral curves arrive in XG.

However, it will be assumed by default in this chapter that a solution plan
converges to xG in finite time. For example, if the inward field is normalized to
produce unit speed everywhere except the origin, then the origin will be reached in
finite time. A constraint can be placed on the set of allowable vector fields without
affecting the existence of a solution plan. As in the basic motion planning problem,
the speed along the path is not important. Let a normalized vector field be any
vector field for which either ‖f(x)‖ = 1 or f(x) = 0, for all x ∈ X. This means
that all velocity vectors are either unit vectors or the zero vector, and the speed is
no longer a factor. A normalized vector field provides either a direction of motion
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or no motion. Note that any vector field f can be converted into a normalized
vector field by dividing the velocity vector f(x) by its magnitude (unless the
magnitude is zero), for each x ∈ X.

In many cases, unit speed does not necessarily imply a constant speed in some
true physical sense. For example, if the robot is a floating rigid body, there are
many ways to parameterize position and orientation. The speed of the body is
sensitive to this parameterization. Therefore, other constraints may be preferable
instead of ‖f(x)‖ = 1; however, it is important to keep in mind that the constraint
is imposed so that f(x) provides a direction at x. The particular magnitude is
assumed unimportant.

So far, consideration has been given only to a feasible feedback motion plan-
ning problem. An optimal feedback motion planning problem can be defined by
introducing a cost functional. Let x̃t denote the function x̃t : [0, t] → X, which
is called the state trajectory (or state history). This is a continuous-time ver-
sion of the state history, which was defined previously for problems that have
discrete stages. Similarly, let ũt denote the action trajectory (or action history),
ũt : [0, t]→ U . Let L denote a cost functional, which may be applied from any xI
to yield

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF )), (8.39)

in which tF is the time at which the termination action is applied. The term
l(x(t), u(t)) can alternatively be expressed as l(x(t), ẋ(t)) by using the state tran-
sition equation (8.38). A normalized vector field that optimizes (8.39) from all
initial states that can reach the goal is considered as an optimal feedback motion
plan.

Note that the state trajectory can be determined from an action history and
initial state. In fact, we could have used action trajectories to define a solution
path to the motion planning problem of Chapter 4. Instead, a solution was defined
there as a path τ : [0, 1] → Cfree to avoid having to introduce velocity fields on
smooth manifolds. That was the only place in the book in which the action
space seemed to disappear, and now you can see that it was only hiding to avoid
inessential notation.

Navigation functions

As in Section 8.2.2, potential functions can be used to represent feedback plans,
assuming that a local operator is developed that works for continuous state spaces.
In the discrete case, the local operator selects an action that reduces the poten-
tial value. In the continuous case, the local operator must convert the potential
function into a vector field. In other words, a velocity vector must be defined at
each state. By default, it will be assumed here that the vector fields derived from
the navigation function are not necessarily normalized.

Assume that π(x) = uT is defined for all x ∈ XG, regardless of the potential
function. Suppose that a potential function φ : X → R has been defined for which
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the gradient

∇φ =

[

∂φ

∂x1

∂φ

∂x2
· · ·

∂φ

∂xn

]

(8.40)

exists over all of X \ XG. The corresponding feedback plan can then be defined
as π(x) = −∇φ|x. This defines the local operator, which means that the velocity
is taken in the direction of the steepest descent of φ. The idea of using potential
functions in this way was proposed for robotics by Khatib [52, 53] and can be
considered as a form of gradient descent, which is a general optimization technique.

It is also possible to work with potential functions for which the gradient does
not exist everywhere. In these cases, a continuous-space version of (8.4) can be
defined for a small, fixed ∆t as

u∗ = argmin
u∈U(x)

{

φ(x′)
}

, (8.41)

in which x′ is the state obtained by integrating velocity u from x for time ∆t.
One problem is that ∆t should be chosen to use the smallest possible neighbor-
hood around φ. It is best to allow only potential functions for which ∆t can be
made arbitrarily small at every x without affecting the decision in (8.41). To be
precise, this means that an infinite sequence of u∗ values can be determined from
a sequence of ∆t values that converges to 0. A potential function should then
be chosen to ensure after some point in the sequence, u∗, exists and the same u∗

can be chosen to satisfy (8.41) as ∆t approaches 0. A special case of this is if the
gradient of φ exists; the infinite sequence in this case converges to the negative
gradient.

A potential function, φ, is called a navigation function if the vector field that
is derived from it is a solution plan. The optimal cost-to-go serves as an optimal
navigation function. If multiple vector fields can be derived from the same φ,
then every possible derived vector field must yield a solution feedback plan. If
designed appropriately, the potential function can be viewed as a kind of “ski
slope” that guides the state to XG. If there are extra local minima that cause
the state to become trapped, then XG will not be reached. To be a navigation
function, such local minima outside of XG are not allowed. Furthermore, there
may be additional requirements to ensure that the derived vector field satisfies
additional constraints, such as bounded acceleration.

Example 8.17 (Quadratic Potential Function) As a simple example, sup-
pose X = R

2, there are no obstacles, and qgoal = (0, 0). A quadratic function
φ(x, y) = 1

2
x21 +

1
2
x22 serves as a good potential function to guide the state to the

goal. The feedback motion strategy is defined as f = −∇φ = [−x1 − x2], which
is the inward vector field shown in Figure 8.5b.

If the goal is instead at some (x′1, x
′
2) ∈ R

2, then a potential function that
guides the state to the goal is φ(x1, x2) = (x1 − x

′
1)

2 + (x2 − x
′
2)

2. �
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Suppose the state space represents a configuration space that contains point
obstacles. The previous function φ can be considered as an attractive potential
because the configuration is attracted to the goal. One can also construct a repul-
sive potential that repels the configuration from the obstacles to avoid collision.
Let φa denote the attractive component and φr denote a repulsive potential that is
summed over all obstacle points. A potential function of the form φ = φa+φr can
be defined to combine both effects. The robot should be guided to the goal while
avoiding obstacles. The problem is that it is difficult in general to ensure that
the potential function will not contain multiple local minima. The configuration
could become trapped at a local minimum that is not in the goal region. This
was an issue with the planner from Section 5.4.3.

8.4.2 Vector Fields Over Cell Complexes

This section describes how to construct a piecewise-smooth vector field over a
cell complex. Only normalized vector fields will be considered. It is assumed
that each cell in the complex has a simple shape over which it is easy to define a
patch of the vector field. In many cases, the cell decomposition techniques that
were introduced in Chapter 6 for motion planning can be applied to construct a
feedback plan.

Suppose that an n-dimensional state space X has been decomposed into a cell
complex, such as a simplicial complex or singular complex, as defined in Section
6.3.1. Assume that the goal set is a single point, xG. Defining a feedback plan π
over X requires placing a vector field on X for which all integral curves lead to
xG (if xG is reachable). This is accomplished by defining a smooth vector field for
each n-cell. Each (n − 1)-cell is a switching boundary, as considered in Section
8.3.1. This leads directly to solution trajectories in the sense of Filipov. If π is
allowed to be discontinuous, then it is actually not important to specify values on
any of the cells of dimension n− 1 or less.

A hierarchical approach is taken to the construction of π:

1. Define a discrete planning problem over the n-cells. The cell that contains
xG is designated as the goal, and a discrete navigation function is defined
over the cells.

2. Define a vector field over each n-cell. The field should cause all states in
the cell to flow into the next cell as prescribed by the discrete navigation
function.

One additional consideration that is important in applications is to try to reduce
the effect of the discontinuity across the boundary as much as possible. It may
be possible to eliminate the discontinuity, or even construct a smooth transition
between n-cells. This issue will not be considered here, but it is nevertheless quite
important [26, 66].
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The approach will now be formalized. Suppose that a cell complex has been
defined over a continuous state space, X. Let X̌ denote the set of n-cells, which
can be interpreted as a finite state space. A discrete planning problem will be
defined over X̌. To avoid confusion with the original continuous problem, the
prefix super will be applied to the discrete planning components. Each superstate
x̌ ∈ X̌ corresponds to an n-cell. From each x̌, a superaction, ǔ ∈ Ǔ(x̌) exists for
each neighboring n-cell (to be neighboring, the two cells must share an (n − 1)-
dimensional boundary). Let the goal superstate x̌g be the n-cell that contains xG.
Assume that the cost functional is defined for the discrete problem so that every
action (other than uT ) produces a unit cost. Now the concepts from Section 8.2
can be applied to the discrete problem. A discrete navigation function, φ̌ : X̌ → R,
can be computed using Dijkstra’s algorithm (or another algorithm, particularly if
optimality is not important). Using the discrete local operator from Section 8.2.2,
this results in a discrete feedback plan, π̌ : X̌ → Ǔ .

Based on the discrete feedback plan, there are two kinds of n-cells. The first
is the goal cell, x̌g, for which a vector field needs to be defined so that all integral
curves lead to Xg in finite time.11 A termination action can be applied when xG
is actually reached. The remaining n-cells are of the second kind. For each cell
x̌, the boundary that is shared with the cell reached by applying ǔ = π̌(x̌) is
called the exit face. The vector field over the n-cell x̌ must be defined so that all
integral curves lead to the exit face. When the exit face is reached, a transition will
occur into the next n-cell. If the n-cells are convex, then defining this transition
is straightforward (unless there are additional requirements on the field, such as
smoothness at the boundary). For more complicated cells, one possibility is to
define a vector field that retracts all points onto a single curve in the cell.

