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Abstract

We propose the use of quasi-random sampling tech-
niques for path planning in high-dimensional config-
uration spaces. Following similar trends from related
numerical computation fields, we show several advan-
tages offered by these techniques in comparison to ran-
dom sampling. Our ideas are evaluated in the context
of the probabilistic roadmap (PRM) framework. Two
quasi-random variants of PRM-based planners are pro-
posed: 1) a classical PRM with quasi-random sam-
pling, and 2) a quasi-random Lazy-PRM. Both have
been tmplemented, and are shown through experiments
to offer some performance advantages in comparison
to thewr randomized counterparts.

1 Introduction

Over two decades of path planning research have led
to two primary trends. In the 1980s, deterministic ap-
proaches provided both elegant, complete algorithms
for solving the problem, and also useful approximate
or incomplete algorithms. The curse of dimensional-
ity due to high-dimensional configuration spaces moti-
vated researchers from the 1990s to the present time to
develop randomized approaches which are incomplete,
but capable of efficiently solving many challenging,
high-dimensional problems. A similar pair of trends
occurred many years ago in the area of numerical inte-
gration and related optimization fields. These trends
were followed by a third trend: the development of
quasi-random approaches that use deterministic sam-
pling to achieve performance that is often superior to
random sampling. Quasi-random sampling ideas have
improved computational methods in many areas, in-
cluding integration [24], optimization [20], image pro-
cessing [7], and computer graphics [23]. Tt is therefore
natural to ask: Can quasi-random sampling ideas also
improve path planning methods designed for high de-
grees of freedom? Is randomization really necessary?

In this paper, we take the first step towards an-
swering these questions by illustrating some of the ad-
vantages of quasi-random sampling in the context of
the probabilistic roadmap (PRM) framework for path
planning [1, 15]; a glimpse is given in Figure 1. We
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Figure 1: a) A probabilistic roadmap based on random
sampling; b) a quasi-random version. Each uses 1000
samples and the same connection radius.

present implemented, quasi-random variants of both
the classical PRM [15] and the recent Lazy-PRM [4],
and indicate some advantages over their randomized
counterparts.

At first glance, the progression from deterministic
to randomized, and then back to deterministic might
appear absurd; thus, some explanation is required.
There appear to be two prevailing reasons for the
preference of randomized methods over classical deter-
ministic techniques: 1) they fight the curse of dimen-
sionality by allowing a problem to be solved without
prior, systematic exploration of all alternatives; 2) if
the “problem maker” is viewed as an opponent in a
game, then one can often avoid defeat by employing
a random strategy (imagine defeating a deterministic
strategy by designing a problem that causes worst-case
performance). The second reason would be valid in the
case of “true” random numbers; however, any machine
implementation generates a deterministic sequence of
pseudo-random numbers. These numbers are designed
to meet performance criteria that are based on uni-
form probability densities; however, once it is under-
stood that these numbers are deterministic and being
used to solve a particular task, why not design a de-
terministic sequence that can solve the task more effi-
ciently, instead of worrying about statistical closeness
to a uniform density? This motivates the design of
quasi-random numbers.



2 Sampling Methods

The first investigations of sampling paradigms were
developed in the context of numerical integration of
high-dimensional functions. Deterministic grid-based
quadrature formulas led to the same combinatorial ex-
plosion that was experienced years later in grid-based
path planning methods. About 50 years ago [19],
this frustration led to the development of numerical
integration techniques (Monte Carlo) based on ran-
dom sampling of the function domain, and convergence
was not dependent on dimension. There are interest-
ing parallels between later developments of specialized
random sampling methods that improve performance
for sharply-peaked integrands [12, 13, 17], and the re-
cent development of specialized sampling methods for
path planning [1, 5, 10].

In practice, random sampling methods require the
construction of deterministic, pseudo-random samples.
Thus, researchers began to question whether other de-
terministic samples could be designed which lead to
better performance in numerical methods. The design
of a good set of samples can be considered as an opti-
mization problem in which the locations of the points
are evaluated by a criterion of uniformity. One of the
most common measures is the discrepancy [20], which
can be defined for a set, P, of N d-dimensional sample

points, {zg,...,zx_1} in [0,1]? as
A(J
Dy (P) = sup ‘(T) - N(J)‘
7

in which J is any rectangular subset of [0, 1], u(J)
is its measure, and A(.J) is the number of points con-
tained in P N J. The goal is to select a set P that re-
duces the discrepancy as much as possible. This mea-
sure of discrepancy can be thought of as the worst-case
difference between the fraction of points in a box and
the fraction of the box area, taken over the set of all
possible boxes.

