Probabilistic localization with a blind robot
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Abstract— Researchers have addressed the localization prob-
lem for mobile robots using many different kinds of sensors,
including rangefinders, cameras, and odometers. In this pagr,
we consider localization using a robot that is virtually “blind”,
having only a clock and contact sensor at its disposal. This
represents a drastic reduction in sensing requirements, @n in
light of existing work that considers localization with limited
sensing. We present probabilistic techniques that represe
and update the robot's position uncertainty and algorithms
to reduce this uncertainty. We demonstrate the experimenta
effectiveness of these methods using a Roomba autonomous
vacuum cleaner robot in laboratory environments.

I. INTRODUCTION

Localization is one of the best-studied problems in mobile
robotics. Accurate knowledge of the robot’s position withi
its environment is widely considered to be essential for Fig. 1.
mobile robots to be useful. Although robots often obtain
such knowledge by some combination of sensor measure-
ments, motion estimates, and pre-supplied initial coad;j

information from sensors is usually the primary means diations [25]. However, that work relies in crucial ways

eliminating position uncertainty. Understanding the rofe on fassumptlons th?t the r(_)bots _sensm? and dcontr(:jl are
sensing in the localization process is therefore esseotial perfect. For example, certain portions of [25] depend on

complete understanding of localization problems the robot's ability to slide along the environment boundary
In the mobile robotics literature, localization problemg/ithout triggering its contact sensor. If the robot's catr

take many forms. In this paper, we consider active globzﬂdmits even the slightest directional errors, such motions

localization, in which a robot has access to a complete ma?ﬂ% |mposs||t_)le. In lpractllfze, senS|hr?g is rarely fully actura
of its environment but is totally ignorant of its positionhd and control is rarely perfect. In this paper we present new

robot must purposefully direct its motions to eliminatettha®90rithms that are robust to these errors and demonstrate

uncertainty. Using probabilistic techniques, we demaietr €XPerimentally that these algorithms are effective.

that a certain global active localization problem can be The most successful published approaches to localiza-

solved with very limited sensing capabilities. This work istion are generally based on either particle filters [9], [12]

distinguished from prior probabilistic localization tedgues [13], [19], extended Kalman filters [15], [20], or grid-bake

by the limitations on the robot's sensing. We consider iscretizations [3], [6], [7], [16]. The novelty of our work

differential drive robot equipped with a contact sensor and iS that we use a robot model in which the sensing and

clock, but no other sensors. motion capabilities are severely limited. These limitatio
This work is motivated by a desire to understanditifer-  introduce geometric issues, requiring new algorithms for

mation requirementsf important robotic tasks. By finding Poth pose tracking and active localization. Our work also

very Simp|e robots that are able to Comp|ete certain task@[aWS inspiration from theoretical results on localizatibat

we begin to identify necessary conditions on the sensir¢s€ geometrical reasoning and set-based representafions o

and motion capabilities for completing that task. In a mor&ncertainty [11], [25], [30].

directly practical sense, studying robots with very simple Previous works on limited sensing exist, but even they

sensing schemes is profitable because such robots are batss much more powerful robot models than we discuss in

suited (for reasons of cost and complexity) for deploymerthis paper. These include models that use short range (3-5

in large cooperative teams. m) infrared sensors [4] and models that use a combination
Prior theoretical work showed that active global local-of sonar and fixed rangefinders [22]. These papers attempt

ization problems can be solved under severe sensor life solve localization problems while delibrately avoiding

A Roomba autonomous vacuum cleaner robot.



the use of omnidirectional laser rangefinders, devices that
are used in a large portion of the papers on probabilistic
localization, including [13] and [14]. Our research goes
further in this direction by limiting the robot to absurdly
simple sensors that are unable to detect obstacles the robot
is not physically touching.

The minimalist approach we take has a long history
in robotics. Researchers have studied the implications of
sensing limitations for navigation [21], [27], exploratifl],

[8], and manipulation [2], [23] tasks. The general problem
of determining the information requirements of robotidk&as

is taken up in [10], [24]. Our work contributes to this line
of research by demonstrating that, with appropriate adapta
tions, such minimalist models are applicable in experiralent
contexts.