A simple example of the approach is illustrated for the case of X = Cfree ⊂ R
2,

in which the boundary of Cfree is polygonal. This motion planning problem was
considered in Section 6.2, but without feedback. Suppose that a triangulation of
X has been computed, as described in Section 6.3.2. An example was shown in
Figure 6.16. A discrete feedback plan is shown for a particular goal state in Figure
8.10. Each 2-cell (triangle) is labeled with an arrow that points to the next cell.

For the cell that contains xG, a normalized version of the inward vector field
shown in Figure 8.5b can be formed by dividing each nonzero vector by its magni-
tude. It can then be translated to move its origin to xG. For each remaining 2-cell,
a vector field must be constructed that flows into the appropriate neighboring cell.
Figure 8.11 illustrates a simple way to achieve this. An outward vector field can
be made by negating the field shown in Figure 8.5b to obtain f = [x y]. This
field can be normalized and translated to move the origin to the triangle vertex
that is not incident to the exit edge. This is called the repulsive vertex in Figure
8.11. This generates a vector field that pushes all points in the triangle to the ext
edge. If the fields are constructed in this way for each triangle, then the global

11This is possible in finite time, even if Xg is a single point, because the vector field is not
continuous. Otherwise, only asymptotic convergence may be possible.



8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 405

xG

Figure 8.10: A triangulation is used to define a vector field over X. All solution
trajectories lead to the goal.

Repulsive vertex

Exit edge

Figure 8.11: A vector field can be defined for each triangle by repelling from a
vertex that opposes the exit edge.

vector field represents a solution feedback plan for the problem. Integral curves
(in the sense of Filipov) lead to xG in finite time.

8.4.3 Optimal Navigation Functions

The vector fields developed in the last section yield feasible trajectories, but not
necessarily optimal trajectories unless the initial and goal states are in the same
convex n-cell. If X = R

2, then it is possible to make a continuous version of
Dijkstra’s algorithm [74]. This results in an exact cost-to-go function overX based
on the Euclidean shortest path to a goal, xG. The cost-to-go function serves as
the navigation function, from which the feedback plan is defined by using a local
steepest descent.

Suppose that X is bounded by a simple polygon (no holes). Assume that
only normalized vector fields are allowed. The cost functional is assumed to be
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V (x)

way points
x

(a) (b)

Figure 8.12: (a) A point, x, in a simple polygon. (b) The visibility polygon, V (x).

(a) (b) (c) (d)

Figure 8.13: The optimal navigation function is computed in four iterations. In
each iteration, the navigation function is extended from a new way point.

the Euclidean distance traveled along a state trajectory. Recall from Section
6.2.4 that for optimal path planning, X = cl(Cfree) must be used. Assume that
Cfree and cl(Cfree) have the same connectivity.12 This technically interferes with
the definition of tangent spaces from Section 8.3 because each point of X must
be contained in an open neighborhood. Nevertheless, we allow vectors along the
boundary, provided that they “point” in a direction tangent to the boundary. This
can be formally defined by considering boundary regions as separate manifolds.

Consider computing the optimal cost-to-go to a point xG for a problem such
as that shown in Figure 8.12a. For any x ∈ X, let the visibility polygon V (x)
refer to the set of all points visible from x, which is illustrated in Figure 8.12b. A
point x′ lies in V (x) if and only if the line segment from x′ to x is contained in X.
This implies that the cost-to-go from x′ to x is just the Euclidean distance from

12This precludes a choice of Cfree for which adding the boundary point enables a homotopically
distinct path to be made through the boundary point. An example of this is when two square
obstacles in R

2 contact each other only at a pair of corners.
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x′ to x. The optimal navigation function can therefore be immediately defined
over V (xG) as

φ(x) = ‖x− xG‖. (8.42)

Level sets at regularly spaced values of this navigation function are shown in
Figure 8.13a.

How do we compute the optimal cost-to-go values for the points in X \V (xG)?
For the segments on the boundary of V (x) for any x ∈ X, some edges are contained
in the boundary ofX, and others cross the interior ofX. For the example in Figure
8.12b, there are two edges that cross the interior. For each segment that crosses
the interior, let the closer of the two vertices to x be referred to as a way point.
Two way points are indicated in Figure 8.12b. The way points of V (xG) are places
through which some optimal paths must cross. Let W (x) for any x ∈ X denote
the set of way points of V (x).

A straightforward algorithm proceeds as follows. Let Zi denote the set of
points over which φ has been defined, in the ith iteration of the algorithm. In the
first iteration, Z1 = V (xG), which is the case shown in Figure 8.13a. The way
points of V (xG) are placed in a queue, Q. In each following iteration, a way point
x is removed from Q. Let Zi denote the domain over which φ is defined so far.
The domain of φ is extended to include all new points visible from x. These new
points are V (x) \ Zi. This yields Zi+1 = Zi ∪ V (x), the extended domain of φ.
The values of φ(x′) for x′ ∈ Zi+1 \ Zi are defined by

φ(x′) = φ(x) + ‖x′ − x‖, (8.43)

in which x is the way point that was removed from Q (the optimal cost-to-go
value of x was already computed). The way points of V (x) that do not lie in Zi+1

are added to Q. Each of these will yield new portions of X that have not yet been
seen. The algorithm terminates when Q is empty, which implies that Zk = X for
some k. The execution of the algorithm is illustrated in Figure 8.13.

The visibility polygon can be computed in time O(n lg n) if X is described
by n edges. This is accomplished by performing a radial sweep, which is an
adaptation of the method applied in Section 6.2.2 for vertical cell decomposition.
The difference for computing V (x) is that a ray anchored at x is swept radially
(like a radar sweep). The segments that intersect the ray are sorted by their
distance from x. For the algorithm that constructs the navigation function, no
more than O(n) visibility polygons are computed because each one is computed
from a unique way point. This implies O(n2 lg n) running time for the whole
algorithm. Unfortunately, there is no extension to higher dimensions; recall from
Section 7.7.1 that computing shortest paths in a 3D environment is NP-hard [22].

The algorithm given here is easy to describe, but it is not the most general,
nor the most efficient. If X has holes, then the level set curves can collide by
arriving from different directions when traveling around an obstacle. The queue,
Q, described above can be sorted as in Dijkstra’s algorithm, and special data
structures are needed to identify when critical events occur as the cost-to-go is
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propagated outward. It was shown in [48] that this can be done in time O(n lg n)
and space O(n lg n).

8.4.4 A Step Toward Considering Dynamics

If dynamics is an important factor, then the discontinuous vector fields considered
so far are undesirable. Due to momentum, a mechanical system cannot instanta-
neously change its velocity (see Section 13.3). In this context, vector fields should
be required to satisfy additional constraints, such as smoothness or bounded ac-
celeration. This represents only a step toward considering dynamics. Full consid-
eration is given in Part IV, in which precise equations of motions of dynamical
systems are expressed as part of the model. The approach in this section is to
make vector fields that are “dynamics-ready” rather than carefully considering
particular equations of motion.

A framework has been developed by defining a navigation function that sat-
isfies some desired constraints over a simple region, such as a disc [79]. A set of
transformations is then designed that are proved to preserve the constraints while
adapting the navigation function to more complicated environments. For a given
problem, a complete algorithm for constructing navigation functions is obtained
by applying the appropriate series of transformations from some starting shape.

This section mostly focuses on constraints that are maintained under this
transformation-based framework. Sections 8.4.2 and 8.4.3 worked with normalized
vector fields. Under this constraint, virtually any vector field could be defined,
provided that the resulting algorithm constructs fields for which integral curves
exist in the sense of Filipov. In this section, we remove the constraint that vector
fields must be normalized, and then consider other constraints. The velocity
given by the vector field is now assumed to represent the true speed that must be
executed when the vector field is applied as a feedback plan.

One implication of adding constraints to the vector field is that optimal so-
lutions may not satisfy them. For example, the optimal navigation functions of
Section 8.4.3 lead to discontinuous vector fields, which violate the constraints to
be considered in this section. The required constraints restrict the set of allowable
vector fields. Optimality must therefore be defined over the restricted set of vector
fields. In some cases, an optimal solution may not even exist (see the discussion
of open sets and optimality in Section 9.1.1). Therefore, this section focuses only
on feasible solutions.

An acceleration-based control model

To motivate the introduction of constraints, consider a control model proposed in
[26, 80]. The action space, defined as U(x) = Tx(X) in Formulation 8.2, produces
a velocity for each action u ∈ U(x). Therefore, ẋ = u. Suppose instead that each
action produces an acceleration. This can be expressed as ẍ = u, in which ẍ is an
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acceleration vector,

ẍ =
dẋ

dt
=

[

d2x1
dt2

d2x2
dt2

· · ·
d2xn
dt2

]

. (8.44)

The velocity ẋ is obtained by integration over time. The state trajectory, x̃ : T →
X, is obtained by integrating (8.44) twice.