In the context of path planning, both the discrep-
ancy and a related measure called dispersion appear
to be useful. The dispersion of a sequence of points
in a space [0,1]¢ is the maximum distance that any
point in [0,1]¢ could be from the nearest point in the
sequence. For any finite set P of N points in [0, 1]¢, it
is known that dy(P) < DN(P)%, in which dp is the
dispersion (under the {®° metric) and Dy is the dis-
crepancy [20, 25]. Hence, low-discrepancy point sets
lead to low dispersion. The benefits of low discrepancy
and low dispersion point sets i1s evaluated in the con-
text of randomized path planning in Sections 3 and 4.

We describe four classes of quasi-random samples:
1) grids, 2) lattices, 3) closed sequences, and 4) open
sequences. The first is a proper subset of the second,
and the second is a proper subset of the third. In
the last three classes, it has been possible to obtain
low-discrepancy point sets that perform better than

random sampling for numerical integration and opti-
mization problems [8, 20, 24]. A grid corresponds to
the usual uniform quantization of each of the coordi-
nate axes. A lattice is a generalization that preserves
the convenient neighborhood structure of a grid, but
is generated by a collection of generally nonorthogonal
basis vectors that lead to low discrepancy (more de-
tails on lattices appear in Section 4). A closed method
does not require any neighborhood structure for the
samples, and the only restriction is that the number
of samples must be specified a priori. Finally, an open
method does not require the number of samples. Gen-
erally, closed methods lead to lower discrepancy than
open methods because the knowledge of the number
of points aids in the optimization. In Section 3, we
present a variant of the classical PRM by using gen-
eral closed and open sampling methods (non-lattice).
In Section 4, we define a variant of the Lazy-PRM,
and exploit the convenient neighborhood structure of
quasi-random lattices.

3 Quasi-random Roadmap (Q-PRM)
3.1 PRM Review

Probabilistic roadmap (PRM) planners use ran-
domly sampled data to assist a robot with navigation
through an obstacle-ridden area. The description of
PRM presented here is based roughly on the initial
algorithm described in [15]. Tt has inspired different
versions of PRM planners that have been developed by
different researchers (see [1, 3, 5, 15] and their refer-
ences). When applying roadmap path planners, there
are two phases. During the first phase, nodes are gen-
erated and connections between the nodes are added
to the roadmap. In the second phase, the roadmap
is queried with an initial and goal configuration. An
outline of the roadmap generation portion of the PRM
algorithm follows.

Consider the configuration space C of the robot and
the portion of that space which does not contain ob-
stacles, Cgee. Let the roadmap R consist of a set
of nodes A and paths between the nodes, P. The
roadmap construction phase is as follows:

1. Ne—0,P — 0.

2. Loop:

3. n «—— a randomly chosen node in Cepee
4. N —NUn

5 N+ a set of candidate neighbors of n
6

For all ' € Ny, in order of increasing dis-
tance from n do

7. if a local path between n and n’ is found
then

8. P — PUp(n,n)



An example of the result of this phase appears in
Figure 1(a), which tried 1000 nodes. Note the char-
acteristic “clumpiness” of the randomly-chosen nodes
and the relatively large areas of free space that contain
no samples. The figure also confirms the well-known
fact that narrow passages in C-space are notoriously
difficult to find at random. Indeed, several planners
have been developed to address this issue. Creating
nodes in narrow passages has been the main motiva-
tion of the enhancement step in [14], the generation of
nodes near the configuration space obstacles in [2], the
penetration of obstacles in [10], the Gaussian sampling
in [5], the retraction to the configuration space medial
axis in [2], and the use of the workspace medial axis

in [9] and [22].
3.2 Q-PRM Overview

Monte Carlo methods, like PRM and its uniform
random sampling cousins for integration and optimiza-
tion, have been adopted for problems with high dimen-
sion to overcome the curse of dimensionality. Recently,
quasi-Monte Carlo algorithms, which are identical to
their random siblings except that they use determin-
istic point sets, have been shown to be both compu-
tationally efficient and accurate for a variety of ap-
plications including 360-dimensional integrations per-
formed in finance and bounded optimization [26]

Simply put, Quasi-random Roadmap (Q-PRM) al-
gorithms aim to replace specialized, quasi-random
points for the randomly chosen points in Step 3 of the
roadmap generation algorithm above. An example of
this process appears in Figure 1(b). The same number
of nodes (1000) were examined for roadmap inclusion
as in Figure 1(a). Here, however, a path through the
narrow passage has been found, there is no clumping
of points, and every free-space point is fairly close to
a graph node.