Suppose that a vector field is given in the form ẋ = f(x). How can a feedback
plan be derived? Consider how the velocity vectors specified by f(x) change as x
varies. Assume that f(x) is smooth (or at least C1), and let

∇ẋf(x) = [∇ẋf1(x) ∇ẋf2(x) · · · ∇ẋfn(x)] , (8.45)

in which ∇ẋ denotes the unnormalized directional derivative in the direction of ẋ:
∇fi · ẋ. Suppose that an initial state xI is given, and that the initial velocity is
ẋ = f(xI). The feedback plan can now be defined as

u = ∇ẋf(x). (8.46)

This is equivalent to the previous definition of a feedback plan from Section 8.4.1;
the only difference is that now two integrations are needed (which requires both
x and ẋ = f(xI) as initial conditions) and a differentiability condition must be
satisfied for the vector field.

Now the relationship between ẋ and f(x) will be redefined. Suppose that ẋ
is the true measured velocity during execution and that f(x) is the prescribed
velocity, obtained from the vector field f . During execution, it is assumed that ẋ
and f(x) are not necessarily the same, but the task is to keep them as close to each
other as possible. A discrepancy between them may occur due to dynamics that
have not been modeled. For example, if the field f(x) requests that the velocity
must suddenly change, a mobile robot may not be able to make a sharp turn due
to its momentum.

Using the new interpretation, the difference, f(x) − ẋ, can be considered as
a discrepancy or error. Suppose that a vector field f has been computed. A
feedback plan becomes the acceleration-based control model

u = K(f(x)− ẋ) +∇ẋf(x), (8.47)

in which K is a scalar gain constant. A larger value of K will make the control
system more aggressively attempt to reduce the error. If K is too large, then
acceleration or energy constraints may be violated. Note that if ẋ = f(x), then
u = ∇ẋf(x), which becomes equivalent to the earlier formulation.

Velocity and acceleration constraints

Considering the acceleration-based control model, some constraints can be placed
on the set of allowable vector fields. A bounded-velocity model means that ‖ẋ‖ <
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vmax, for some positive real value vmax called the maximum speed. This could
indicate, for example, that the robot has a maximum speed for safety reasons.
It is also possible to bound individual components of the velocity vector. For
example, there may be separate bounds for the maximum angular and linear
velocities of an aircraft. Intuitively, velocity bounds imply that the functions fi,
which define the vector field, cannot take on large values.

A bounded-acceleration model means that ‖ẍ‖ ≤ amax, in which amax is a pos-
itive real value called the maximum acceleration. Intuitively, acceleration bounds
imply that the velocity cannot change too quickly while traveling along an integral
curve. Using the control model ẍ = u, this implies that ‖u‖ ≤ amax. It also im-
poses the constraint that vector fields must satisfy ‖∇ẋf(x)‖ ≤ amax for all ẋ and
x ∈ X. The condition ‖u‖ ≤ amax is very important in practice because higher
accelerations are generally more expensive (bigger motors are required, more fuel
is consumed, etc.). The action u may correspond directly to the torques that are
applied to motors. In this case, each motor usually has an upper limit.

As has already been seen, setting an upper bound on velocity generally does
not affect the existence of a solution. Imagine that a robot can always decide to
travel more slowly. If there is also an upper bound on acceleration, then the robot
can attempt to travel more slowly to satisfy the bound. Imagine slowing down in
a car to make a sharp turn. If you would like to go faster, then it may be more
difficult to satisfy acceleration constraints. Nevertheless, in most situations, it is
preferable to go faster.

A discontinuous vector field fails to satisfy any acceleration bound because it
essentially requires infinite acceleration at the discontinuity to cause a discontinu-
ous jump in the velocity vector. If the vector field satisfies the Lipschitz condition
(8.16) for some constant C, then it satisfies the acceleration bound if C < amax.

In Chapter 13, we will precisely specify U(x) at every x ∈ X, which is more
general than imposing simple velocity and acceleration bounds. This enables
virtually any physical system to be modeled.

Navigation function in the sense of Rimon-Koditschek

Now consider constructing a navigation function from which a vector field can
be derived that satisfies constraints motivated by the acceleration-based control
model, (8.47). As usual, the definition of a navigation function begins with the
consideration of a potential function, φ : X → R. What properties does a poten-
tial function need to have so that it may be considered as a navigation function as
defined in Section 8.4.1 and also yield a vector field that satisfies an acceleration
bound? Sufficient conditions will be given that imply that a potential function
will be a navigation function that satisfies the bound.

To give the conditions, it will first be important to characterize extrema of
multivariate functions. Recall from basic calculus that a function f : R→ R has
a critical point when the first derivative is zero. At such points, the sign of the
second derivative indicates whether the critical point is a minimum or maximum.
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These ideas can be generalized to higher dimensions. A critical point of φ is one
for which ∇φ = 0. The Hessian of φ is defined as the matrix

H(φ) =


















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
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. (8.48)

At each critical point, the Hessian gives some information about the extremum.
If the rank of H(φ) at x is n, then the Hessian indicates the kind of extremum. If
(8.48) is positive definite,13 then the φ achieves a local minimum at x. If (8.48) is
negative definite,14 then the φ achieves a local maximum at x. In all other cases,
x is a saddle point. If the rank of H(φ) at x is less than n, then the Hessian is
degenerate. In this case the Hessian cannot classify the type of extremum. An
example of this occurs when x lies in a plateau (there is no direction in which
φ increases or decreases. Such behavior is obviously bad for a potential function
because the local operator would not be able to select a direction.

Suppose that the navigation function is required to be smooth, to ensure the
existence of a gradient at every point. This enables gradient descent to be per-
formed. If X is not contractible, then it turns out there must exist some critical
points other than xG at which ∇φ(x) = 0. The critical points can even be used
to infer the topology of X, which is the basic idea in the subject of Morse theory
[73, 25]. Unfortunately, this implies that there does not exist a solution navigation
function for such spaces because the definition in Section 8.4.1 required that the
integral curve from any state that can reach xG must reach it using the vector
field derived from the navigation function. If the initial state is a critical point,
the integral curve is constant (the state remains at the critical point). Therefore,
under the smoothness constraint, the definition of a navigation function should be
modified to allow critical points at a small number of places (only on a set that
has measure zero). It is furthermore required that the set of states from which
the integral curves arrive at each critical point (i.e., the domain of attraction of
each critical point) has measure zero. From all possible initial states, except from
a set of measure zero, the integral curves must reach xG, if it is reachable. This
is ensured in the following definition.

13Positive definite for an n × n matrix A means that for all x ∈ R
n, xTAx > 0. If A is

symmetric (which applies to H(φ)), then this is equivalent to A having all positive eigenvalues.
14Negative definite means that for all x ∈ R

n, xTAx < 0. If A is symmetric, then this is
equivalent to A having all negative eigenvalues.
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A function φ : X → R is called a navigation function in the sense of Rimon-
Koditschek if [79]:

1. It is smooth (or at least C2).

2. Among all values on the connected component of Cfree that contains xG,
there is only one local minimum, which is at xG.

15

3. It is maximal and constant on ∂Cfree, the boundary of Cfree.

4. It is a Morse function [73], which means that at each critical point x (i.e.,
∇φ|x = 0), the Hessian of φ is not degenerate.16 Such functions are known
to exist on any smooth manifold.

If φ is smooth in the C∞ sense, then by Sard’s Theorem [25] the set of critical
points has measure zero.

Methods for constructing navigation functions are outlined in [79] for a gen-
eral family of problems in which Cfree has a semi-algebraic description. The basic
idea is to start with simple shapes over which a navigation function can be easily
defined. One example of this is a spherical subset of Rn, which contains spherical
obstacles. A set of distorting transformations is then developed to adapt the nav-
igation functions to other shapes while ensuring that the four properties above
are maintained. One such transformation extends a ball into any visibility region
(in the sense defined in Section 8.4.3). This is achieved by smoothly stretching
out the ball into the shape of the visibility region. (Such regions are sometimes
called star-shaped.) The transformations given in [79] can be combined to define
navigation functions for a large family of configuration spaces. The main problem
is that the configuration space obstacles and the connectivity of Cfree are repre-
sented only implicitly, which makes it difficult to correctly apply the method to
complicated high-dimensional problems. One of the advantages of the approach
is that proving convergence to the goal is simplified. In many cases, Lyapunov
stability analysis can be performed (see Section 15.1.1).

Harmonic potential functions

Another important family of navigation functions is constructed from harmonic
functions [27, 28, 29, 49, 54]. A function φ is called a harmonic function if it
satisfies the differential equation

∇2φ =
n

∑

i=1

∂2φ

∂x2i
= 0. (8.49)

15Some authors do not include the global minimum as a local minimum. In this case, one
would say that there are no local minima.