The quasi-random points used in Figure 1(b) are
called Hammersley points. They are one of many point
sets that have been designed to have low discrepancy.
Here, “discrepancy” can be thought of as the degree
of difference (measured by some criterion) of a set of
points with respect to the properties of points that are
uniformly distributed in space. There are many prop-
erties of uniform points and many criteria for mea-
suring discrepancy that have been developed. One is
based on “uniformly distributed with respect to axis-
parallel rectangles.” If a set of points, P, were uni-
formly distributed in the [0,1]? C-space of Figure 1,
one might expect the number of points in a given rect-
angle R = [a1,b1) X [az,bs) to be proportional to its
volume vol(R) = (b1 — a1)(ba — a3). Thus,

D(P,R)=n-vol(R)— |PNR|

is a measure of discrepancy for rectangle R. The dis-
crepancy of point set P is obtained by finding the

maximum such difference over all possible rectangles.
Thus, one measure of the discrepancy that has been
proposed (see [18] for a litany of others plus discus-
sion) is the Lo -discrepancy of the first N points of a

d-dimensional sequence, S, in [0, 1]d:
d
. b
sup {s1,...,sn} N [a,b) —H(bi—ai)
[a.b)C[0,1]* N it

measured with respect to axis parallel boxes in [0, 1]d.

The smallest possible value for the discrepancy of
N points in d dimensions is O(N~*(log N)(4=1)/2) [25].
Low discrepancy point sets have been proposed by a
number of mathematicians, including Faure, Sobol,
Hammersley, and Niederreiter [20]. Typically, these
have discrepancies that are O(N~!(log N)¢). Some
are quite easy to generate. For example, Hammersley
and Halton point sets can be generated in arbitrary
dimensions using the following algorithm.

Definition 3.1 (Hammersley-Halton Sets [18])

e Hammersley points. Choose d — 1 distinct primes

P1,D2, ..., Pd—1 (say the first d—1 primes, p1 = 2,
pa =3, ...). The ith point of the set is given by

i

<ﬁ;7’p1(i),-..,7“pd_l(i)), iIO,l,...,N—l.

We call such points HH(1/N p1,...,pa—1) points.

e Halton points. Choose d distinct primes
P1,P2, ..., Pd. The set’s ith point is given by

(12 (), 73 (), -+, 794 (8))

We call such points HH(p1,...,pa) poinis.

i=0,1,..., N—1.

Here, the function rp(i) is obtained by writing the
digits of the p-ary notation for i in the reverse or-
der: for i = ag + pay + p?as + pas + ..., where
a; € {0,1,...,p— 1}, we set

Perhaps, a more useful notion than discrepancy is
“dispersion.” The dispersion of a point set P, d(P),
measures the fitness of a sequence for applications like
optimization by considering the furthest distance be-
tween any point in the space and its nearest sample
point. We can visualize the importance of the disper-
sion to roadmap analysis by placing a ball with radius
equal to the dispersion at each sample point; the en-
tire sample space is now covered. Obviously, the fewer
of these balls we have, the smaller our roadmap is (in
terms of number of nodes); the smaller these balls are,
the easier it is to connect a query to the roadmap.
Going back to Figure 1, one can see that the disper-
sion in (a) is bigger than that in (b). Unfortunately,



there are no known methods for calculating the dis-
persion of a point set exactly. The dispersion can be
approximated by sampling the space in a finite num-
ber of places and performing the calculation on these
samples, which produces a lower bound on the disper-
sion. Indeed, approximating the dispersion of a point
set might just be a good candidate for Monte Carlo
or quasi-Monte Carlo Methods! Another lower bound
is to compute the nearest-neighbor distance for each
node, and divide the maximum of these by two.

As stated in Section 2, discrepancy and disper-
sion are related by d(P) < [D(P)]'/?. Thus, low-
discrepancy point sets generally have low dispersions.
For Hammersley points, d(P) < (1+6)- N=/4 where
b is the largest prime used; for a Halton sequence,
d(P)<b- N~=1/4 The best bounds are thus obtained
using the first d—1 and d primes, respectively, in which
case the Hammersley points always produce a lower
upper bound. See [20, 25] for discrepancy and disper-
sion bounds for other low-discrepancy sequences.