16Technically, to be Morse, the values of the function must also be distinct at each critical
point.
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There are many possible solutions to the equation, depending on the conditions
along the boundary of the domain over which φ is defined. A simple disc-based
example is given in [26] for which an analytical solution exists. Complicated nav-
igation functions are generally defined by imposing constraints on φ along the
boundary of Cfree. A Dirichlet boundary condition means that the boundary must
be held to a constant value. Using this condition, a harmonic navigation func-
tion can be developed that guides the state into a goal region from anywhere
in a simply connected state space. If there are interior obstacles, then a Neu-
mann boundary condition forces the velocity vectors to be tangent to the obstacle
boundary. By solving (8.49) under a combination of both boundary conditions, a
harmonic navigation function can be constructed that avoids obstacles by moving
parallel to their boundaries and eventually landing in the goal. It has been shown
under general conditions that navigation functions can be produced [29, 28]; how-
ever, the main problems are that the boundary of Cfree is usually not constructed
explicitly (recall why this was avoided in Chapter 5) and that a numerical solution
to (8.49) is expensive to compute. This can be achieved, for example, by using
Gauss-Seidel iterations (as indicated in [29]), which are related to value iteration
(see [11] for the distinction). A sampling-based approach to constructing naviga-
tion functions via harmonic functions is presented in [16]. Value iteration will be
used to produce approximate, optimal navigation functions in Section 8.5.2.

8.5 Sampling-Based Methods for Continuous Spaces

The methods in Section 8.4 can be considered as the feedback-case analogs to
the combinatorial methods of Chapter 6. Although such methods provide elegant
solutions to the problem, the issue arises once again that they are either limited to
lower dimensional problems or problems that exhibit some special structure. This
motivates the introduction of sampling-based methods. This section presents the
feedback-case analog to Chapter 5.

8.5.1 Computing a Composition of Funnels

Mason introduced the concept of a funnel as a metaphor for motions that converge
to the same small region of the state space, regardless of the initial position [70].
As grains of sand in a funnel, they follow the slope of the funnel until they reach
the opening at the bottom. A navigation function can be imagined as a funnel
that guides the state into the goal. For example, the cost-to-go function depicted
in Figure 8.13d can be considered as a complicated funnel that sends each piece
of sand along an optimal path to the goal.

Rather than designing a single funnel, consider decomposing the state space
into a collection of simple, overlapping regions. Over each region, a funnel can be
designed that leads the state into another funnel; see Figure 8.14. As an example,
the approach in [20] places a Lyapunov function (such functions are covered in

414 S. M. LaValle: Planning Algorithms

1 2 3

1

3

2

Figure 8.14: A navigation function and corresponding vector field can be designed
as a composition of funnels.

X

X̂

Figure 8.15: An approximate cover is shown. Every point of X̃ is contained in at
least one neighborhood, and X̃ is a subset of X.

Section 15.1.2) over each funnel to ensure convergence to the next funnel. A
feedback plan can be constructed by composing several funnels. Starting from
some initial state in X, a sequence of funnels is visited until the goal is reached.
Each funnel essentially solves the subgoal of reaching the next funnel. Eventually,
a funnel is reached that contains the goal, and a navigation function on this
funnel causes the goal to be reached. In the context of sensing uncertainty, for
which the funnel metaphor was developed, the composition of funnels becomes
the preimage planning framework [69], which is covered in Section 12.5.1. In this
section, however, it is assumed that the current state is always known.

An approximate cover

Figure 8.15 illustrates the notion of an approximate cover, which will be used to
represent the funnel domains. Let X̃ denote a subset of a state space X. A cover
of X̃ is a collection O of sets for which
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1. O ⊆ X for each O ∈ O.

2. X̃ is a subset of the union of all sets in the cover:

X̃ ⊆
⋃

O∈O

O. (8.50)

Let each O ∈ O be called a neighborhood. The notion of a cover was actually
used in Section 8.3.2 to define a smooth manifold using a cover of coordinate
neighborhoods.

In general, a cover allows the following:

1. Any number of neighborhoods may overlap (have nonempty intersection).

2. Any neighborhood may contain points that lie outside of X̃.

A cell decomposition, which was introduced in Section 6.3.1, is a special kind
of cover for which the neighborhoods form a partition of X̃, and they must fit
together nicely (recall Figure 6.15).

So far, no constraints have been placed on the neighborhoods. They should
be chosen in practice to greatly simplify the design of a navigation function over
each one. For the original motion planning problem, cell decompositions were
designed to make the determination of a collision-free path trivial in each cell.
The same idea applies here, except that we now want to construct a feedback
plan. Therefore, it is usually assumed that the cells have a simple shape.

A cover is called approximate if X̃ is a strict subset of X. Ideally, we would
like to develop an exact cover, which implies that X̃ = X and each neighborhood
has some nice property, such as being convex. Developing such covers is possible
in practice for state spaces that are either low-dimensional or exhibit some special
structure. This was observed for the cell decomposition methods of Chapter 6.

Consider constructing an approximate cover for X. The goal should be to
cover as much of X as possible. This means that µ(X \ X̃) should be made as
small as possible, in which µ denotes Lebesgue measure, as defined in Section
5.1.3. It is also desirable to ensure that X̃ preserves the connectivity of X. In
other words, if a path between two points exists in X, then it should also exist in
X̃.

Defining a feedback plan over a cover

The ideas from Section 8.4.2 can be adapted to define a feedback plan over X̃
using a cover. Let X̌ denote a discrete state space in which each superstate
is a neighborhood. Most of the components of the associated discrete planning
problems are the same as in Section 8.4.2. The only difference is in the definition of
superactions because neighborhoods can overlap in a cover. For each neighborhood
O ∈ O, a superaction exists for each other neighborhood, O′ ∈ O such that
O ∩O′ 6= ∅ (usually, their interiors overlap to yield int(O) ∩ int(O′) 6= ∅).
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O′O

Figure 8.16: A transition from O to O′ is caused by a vector field on O for which
all integral curves lead into O ∩O′.

Note that in the case of a cell decomposition, this produces no superactions
because it is a partition. To follow the metaphor of composing funnels, the do-
mains of some funnels should overlap, as shown in Figure 8.14. A transition from
one neighborhood, O, to another, O′, is obtained by defining a vector field on O
that sends all states from O \O′ into O∩O′; see Figure 8.16. Once O′ is reached,
the vector field of O is no longer followed; instead, the vector field of O′ is used.
Using the vector field of O′, a transition may be applied to reach another neigh-
borhood. Note that the jump from the vector field of O to that of O′ may cause
the feedback plan to be a discontinuous vector field on X̃. If the cover is designed
so that O∩O′ is large (if they intersect), then gradual transitions may be possible
by blending the vector fields from O and O′.

Once the discrete problem has been defined, a discrete feedback plan can be
computed over X̌, as defined in Section 8.2. This is converted into a feedback
plan over X by defining a vector field on each neighborhood that causes the
appropriate transitions. Each x̌ ∈ X̌ can be interpreted both as a superstate and
a neighborhood. For each x̌, the discrete feedback plan produces a superaction
ǔ = π(x̌), which yields a new neighborhood x̌′. The vector field over x̌ = O is
then designed to send all states into x̌′ = O′.

If desired, a navigation function φ overX can even be derived from a navigation
function, φ̌, over X̌. Suppose that φ̌ is constructed so that every φ̌(x̌) is distinct
for every x̌ ∈ X̌. Any navigation function can be easily transformed to satisfy this
constraint (because X̌ is finite). Let φO denote a navigation function over some
O ∈ O. Assume that XG is a point, xG (extensions can be made to more general
cases). For every neighborhood O ∈ O such that xG 6∈ O, φO is defined so that
performing gradient descent leads into the overlapping neighborhood for which
φ̌(x̌) is smallest. If O contains xG, the navigation function φO simply guides the
state to xG.

The navigation functions over each O ∈ O can be easily pieced together to
yield a navigation function over all of X. In places where multiple neighborhoods
overlap, φ is defined to be the navigation function associated with the neighbor-
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hood for which φ̌(x̌) is smallest. This can be achieved by adding a large constant
to each φO. Let c denote a constant for which φO(x) < c over all O ∈ O and x ∈ O
(it is assumed that each φO is bounded). Suppose that φ̌ assumes only integer
values. Let O(x) denote the set of all O ∈ O such that x ∈ O. The navigation
function over X is defined as

φ(x) = min
O∈O(x)

{

φO(x) + c φ̌(O)
}

. (8.51)

A sampling-based approach

There are numerous alternative ways to construct a cover. To illustrate the ideas,
an approach called the sampling-based neighborhood graph is presented here [91].
Suppose that X = Cfree, which is a subset of some configuration space. As intro-
duced in Section 5.4, let α be a dense, infinite sequence of samples in X. Assume
that a collision detection algorithm is available that returns the distance, (5.28),
between the robot and obstacles in the world. Such algorithms were described in
Section 5.3.

An incremental algorithm is given in Figure 8.17. Initially, O is empty. In each
iteration, if α(i) ∈ Cfree and it is not already contained in some neighborhood,
then a new neighborhood is added to O. The two main concerns are 1) how to
define a new neighborhood, O, such that O ⊂ Cfree, and 2) when to terminate. At
any given time, the cover is approximate. The union of all neighborhoods is X̃,
which is a strict subset of X. In comparison to Figure 8.15, the cover is a special
case in which the neighborhoods do not extend beyond X̃.

Defining new neighborhoods For defining new neighborhoods, it is important
to keep them simple because during execution, the neighborhoods that contain
the state x must be determined quickly. Suppose that all neighborhoods are open
balls:

B(x, r) = {x′ ∈ X | ρ(x, x′) < r}, (8.52)

in which ρ is the metric on C. There are efficient algorithms for determining
whether x ∈ O for some O ∈ O, assuming all of the neighborhoods are balls
[72]. In practice, methods based on Kd-trees yield good performance [5, 6] (recall
Section 5.5.2). A new ball, B(x, r), can be constructed in Step 3 for x = α(i),
but what radius can be assigned? For a point robot that translates in R

2 or R3,
the Hausdorff distance d between the robot and obstacles in W is precisely the
distance to Cobs from α(i). This implies that we can set r = d, and B(x, r) is
guaranteed to be collision-free.

In a general configuration space, it is possible to find a value of r such that
B(x, r) ⊆ Cfree, but in general r < d. This issue arose in Section 5.3.4 for checking
path segments. The transformations of Sections 3.2 and 3.3 become important
in the determination of r. For illustrative purposes, suppose that C = R

2 × S
1,
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INCREMENTAL COVER CONSTRUCTION

1. Initialize O = ∅ and i = 1.

2. Let x = α(i), and let d be the distance returned by the collision detection
algorithm applied at x.

3. If d > 0 (which implies that x ∈ Cfree) and x 6∈ O for all O ∈ O, then
insert a new neighborhood, On, into O. The neighborhood size and shape
are determined from x and d.

4. If the termination condition is not satisfied, then let i := i + 1, and go to
Step 1.

5. Remove any neighborhoods from O that are contained entirely inside of
another neighborhood.

Figure 8.17: The cover is incrementally extended by adding new neighborhoods
that are guaranteed to be collision-free.

which corresponds to a rigid robot, A, that can translate and rotate in W = R
2.

Each point a ∈ A is transformed using (3.35). Now imagine starting with some
configuration q = (x, y, θ) and perturbing each coordinate by some ∆x, ∆y, and
∆θ. What is the maximum distance that a point on A could travel? Translation
affects all points on A the same way, but rotation affects points differently. Recall
Figure 5.12 from Section 5.3.4. Let ar ∈ A denote the point that is furthest from
the origin (0, 0). Let r denote the distance from ar to the origin. If the rotation
is perturbed by some small amount, ∆θ, then the displacement of any a ∈ A is
no more than r∆θ. If all three configuration parameters are perturbed, then

(∆x)2 + (∆y)2 + (r∆θ)2 < d2 (8.53)

is the constraint that must be satisfied to ensure that the resulting ball is contained
in Cfree. This is actually the equation of a solid ellipsoid, which becomes a ball if
r = 1. This can be made into a ball by reparameterizing SE(2) so that ∆θ has
the same affect as ∆x and ∆y. A transformation h : θ 7→ rθ maps θ into a new
domain Z = [0, 2πr). In this new space, the equation of the ball is

(∆x)2 + (∆y)2 + (∆z)2 < d2, (8.54)

in which ∆z represents the change in z ∈ Z. The reparameterized version of
(3.35) is

T =





cos(θ/r) − sin(θ/r) xt
sin(θ/r) cos(θ/r) yt

0 0 1



 . (8.55)
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For a 3D rigid body, similar reparameterizations can be made to Euler angles or
quaternions to generate six-dimensional balls. Extensions can be made to chains
of bodies [91]. One of the main difficulties, however, is that the balls are not
the largest possible. In higher dimensions the problem becomes worse because
numerous balls are needed, and the radii constructed as described above tend to
be much smaller than what is possible. The number of balls can be reduced by
also allowing axis-aligned cylinders, but it still remains difficult to construct a
cover over a large fraction of Cfree in more than six dimensions.

Termination The sampling-based planning algorithms in Chapter 5 were de-
signed to terminate upon finding a solution path. In the current setting, termina-
tion is complicated by the fact that we are interested in solutions from all initial
configurations. Since α is dense, the volume of uncovered points in Cfree tends to
zero. After some finite number of iterations, it would be nice to measure the qual-
ity of the approximation and then terminate when the desired quality is achieved.
This was also possible with the visibility sampling-based roadmap in Section 5.6.2.
Using random samples, an estimate of the fraction of Cfree can be obtained by
recording the percentage of failures in obtaining a sample in Cfree that is outside
of the cover. For example, if a new neighborhood is created only once in 1000
iterations, then it can be estimated that 99.9 percent of Cfree is covered. High-
probability bounds can also be determined. Termination conditions are given in
[91] that ensure with probability greater than Pc that at least a fraction α ∈ (0, 1)
of Cfree has been covered. The constants Pc and α are given as parameters to
the algorithm, and it will terminate when the condition has been satisfied using
rigorous statistical tests. If deterministic sampling is used, then termination can
be made to occur based on the dispersion, which indicates the largest ball in Cfree
that does not contain the center of another neighborhood. One problem with
volume-based criteria, such as those suggested here, is that there is no way to
ensure that the cover preserves the connectivity of Cfree. If two portions of Cfree
are connected by a narrow passage, the cover may miss a neighborhood that has
very small volume yet is needed to connect the two portions.

Example 8.18 (2D Example of Computed Funnels) Figure 8.18 shows a 2D
example that was computed using random samples and the algorithm in Figure
8.17. Note that once a cover is computed, it can be used to rapidly compute
different navigation functions and vector fields for various goals. This example is
mainly for illustrative purposes. For the case of a polygonal environment, con-
structing covers based on convex polygons would be more efficient. �
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(a) (b)

Figure 8.18: (a) A approximate cover for a 2D configuration space. (b) Level sets
of a navigation function
.

8.5.2 Dynamic Programming with Interpolation

This section concludes Part II by solving the motion planning problem with value
iteration, which was introduced in Section 2.3. It has already been applied to
obtain discrete feedback plans in Section 8.2. It will now be adapted to continuous
spaces by allowing interpolation first over a continuous state space and then by
additionally allowing interpolation over a continuous action space. This yields
a numerical approach to computing optimal navigation functions and feedback
plans for motion planning. The focus will remain on backward value iteration;
however, the interpolation concepts may also be applied in the forward direction.
The approach here views optimal feedback motion planning as a discrete-time
optimal control problem [3, 8, 19, 62].

Using interpolation for continuous state spaces

Consider a problem formulation that is identical to Formulation 8.1 except that
X is allowed to be continuous. Assume that X is bounded, and assume for now
that the action space, U(x), it finite for all x ∈ X. Backward value iteration can
be applied. The dynamic programming arguments and derivation are identical to
those in Section 2.3. The resulting recurrence is identical to (2.11) and is repeated
here for convenience:

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +G∗

k+1(xk+1)
}

. (8.56)
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xk

Stage k + 1

Stage k

Possible next states

Figure 8.19: Even though xk is a sample point, the next state, xk+1, may land
between sample points. For each uk ∈ U(xk), interpolation may be needed for the
resulting next state, xk+1 = f(xk, uk).

The only difficulty is that G∗
k(xk) cannot be stored for every xk ∈ X because X is

continuous. There are two general approaches. One is to approximate G∗
k using

a parametric family of surfaces, such as polynomials or nonlinear basis functions
derived from neural networks [12]. The other is to store G∗

k only over a finite set of
sample points and use interpolation to obtain its value at all other points [61, 62].

Suppose that a finite set S ⊂ X of samples is used to represent cost-to-go
functions overX. The evaluation of (8.56) using interpolation is depicted in Figure
8.19. In general, the samples should be chosen to reduce the dispersion (defined
in Section 5.2.3) as much as possible. This prevents attempts to approximate
the cost-to-go function on large areas that contain no sample points. The rate
of convergence ultimately depends on the dispersion [10] (in combination with
Lipschitz conditions on the state transition equation and the cost functional).
To simplify notation and some other issues, assume that S is a grid of regularly
spaced points in R

n.
First, consider the case in which X = [0, 1] ⊂ R. Let S = {s0, s1, . . . , sr},

in which si = i/r. For example, if r = 3, then S = {0, 1/3, 2/3, 1}. Note that
this always yields points on the boundary of X, which ensures that for any point
in (0, 1) there are samples both above and below it. Let i be the largest integer
such that si < x. This implies that si+1 > x. The samples si and si+1 are called
interpolation neighbors of x.

The value of G∗
k+1 in (8.56) at any x ∈ [0, 1] can be obtained via linear inter-

polation as
G∗

k+1(x) ≈ αG∗

k+1(si) + (1− α)G∗

k+1(si+1), (8.57)

in which the coefficient α ∈ [0, 1] is computed as

α = 1−
x− si
r

. (8.58)

If x = si, then α = 1, and (8.57) reduces to G∗
k+1(si), as expected. If x = si+1,

then α = 0, and (8.57) reduces to G∗
k+1(si+1). At all points in between, (8.57)

blends the cost-to-go values at si and si+1 using α to provide the appropriate
weights.