We have used Hammersley, Halton, and Faure
points as inputs to Q-PRM algorithms to solve a va-
riety of planning problems in a range of dimensions.
Broadly speaking, Q-PRM has performance better
than or equal to its PRM counterpart. We present
some theoretical advantages of quasi-random over ran-
dom points, as well as some compelling experiments,
in the next section. More results appear in [6, 21].

3.3 Comparing PRM and Q-PRM

The following table shows the results of experiments
performed on narrow corridor problems that have the
same geometry as the example in Figure 1. The con-
figuration spaces range from 2 to 10 dimensions, and
each involves a corridor with two bends and a cubic
cross section with its width indicated in the table (the
entire C-space in d dimensions is [0, 1]¢). The connec-
tion radius is given in the third column. The number
of nodes required to find a path that travels through
the corridor is shown for both the Q-PRM and 100 av-
eraged trials of the PRM. The final column indicates
the improvement factor of quasi-random over random
sampling, in terms of the number of nodes. We have
also generally observed larger improvement factors as
the corridor width narrows. With wide corridors in
high-dimensional spaces, the performance of the meth-
ods appears to be comparable.

| Dim. | Width | Rad. | Quas. | Rand. | Factor |

2 .03 10 195 464 2.38
3 .05 .25 579 828 1.56
3 10 .40 26 106 4.08
6 10 .40 4052 | 12857 | 3.17
10 .25 .60 1506 1531 1.02
10 .20 .60 2101 6260 2.98

Figure 2: A 6-DOF planning problem.

Figure 2 shows a 6-DOF planning problem in which
an elbow-shaped robot passes through a small open-
ing. The Q-PRM solved the problem with 5908 nodes,
and the PRM averaged 8020 nodes over 35 trials (the
min and max for the PRM were 5551 and 14863, re-
spectively).

In the above experiments, Hammersley points us-
ing the first d — 1 primes were used in C-spaces of
dimension d. In all our experiments, uniform ran-
dom numbers were generated using the linear congru-
ential generator found in MATLAB™ or the ran-
dom source class of the LEDA/C++ library function.
Hammersley-Halton low-discrepancy sequences were
chosen using by coding the definitions in the previous
subsection. The time to generate the quasi-random
samples versus random samples was never a significant
distinguishing factor.

We now turn to some theoretical comparisons of the
performance of quasi-random versus random sampling.
We begin here by exploring theoretical comparisons
of discrepancy and dispersion from the literature. In
the context of motion planning problems, discrepancy
and dispersion are related to the uniform coverage of
C-space. See Figure 4. Dispersion is also a direct
measure of the maximum distance of any query to the
roadmap and related to the ability to connect paths
through narrow, twisting passages. Also, connection
radii less than the dispersion of a point set may pro-
duce disconnected roadmap graphs.

The discrepancy for a set of N uniform random
numbers in d dimensions is N~1/2; that for low-
discrepancy sequences is O(N ~!(log N)?). Asymptot-
ically (in the number of sample points N), the lat-
ter is smaller than the former. Since discrepancy is
related to error in Monte Carlo integration, this has
caused much interest in low discrepancy methods for
that problem. However, if d is large and N is modest
in size, the asymptotic bounds do not apply. Never-
theless, low-discrepancy points have still shown better
performance than random samples in these exact sit-
uations [26].
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Figure 3: A two-link revolute manipulator.
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Figure 4: C-space coverage for the manipulator in Fig-
ure 3 for (left) PRM and (right) Q-PRM with Halton

points. 900 nodes examined.

Dispersion bounds are also asymptotically superior
for low-discrepancy points. The upper bound com-
ing from discrepancy is N~'/(9) for uniform random
point sets. Compare this with O((log N)N~'/4) for
low-discrepancy sequences. Typically, low-discrepancy
point sets admit dispersion bounds (infinity norm)
that are O(N~/9), as those reported for Hammers-
ley and Halton points above. The dispersion of a ran-
dom sequence (infinity norm) is O(N~%(log N)*/4)
almost surely [20]. Solving such formulas for N, it is
clear that the number of points needed in the random
setting becomes higher as the required dispersion de-
creases towards zero. See Figure 5.