The interpolation idea can be naturally extended to multiple dimensions. Let
X be a bounded subset of Rn. Let S represent an n-dimensional grid of points
in R

n. Each sample in S is denoted by s(i1, i2, . . . , in). For some x ∈ X, there
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n = 2 n = 3

Figure 8.20: Barycentric subdivision can be used to partition each cube into
simplexes, which allows interpolation to be performed in O(n lg n) time, instead
of O(2n).

are 2n interpolation neighbors that “surround” it. These are the corners of an
n-dimensional cube that contains x. Let x = (x1, . . . , xn). Let ij denote the
largest integer for which the jth coordinate of s(i1, i2, . . . , in) is less than xj. The
2n samples are all those for which either ij or ij + 1 appears in the expression
s(·, ·, . . . , ·), for each j ∈ {1, . . . , n}. This requires that samples exist in S for all
of these cases. Note that X may be a complicated subset of Rn, provided that for
any x ∈ X, all of the required 2n interpolation neighbors are in S. Using the 2n

interpolation neighbors, the value of G∗
k+1 in (8.56) on any x ∈ X can be obtained

via multi-linear interpolation. In the case of n = 2, this is expressed as

G∗

k+1(x) ≈ α1α2 G
∗

k+1(s(i1, i2))+

α1(1− α2) G
∗

k+1(s(i1, i2 + 1))+

(1− α1)α2 G
∗

k+1(s(i1 + 1, i2))+

(1− α1)(1− α2) G
∗

k+1(s(i1 + 1, i2 + 1)),

(8.59)

in which α1 and α2 are defined similarly to α in (8.58) but are based on distances
along the x1 and x2 directions, respectively. The expressions for multi-linear in-
terpolation in higher dimensions are similar but are more cumbersome to express.
Higher order interpolation, such a quadratic interpolation may alternatively be
used [62].

Unfortunately, the number of interpolation neighbors grows exponentially with
the dimension, n. Instead of using all 2n interpolation neighbors, one improvement
is to decompose the cube defined by the 2n samples into simplexes. Each simplex
has only n+ 1 samples as its vertices. Only the vertices of the simplex that con-
tains x are declared to be the interpolation neighbors of x; this reduces the cost
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Cobs

∂Cfree

xg

(a) (b) (c)

Figure 8.21: (a) An interpolation region, R(S), is shown for a set of sample points,
S. (b) The interpolation region that arises due to obstacles. (c) The interpolation
region for goal points must not be empty.

of evaluating G∗
k+1(x) to O(n) time. The problem, however, is that determining

the simplex that contains x may be a challenging point-location problem (a com-
mon problem in computational geometry [32]). If barycentric subdivision is used
to decompose the cube using the midpoints of all faces, then the point-location
problem can be solved in O(n lg n) time [31, 64, 75], which is an improvement over
the O(2n) scheme described above. Examples of this decomposition are shown for
two and three dimensions in Figure 8.20. This is sometimes called the Coxeter-
Freudenthal-Kuhn triangulation. Even though n is not too large due to practical
performance considerations (typically, n ≤ 6), substantial savings occur in imple-
mentations, even for n = 3.

It will be convenient to refer directly to the set of all points in X for which
all required interpolation neighbors exist. For any finite set S ⊆ X of sample
points, let the interpolation region R(S) be the set of all x ∈ X \ S for which
G∗(x) can be computed by interpolation. This means that x ∈ R(S) if and only
if all interpolation neighbors of x lie in S. Figure 8.21a shows an example. Note
that some sample points may not contribute any points to R. If a grid of samples
is used to approximate G∗, then the volume of X \ R(S) approaches zero as the
sampling resolution increases.

Continuous action spaces Now suppose that U(x) is continuous, in addition
to X. Assume that U(x) is both a closed and bounded subset of Rn. Once again,
the dynamic programming recurrence, (8.56), remains the same. The trouble now
is that the min represents an optimization problem over an uncountably infinite
number of choices. One possibility is to employ nonlinear optimization techniques
to select the optimal u ∈ U(x). The effectiveness of this depends heavily on U(x),
X, and the cost functional.

Another approach is to evaluate (8.56) over a finite set of samples drawn from
U(x). Again, it is best to choose samples that reduce the dispersion as much as
possible. In some contexts, it may be possible to eliminate some actions from
consideration by carefully utilizing the properties of the cost-to-go function and
its representation via interpolation.
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The connection to feedback motion planning

The tools have now been provided to solve motion planning problems using value
iteration. The configuration space is a continuous state space; let X = Cfree. The
action space is also continuous, U(x) = Tx(X). For motion planning problems,
0 ∈ Tx(X) is only obtained only when uT is applied. Therefore, it does not need
to be represented separately. To compute optimal cost-to-go functions for motion
planning, the main concerns are as follows:

1. The action space must be bounded.

2. A discrete-time approximation must be made to derive a state transition
equation that works over stages.

3. The cost functional must be discretized.

4. The obstacle region, Cobs, must be taken into account.

5. At least some interpolation region must yield G∗(x) = 0, which represents
the goal region.

We now discuss each of these.

Bounding the action space Recall that using normalized vector fields does
not alter the existence of solutions. This is convenient because U(x) needs to be
bounded to approximate it with a finite set of samples. It is useful to restrict the
action set to obtain

U(x) = {u ∈ R
n | ‖u‖ ≤ 1}. (8.60)

To improve performance, it is sometimes possible to use only those u for which
‖u‖ = 1 or u = 0; however, numerical instability problems may arise. A finite
sample set for U(x) should have low dispersion and always include u = 0.

Obtaining a state transition equation Value iterations occur over discrete
stages; however, the integral curves of feedback plans occur over continuous time.
Therefore, the time interval T needs to be sampled. Let ∆t denote a small positive
constant that represents a fixed interval of time. Let the stage index k refer to
time (k−1)∆t. Now consider representing a velocity field ẋ over Rn. By definition,

dx

dt
= lim

∆t→0

x(t+∆t)− x(t)

∆t
. (8.61)

In Section 8.3.1, a velocity field was defined by assigning some u ∈ U(x) to each
x ∈ X. If the velocity vector u is integrated from x(t) over a small ∆t, then a
new state, x(t+∆t), results. If u remains constant, then

x(t+∆t) = x(t) + ∆t u, (8.62)
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which is called an Euler approximation. If a feedback plan is executed, then u is
determined from x via u = π(x(t)). In general, this means that u could vary as
the state is integrated forward. In this case, (8.62) is only approximate,

x(t+∆t) ≈ x(t) + ∆t π(x(t)). (8.63)

The expression in (8.62) can be considered as a state transition equation that
works over stages. Let xk+1 = x(t +∆t) and xk = x(t). The transitions can now
be expressed as

xk+1 = f(xk, u) = xk +∆t u. (8.64)

The quality of the approximation improves as ∆t decreases. Better approxi-
mations can be made by using more sample points along time. The most widely
known approximations are the Runge-Kutta family. For optimal motion planning,
it turns out that the direction vector almost always remains constant along the in-
tegral curve. For example, in Figure 8.13d, observe that piecewise-linear paths are
obtained by performing gradient descent of the optimal navigation function. The
direction vector is constant over most of the resulting integral curve (it changes
only as obstacles are contacted). Therefore, approximation problems tend not
to arise in motion planning problems. When approximating dynamical systems,
such as those presented in Chapter 13, then better approximations are needed;
see Section 14.3.2. One important concern is that ∆t is chosen in a way that
is compatible with the grid resolution. If ∆t is so small that the actions do not
change the state enough to yield new interpolation neighbors, then the interpo-
lated cost-to-go values will remain constant. This implies that ∆t must be chosen
to ensure that x(t+∆t) has a different set of interpolation neighbors than x(t).

An interesting connection can be made to the approximate motion planning
problem that was developed in Section 7.7. Formulation 7.4 corresponds pre-
cisely to the approximation defined here, except that ǫ was used instead of ∆t
because velocities were not yet considered (also, the initial condition was speci-
fied because there was no feedback). Recall the different possible action spaces
shown in Figure 7.41. As stated in Section 7.7, if the Manhattan or independent-
joint models are used, then the configurations remain on a grid of points. This
enables discrete value iterations to be performed. A discrete feedback plan and
navigation function, as considered in Section 8.2.3, can even be computed. If the
Euclidean motion model is used, which is more natural, then the transitions allow
a continuum of possible configurations. This case can finally be handled by using
interpolation over the configuration space, as described in this section.

Approximating the cost functional A discrete cost functional must be de-
rived from the continuous cost functional, (8.39). The final term is just assigned
as lF (xF ) = lF (x(tf )). The cost at each stage is

ld(xk, uk) =

∫ ∆t

0

l(x(t), u(t))dt, (8.65)
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and ld(xk, uk) is used in the place of l(xk, uk) in (8.56). For many problems, the
integral does not need to be computed repeatedly. To obtain Euclidean shortest
paths, ld(xk, uk) = ‖uk‖ can be safely assigned for all xk ∈ X and uk ∈ U(xk). A
reasonable approximation to (8.65) if ∆t is small is l(x(t), u(t))∆t.

Handling obstacles A simple way to handle obstacles is to determine for each
x ∈ S whether x ∈ Cobs. This can be computed and stored in an array before the
value iterations are performed. For rigid robots, this can be efficiently computed
using fast Fourier transforms [50]. For each x ∈ Cobs, G

∗(x) = ∞. No value
iterations are performed on these states; their values must remain at infinity.
During the evaluation of (8.59) (or a higher dimensional version), different actions
are attempted. For each action, it is required that all of the interpolation neighbors
of xk+1 lie in Cfree. If one of them lies in Cobs, then that action produces infinite
cost. This has the effect of automatically reducing the interpolation region, R(S),
to all cubes whose vertices all lie in Cfree, as shown in Figure 8.21b. All samples in
Cobs are assumed to be deleted from S in the remainder of this section; however,
the full grid is still used for interpolation so that infinite values represent the
obstacle region.