It 1s interesting to note that in the table above,
in 2 dimensions, we have 3(195)~'/% =~ (464)~!/*
(which uses the discrepancy upper bound on disper-
sion for uniform random points; the constants in the
a.s. bound are not known to us at this time). In
the other dimensions, N is (sometimes many orders of
magnitude) too small for the theoretical advantages of
the quasi-random points to “kick in”. Nevertheless,
we empirically observe similar or better performance
in terms of the number of nodes required to generate
successful plans.

4 Quasi-random Lazy-PRM

A recent PRM variant called the Lazy-PRM has
been proposed for the problem of answering single
planning queries efficiently, as opposed to building an
extensive roadmap prior to consideration of a planning
query [4]. The resulting planner is sometimes very ef-
ficient in comparison to the original PRM.

The primary novelty of the Lazy-PRM is that the

Number of samples needed

107 10’

107
Dispersion (bounded by discrepancy)
Figure 5: Comparison of number of points needed to
achieve a desired dispersion, from discrepancy bounds.

roadmap is initially constructed without the use of a
collision detector. All edges appear as if they were
collision-free, regardless of the obstacles. Once an
initial-goal query is given, the planner performs A*
search on the roadmap to find a solution. If any of the
solution edges are in collision, they are removed from
the roadmap, and the A* search is repeated. Eventu-
ally, all edges may have to be checked for collision, but
often the problem is solved well before this happens.
If no solution is found, then more nodes may need to
be added to the roadmap.

In addition to the low-discrepancy benefits of quasi-
random sampling that were discussed in Section 3,
another benefit arises in the case of a Lazy-PRM. In
the first stage of the original Lazy PRM, a significant
amount of time is spent on constructing a randomly-
generated graph that may contain thousands of nodes
and edges, and require thousands of nearest-neighbor
queries; however, the roadmap encodes no true infor-
mation because the obstacles are ignored. Using quasi-
random sampling, it is possible to make a “lazier”
PRM in which the initial graph is not even explicitly
represented. Imagine, for example, if a grid was used
as the PRM. The graph is essentially known in advance
because all nodes, neighboring nodes, and edges are
defined 1mplicitly by the rules of the grid. If the grid
is replaced with a low-dispersion set of quasi-random
points that form a lattice, the benefits of both the grid-
like structure and low-discrepancy can be exploited.

Lattices fall under the category of closed quasi-
random methods, in which the number, N, of sam-
ples is fixed a priori. Suppose that the C-space is
scaled so that C = [0,1]¢. A sequence, {q1,...,qn} of
N d-dimensional lattice points can be constructed by
selecting the i** point as iﬁz, in which z is a carefully-
chosen integer vector with no components that have
common factors with N, and the result 1s computed
modulo one (only the fractional part is used). A pro-
cedure for choosing a value for z that yields low dis-
crepancy, given N and d, is described in [24] (more
elaborate lattice schemes are also given). Tt is well-
known that the points in a lattice form an Abelian



group with respect to addition, and that all points can
be specified in terms of a collection of d generators,
J1,--.,94. These can be considered as d independent
basis vectors, from which all lattice points can be gen-
erated by taking integer linear combinations. By using
generators, the location of all nearest neighbors can be
obtained immediately by adding (or subtracting) one
of the generators to the sample. For example, in the
case of a 2D grid, the generators are [1, 0], [0, 1], which
can be used to obtain the coordinates of standard four-
neighbors. This idea generalizes to any lattice, and
yields constant-time determination of neighbors.

It is actually possible to generate a family of low-
discrepancy embedded lattices, in which each lattice
contains twice as many samples as the previous one,
and includes all of its samples. This is useful in the
Lazy-PRM algorithm; when a solution is not found for
a fixed N, a lattice of twice the “resolution” can be
used, again without requiring explicit representation
of the roadmap. The family of lattices is given by

in (ko k0,0
N p
where r € {0,...,d}, each k; € {0,1}, the number of

lattice points is p" N, and p and N are relatively prime.

We next present an implementation of the lattice-
based Lazy-PRM. The primary difference with respect
to the method in [4] is that no initial roadmap is explic-
itly constructed: it is defined implicitly by the rules of
a chosen lattice for fixed d and N. We also chose to run
the A* algorithm only once, and performed collision
detection during the search. We had first implemented
the iterative search and deletion scheme described in
[4], but found it to be less efficient for our computed
examples (for both the lattice-based and randomized
Lazy-PRM). The implementation is in LEDA/C++,
and uses the PQP collision detection package from the
Univ. of North Carolina. We used values of z given in
the appendix of [24].