Note that as expressed so far, it is possible that points in Cobs may lie in R(S)
because collision detection is performed only on the samples. In practice, either
the grid resolution must be made fine enough to minimize the chance of this error
occurring or distance information from a collision detection algorithm must be
used to infer that a sufficiently large ball around each sample is collision free. If
an interpolation region cannot be assured to lie in Cfree, then the resolution may
have to be increased, at least locally.

Handling the goal region Recall that backward value iterations start with
the final cost-to-go function and iterate backward. Initially, the final cost-to-go
is assigned as infinity at all states except those in the goal. To properly initialize
the final cost-to-go function, there must exist some subset of X over which the
zero value can be obtained by interpolation. Let G = S ∩XG. The requirement
is that the interpolation region R(G) must be nonempty. If this is not satisfied,
then the grid resolution needs to be increased or the goal set needs to be enlarged.
If Xg is a single point, then it needs to be enlarged, regardless of the resolution
(unless an alternative way to interpolate near a goal point is developed). In the
interpolation region shown in Figure 8.21c, all states in the vicinity of xG yield an
interpolated cost-to-go value of zero. If such a region did not exist, then all costs
would remain at infinity during the evaluation of (8.59) from any state. Note that
∆t must be chosen large enough to ensure that new samples can reach G.

Using G∗ as a navigation function After the cost-to-go values stabilize, the
resulting cost-to-go function, G∗ can be used as a navigation function. Even
though G∗ is defined only over S ⊂ X, the value of the navigation function can
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be obtained using interpolation over any point in R(S). The optimal action is
selected as the one that satisfies the min in (8.6). This means that the state
trajectory does not have to visit the grid points as in the Manhattan model. A
trajectory can visit any point in R(S), which enables trajectories to converge to
the true optimal solution as ∆t and the grid spacing tend to zero.

Topological considerations So far there has been no explicit consideration of
the topology of C. Assuming that C is a manifold, the concepts discussed so far can
be applied to any open set on which coordinates are defined. In practice, it is often
convenient to use the manifold representations of Section 4.1.2. The manifold can
be expressed as a cube, [0, 1]n, with some faces identified to obtain [0, 1]n/ ∼. Over
the interior of the cube, all of the concepts explained in this section work without
modification. At the boundary, the samples used for interpolation must take the
identification into account. Furthermore, actions, uk, and next states, xk+1, must
function correctly on the boundary. One must be careful, however, in declaring
that some solution is optimal, because Euclidean shortest paths depend on the
manifold parameterization. This ambiguity is usually resolved by formulating the
cost in terms of some physical quantity, such as time or energy. This often requires
modeling dynamics, which will be covered in Part IV.

Value iteration with interpolation is extremely general. It is a generic al-
gorithm for approximating the solution to optimal control problems. It can be
applied to solve many of the problems in Part IV by restricting U(x) to take into
account complicated differential constraints. The method can also be extended to
problems that involve explicit uncertainty in predictability. This version of value
iteration is covered in Section 10.6.

Obtaining Dijkstra-like algorithms

For motion planning problems, it is expected that x(t + ∆t), as computed from
(8.62), is always close to x(t) relative to the size of X. This suggests the use
of a Dijkstra-like algorithm to compute optimal feedback plans more efficiently.
As discussed for the finite case in Section 2.3.3, many values remain unchanged
during the value iterations, as indicated in Example 2.5. Dijkstra’s algorithm
maintains a data structure that focuses the computation on the part of the state
space where values are changing. The same can be done for the continuous case
by carefully considering the sample points [64].

During the value iterations, there are three kinds of sample points, just as in
the discrete case (recall from Section 2.3.3):

1. Dead: The cost-to-go has stabilized to its optimal value.

2. Alive: The current cost-to-go is finite, but it is not yet known whether the
value is optimal.
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3. Unvisited: The cost-to-go value remains at infinity because the sample has
not been reached.

The sets are somewhat harder to maintain for the case of continuous state spaces
because of the interaction between the sample set S and the interpolated region
R(S).

Imagine the first value iteration. Initially, all points in G are set to zero values.
Among the collection of samples S, how many can reach R(G) in a single stage?
We expect that samples very far from G will not be able to reach R(G); this keeps
their values are infinity. The samples that are close to G should reach it. It would
be convenient to prune away from consideration all samples that are too far from
G to lower their value. In every iteration, we eliminate iterating over samples that
are too far away from those already reached. It is also unnecessary to iterate over
the dead samples because their values no longer change.

To keep track of reachable samples, it will be convenient to introduce the
notion of a backprojection, which will be studied further in Section 10.1. For a
single state, x ∈ X, its backprojection is defined as

B(x) = {x′ ∈ X | ∃u′ ∈ U(x′) such that x = f(x′, u′)}. (8.66)

The backprojection of a set, X ′ ⊆ X, of points is just the union of backprojections
for each point:

B(X ′) =
⋃

x∈X′

B(x). (8.67)

Now consider a version of value iteration that uses backprojections to elimi-
nate some states from consideration because it is known that their values cannot
change. Let i refer to the number of stages considered by the current value itera-
tion. During the first iteration, i = 1, which means that all one-stage trajectories
are considered. Let S be the set of samples (assuming already that none lie in
Cobs). Let Di and Ai refer to the dead and alive samples, respectively. Initially,
D1 = G, the set of samples in the goal set. The first set, A1, of alive samples is
assigned by using the concept of a frontier. The frontier of a set S ′ ⊆ S of sample
points is

Front(S ′) = (B(R(S ′)) \ S ′) ∩ S. (8.68)

This is the set of sample points that can reach R(S ′) in one stage, excluding those
already in S ′. Figure 8.22 illustrates the frontier. Using (8.68), A1 is defined as
A1 = Front(D1).

Now the approach is described for iteration i. The cost-to-go update (8.56) is
computed at all points inAi. IfG

∗
k+1(s) = G∗

k(s) for some s ∈ Ai, then s is declared
dead and moved to Di+1. Samples are never removed from the dead set; therefore,
all points in Di are also added to Di+1. The next active set, Ai+1, includes all
samples in Ai, excluding those that were moved to the dead set. Furthermore,
all samples in Front(Ai) are added to Ai+1 because these will produce a finite
cost-to-go value in the next iteration. The iterations continue as usual until some
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s

(a) (b)

Figure 8.22: An illustration of the frontier concept: (a) the shaded disc indicates
the set of all reachable points in one stage, from the sample on the left. The
sample cannot reach in one stage the shaded region on the right, which represents
R(S ′). (b) The frontier is the set of samples that can reach R(S ′). The inclusion
of the frontier increases the interpolation region beyond R(S ′).

stage, m, is reached for which Am is empty, and Dm includes all samples from
which the goal can be reached (under the approximation assumptions made in
this section).

For efficiency purposes, an approximation to Front may be used, provided that
the true frontier is a proper subset of the approximate frontier. For example, the
frontier might add all new samples within a specified radius of points in S ′. In
this case, the updated cost-to-go value for some s ∈ Ai may remain infinite. If
this occurs, it is of course not added to Di+1. Furthermore, it is deleted from Ai

in the computation of the next frontier (the frontier should only be computed for
samples that have finite cost-to-go values).

The approach considered so far can be expected to reduce the amount of
computations in each value iteration by eliminating the evaluation of (8.56) on
unnecessary samples. The same cost-to-go values are obtained in each iteration
because only samples for which the value cannot change are eliminated in each
iteration. The resulting algorithm still does not, however, resemble Dijkstra’s
algorithm because value iterations are performed over all of Ai in each stage.

To make a version that behaves like Dijkstra’s algorithm, a queue Q will be
introduced. The algorithm removes the smallest element of Q in each iteration.
The interpolation version first assigns G∗(s) = 0 for each s ∈ G. It also maintains
a set D of dead samples, which is initialized to D = G. For each s ∈ Front(G), the
cost-to-go update (8.56) is computed. The priority Q is initialized to Front(G),
and elements are sorted by their current cost-to-go values (which may not be
optimal). The algorithm iteratively removes the smallest element from Q (because
its optimal cost-to-go is known to be the current value) and terminates when Q
is empty. Each time the smallest element, ss ∈ Q, is removed, it is inserted into
D. Two procedures are then performed: 1) Some elements in the queue need to
have their cost-to-go values recomputed using (8.56) because the value G∗(ss) is
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known to be optimal, and their values may depend on it. These are the samples
in Q that lie in Front(D) (in which D just got extended to include ss). 2) Any
samples in B(R(D)) that are not in Q are inserted into Q after computing their
cost-to-go values using (8.56). This enables the active set of samples to grow as
the set of dead samples grows. Dijkstra’s algorithm with interpolation does not
compute values that are identical to those produced by value iterations because
G∗

k+1 is not explicitly stored when G∗
k is computed. Each computed value is some

cost-to-go, but it is only known to be the optimal when the sample is placed into
D. It can be shown, however, that the method converges because computed values
are no higher than what would have been computed in a value iteration. This is
also the basis of dynamic programming using Gauss-Seidel iterations [11].