We performed dozens of experiments on each of sev-
eral examples. Three of these examples are displayed
in Figures 2, 6 (left), and 6 (right). These represent
3D environments that contain a 6-DOF robot. The
rotation portion of the C-space is parameterized using
yaw-pitch-roll angles. We compare our lattice-based
Lazy PRM implementation to our implementation of
a randomized Lazy-PRM (note, however, that one can
adjust many parameters that affect performance). For
the randomized Lazy-PRM, we performed 25 trials on
each example. The table shows the minimum, maxi-
mum, and average number of nodes for the randomized
Lazy-PRM in the first three columns. The final col-
umn shows the number of nodes used by the lattice.

| Prob. | Min | Max | Avg |Lattice |
Elbow | 1250 | 15250 | 4667 3963

Cup | 2000 | 12000 | 4800 2152
Truck | 5000 | 95000 | 35207 | 5138

The following table shows computation times, with
an additional column that shows the amount of pre-
computation time used by the randomized Lazy-PRM
to build the initial roadmap.

| Prob. | Min | Max | Avg | PreCmp | Lattice |

Elbow | 7.0 | 718 | 287 212 10.1
Cup | 233 | 253 | 36.9 15.9 1.23
Truck | 11.2 | 5480 | 935 800 18.5

The lattice-based Lazy-PRM shows dramatic per-
formance improvements, primarily because it exploits
the neighborhood structure of the lattice to avoid
the precomputation required by the randomized Lazy-
PRM. Furthermore, the number of nodes often appears
to be in favor of the lattice-based PRM, for reasons
discussed in Section 3.

Figure 6: Left: Placing a feather (1184 triangles) into
a cup (1632 triangles). Right: Getting a truck (22284
triangles) out of a cage (1032 triangles).

5 Discussion

We have investigated the use of quasi-random sam-
pling for path planning by introducing deterministic
quasi-random variants of both the original probabilis-
tic roadmap (PRM) and the recent Lazy-PRM. Based
on our experiments, quasi-random samples appear to
offer performance improvements similar to those ob-
served in other fields where Monte Carlo methods were
replaced by quasi-Monte Carlo methods. The regular
neighborhood structure of quasi-random lattices also
led to performance benefits, in the context of a lazy
evaluation. We emphasize the difficulty, however, in
providing conclusive experimental comparisons, given
that there is no practical way to represent the distri-
bution of problems on which these algorithms will be
applied. Also, it is hard to compare deterministic, pre-
dictable methods to randomized methods, which yield
varying results in multiple executions.

Another potential advantage of quasi-random sam-
pling is that deterministic bounds on the performance
of the planner can be derived. With random sam-
pling, performance guarantees and completeness are
measured probabilistically. When using deterministic
samples, the planner is guaranteed to terminate in fi-
nite time with a solution, if a solution exists. The



proposed quasi-random PRMs are resolution complete,
as opposed to probabilistically complete; however, de-
termining performance bounds remains a topic of fur-
ther research. Existing theoretical analysis of quasi-
random sampling only shows asymptotic superiority
to random sampling in terms of measures such as dis-
crepancy and dispersion, which further complicates
the problem of assuring superior performance for a
small number of iterations. It is easy to design motion
planning problems that require a certain level of dis-
crepancy or dispersion for completion. Experimenting
with them and relating these concepts to other notions,
such as e-goodness [10], is a topic of future study.

It is interesting to consider the spectrum from
quasi-random sampling to random sampling. Intu-
itively, it appears as if random samples help to fight
the curse of dimensionality by yielding methods that
have little dependency on dimension. Quasi-random
samples, such as the Hammersley sequence, appear to
also fight the curse by offering advantages in terms
of performance measures. Interestingly, the restric-
tion of the samples to a lattice structure has little or
no performance disadvantages in terms of discrepancy
and dispersion [8]. This appears odd because lattices
are a kind of skewed grid, and conventional wisdom
indicates that grids are a poor choice because to ob-
tain a fixed resolution, the number of samples must
increase exponentially with dimension. The notion of
resolution is comparable to dispersion, which guaran-
tees each sample is within a prescribed displacement of
other samples. The problem is that for any collection
of N d-dimensional points in [0, 1]%, the dispersion, s,
is bounded as s > %N_% [20]. Therefore, an exponen-
tial number of samples 1s needed to maintain a fixed
dispersion or resolution, regardless of whether random
sampling, quasi-random sampling, or grids are used.
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