A specialized, wavefront-propagation version of the algorithm can be made for
the special case of finding solutions that reach the goal in the smallest number of
stages. The algorithm is similar to the one shown in Figure 8.4. It starts with an
initial wavefront W0 = G in which G∗(s) = 0 for each s ∈ G. In each iteration,
the optimal cost-to-go value i is increased by one, and the wavefront, Wi+1, is
computed from Wi as Wi+1 = Front(Wi). The algorithm terminates at the first
iteration in which the wavefront is empty.

Further Reading

There is much less related literature for this chapter in comparison to previous chap-
ters. As explained in Section 8.1, there are historical reasons why feedback is usually
separated from motion planning. Navigation functions [58, 79] were one of the most in-
fluential ideas in bringing feedback into motion planning; therefore, navigation functions
were a common theme throughout the chapter. For other works that use or develop
navigation functions, see [24, 34, 77]. The ideas of progress measures [41], Lyapunov
functions (covered in Section 15.1.1), and cost-to-go functions are all closely related.
For Lyapunov-based design of feedback control laws, see [35]. In the context of motion
planning, the Error Detection and Recovery (EDR) framework also contains feedback
ideas [37].

In [42], the topological complexity of C-spaces is studied by characterizing the min-
imum number of regions needed to cover C × C by defining a continuous path function
over each region. This indicates limits on navigation functions that can be constructed,
assuming that both qI and qG are variables (throughout this chapter, qG was instead
fixed). Further work in this direction includes [43, 44].

To gain better intuitions about properties of vector fields, [4] is a helpful reference,
filled with numerous insightful illustrations. A good introduction to smooth manifolds
that is particularly suited for control-theory concepts is [17]. Basic intuitions for 2D and
3D curves and surfaces can be obtained from [78]. Other sources for smooth manifolds
and differential geometry include [1, 13, 25, 36, 86, 87, 90]. For discussions of piecewise-
smooth vector fields, see [2, 65, 84, 92].

Sections 8.4.2 and 8.4.3 were inspired by [26, 66] and [74], respectively. Many difficul-
ties were avoided because discontinuous vector fields were allowed in these approaches.
By requiring continuity or smoothness, the subject of Section 8.4.4 was obtained. The
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material is based mainly on [79, 80]. Other work on navigation functions includes
[30, 67, 68].

Section 8.5.1 was inspired mainly by [20, 70], and the approach based on neighbor-
hood graphs is drawn from [91].

Value iteration with interpolation, the subject of Section 8.5.2, is sometimes forgot-
ten in motion planning because computers were not powerful enough at the time it was
developed [8, 9, 61, 62]. Presently, however, solutions can be computed for challeng-
ing problems with several dimensions (e.g., 3 or 4). Convergence of discretized value
iteration to solving the optimal continuous problem was first established in [10], based
on Lipschitz conditions on the state transition equation and cost functional. Analy-
ses that take interpolation into account, and general discretization issues, appear in
[21, 39, 46, 59, 60]. A multi-resolution variant of value iteration was proposed in [76].
The discussion of Dijkstra-like versions of value iteration was based on [64, 89]. The
level-set method is also closely related [55, 57, 56, 85].

Exercises

1. Suppose that a very fast path planning algorithm runs on board of a mobile robot
(for example, it may find an answer in a few milliseconds, which is reasonable
using trapezoidal decomposition in R

2). Explain how this method can be used to
simulate having a feedback plan on the robot. Explain the issues and trade-offs
between having a fast on-line algorithm that computes open-loop plans vs. a
better off-line algorithm that computes a feedback plan.

2. Use Dijkstra’s algorithm to construct navigation functions on a 2D grid with
obstacles. Experiment with adding a penalty to the cost functional for getting
too close to obstacles.

3. If there are alternative routes, the NF2 algorithm does not necessarily send the
state along the route that has the largest maximum clearance. Fix the NF2
algorithm so that it addresses this problem.

4. Tangent space problems:

(a) For the manifold of unit quaternions, find basis vectors for the tangent space
in R

4 at any point.

(b) Find basis vectors for the tangent space in R
9, assuming that matrices in

SO(3) are parameterized with quaternions, as shown in (4.20).

5. Extend the algorithm described in Section 8.4.3 to make it work for polygons that
have holes. See Example 8.16 for a similar problem.

6. Give a complete algorithm that uses the vertical cell decomposition for a polygonal
obstacle region in R

2 to construct a vector field that serves as a feedback plan.
The vector field may be discontinuous.

7. Figure 8.23 depicts a 2D example for which Xfree is an open annulus. Consider
designing a vector field for which all integral curves flow into XG and the vector
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XG

Figure 8.23: Consider designing a continuous vector field that flows into XG.

field is continuous outside of XG. Either give a vector field that achieves this or
explain why it is not possible.

8. Use the maximum-clearance roadmap idea from Section 6.2.3 to define a cell
decomposition and feedback motion plan (vector field) that maximizes clearance.
The vector field may be discontinuous.

9. Develop an algorithm that computes an exact cover for a polygonal configuration
space and ensures that if two neighborhoods intersect, then their intersection
always contains an open set (i.e., the overlap region is two-dimensional). The
neighborhoods in the cover should be polygonal.

10. Using a distance measurement and Euler angles, determine the expression for a
collision-free ball that can be inferred (make the ball as large as possible). This
should generalize (8.54).

11. Using a distance measurement and quaternions, determine the expression for a
collision-free ball (once again, make it as large as possible).

12. Generalize the multi-linear interpolation scheme in (8.59) from 2 to n dimensions.

13. Explain the convergence problems for value iteration that can result if ‖u‖ = 1 is
used to constraint the set of allowable actions, instead of ‖u‖ ≤ 1.

Implementations

14. Experiment with numerical methods for solving the function (8.49) in two dimen-
sions under various boundary conditions. Report on the efficiency and accuracy
of the methods. How well can they be applied in higher dimensions?

15. Implement value iteration with interpolation (it is not necessary to use the method
in Figure 8.20) for a polygonal robot that translates and rotates among polygonal
obstacles in W = R

2. Define the cost functional so that the distance traveled is
obtained with respect to a weighted Euclidean metric (the weights that compare
rotation to translation can be set arbitrarily).
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16. Evaluate the efficiency of the interpolation method shown in Figure 8.20 applied
to multi-linear interpolation given by generalizing (8.59) as in Exercise 12. You
do not need to implement the full value iteration approach (alternatively, this
could be done, which provides a better comparison of the overall performance).

17. Implement the method of Section 8.4.2 of computing vector fields on a triangula-
tion. For given input polygons, have your program draw a needle diagram of the
computed vector field. Determine how fast the vector field can be recomputed as
the goal changes.

18. Optimal navigation function problems:

(a) Implement the algorithm illustrated in Figure 8.13. Show the level sets of
the optimal cost-to-go function.

(b) Extend the algorithm and implementation to the case in which there are
polygonal holes in Xfree.

19. Adapt value iteration with interpolation so that a point robot moving in the plane
can keep track of a predictable moving point called a target. The cost functional
should cause a small penalty to be added if the target is not visible. Optimizing
this should minimize the amount of time that the target is not visible. Assume
that the initial configuration of the robot is given. Compute optimal feedback
plans for the robot.

20. Try to experimentally construct navigation functions by adding potential func-
tions that repel the state away from obstacles and attract the state toward xG.
For simplicity, you may assume that X = R

2 and the obstacles are discs. Start
with a single disc and then gradually construct more complicated obstacle re-
gions. How difficult is it to ensure that the resulting potential function has no
local minima outside of xG?

ii S. M. LaValle: Planning Algorithms
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[26] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local potential
functions for global robot control and navigation. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3546–
3551, 2003.

[27] C. Connolly and R. Grupen. The application of harmonic potential functions
to robotics. Journal of Robotic Systems, 10(7):931–946, 1993.

[28] C. I. Connolly. Applications of harmonic functions to robotics. In IEEE
Symposium on Intelligent Control, pages 498–502, 1992.

[29] C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using Laplace’s
equation. In Proceedings IEEE International Conference on Robotics & Au-
tomation, pages 2102–2106, May 1990.

[30] N. Cowan. Composing navigation functions on Cartesian products of mani-
folds with boundary. In Proceedings Workshop on Algorithmic Foundations
of Robotics, Zeist, The Netherlands, July 2004.

[31] S. Davies. Multidimensional triangulation and interpolation for reinforcement
learning. In Proceedings Neural Information Processing Systems, 1996.

[32] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[33] R. Dial. Algorithm 360: Shortest path forest with topological ordering. Com-
munications of the ACM, 12:632–633, 1969.

[34] D. V. Dimarogonas, M. M. Zavlanos, S. G. Loizou, and K. J. Kyriakopou-
los. Decentralized motion control of multiple holonomic agents under input
constraints. In Proceedings IEEE Conference Decision & Control, 2003.

[35] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti. Nonlinear Control
of Engineering Systems: A Lyapunov-Based Approach. Birkhäuser, Boston,
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