We conducted experiments using Roomba autonomous
vacuum cleaner robots, shown in Figure 1. The Roomba is
attractive as a research platform because it is inexpensive
and readily available, and because its sensors closelyhmatc
the abstract models we use. Fig. 2. A robot with Gaussian rotational error starts in tlemter of a

Like many approaches to the localization task, our bas Céag?é‘g’;rbﬁ?;’ "ggrrg?tgt scgr rgg}’rfé fglr(‘)"fgdtrtg tgguﬂg’;r‘;m:gmdﬁg'
method is probabilistic. In fact, our work can be considilustration purposes, the variance of the distributiorinigractically large.
ered as exploring a kind of probabilistic information spacéop] The robot moves upward. Although the resulting disttion appears
(18], which arises in partially observable Markov decisiorf Feriealy o be Gaussin, it s rat, bt The robetuem o
processes (POMDPs) [17], [28], [31]. As our algorithmdistribution need not be endpoint of the robot's nominajettory.
progresses, the robot maintains an approximate, discrete

probability distribution over positions along the envinoent
boundary. This distribution is updated in response to nmstio
by the robot. For active localization, we use an entropy-
based heuristic to choose uncertainty-reducing motiohs. T
algorithm constructs a localization plan consisting ofesal/
subplans, each of which results in a monotonic decrease in
entropy, even if the entropy temporarily increases within a
subplan. This willingness to tolerate temporary increases
uncertainty is crucial to effective handling of the multidad
distributions that arise in our problems.

The remainder of this paper is organized as follows. We
present formal definitions for our robot model and for passiv
and active localization problems in Section Il. Algorithios
solve the passive and active problems appear in Sections IV " . : :
and Il respectively. Details about our experiments are in  lIn€, but because we explicitly model orientation errors,

Section V, followed by discussion and conclusion in Sec-  OUr algorithms are robust to small deviations from
tion VI. this assumption. Since we are interested in solving

localization problems with a little sensor information as

Il. PROBLEM STATEMENT possible, we ignore the robot’s clock during translations.

In this section, we introduce our robot model and define
the passive and active localization problems we solve.

« Rotations— Using its clock, the robot can rotate in
place by dead reckoning. Motion by dead reckoning is
notoriously noisy, so we model the error in the amount
of rotation by a zero-mean density We assume that
p is strictly increasing below its mean and strictly
decreasing above its mean, and thdtas a continuous
cumulative distribution function. Figure 2 shows an
example, in which a robot starts in the center of a
rectangular environment and moves upward.

« Translations- The robot can move forward, but since it
lacks odometry, the only reliable translation it can make
is to move forward until it reaches the environment
boundary. We assume that the robot travels in a straight

The robot's motions can be described as a sequence of
discrete stages, in each of which the robot makes a single
A. Robot model rotation, then moves forward until its contact sensor is
A point robot with orientation moves in an environmentriggered. We number these stages with consecutive irteger
W c R? that is planar, closed, bounded, and polygonal. The = 1,2, . ... Since the robot can only move between points
environment need not be simply connected. & c 1  along dW, we need not consider the points in the interior
represent the boundary &f and letn denote the number of W as possible locations for the robot.
of vertices ofoW. The robot knows its initial orientation, Note that rotational errors accumulate over time, and the
but not its initial position withiniV. robot’s true heading will become more uncertain as more
The robot is equipped with a contact sensor and a clocktages go by. Since the error in the robot’s orientationeatest
but no other sensors. We consider two types of motions thatwill be the sum of the error at stadeplus all preceding
these sensors enable. error, we can say that the random variallg representing



the orientation error at step is Ry = Zle r;, in which K = DD M) =270 M) = L2000
r; is a random variable describing the error resulting from | oe—o
stepi. Note that ther;'s are independent and identically
distributed according tp. Let p; denote the distribution of
Ry,. The result of this sum will depend on the single-stage 163
error distributionp. In the special case whegeis Gaussian
with varianceo?, py, is Gaussian with variances?2.

Starting State = 1

h(fpy) = 0.652373 h(fp,) = 0421878 h(fp,) = 0.148065

B. Localization problems , on
We consider two related localization problems:

« Passive localization- The robot’s motions are con-
trolled by an external decision maker. The problen
is to efficiently maintain and update the probability - ' D

distribution of possible states of the robot. . . . .
. e , . . Fig. 3. A simple square environment, along with a 5-step i solves
. A(?t'\(e Iocallzatlop— The rObOF_S primary task IS.tO the active localization problem in that environment. THéahstate is shown
eliminate uncertainty in its position. The problem is toin the top left. The final state, which concentrates neatlgfahe probability

choose motions so that the robot will be certain it is irf"ass in one corner of the square, is shown in the lower right.
a disk of radius with a probability at least — 6.

Observe that to solve the active localization problem
typically requires as a “subroutine” a solution to the passi
localization problem.

Unfortunately, as the robot moves, the distribution of pos-
sible states alongW becomes increasingly difficult to repre-
sent analytically, even if both the prior and error disttibns
are well-behaved. Moreover, geometric features within the
environment will cause discontinuities that complicate th
analytical representation of the distribution even furtfi®
combat this complexity, we approximate the true distritauti
by discretizing the boundary of the environment into small :
cells of size at mos2e and recording the amount of prob- Fig. 4. Computing the sét; of cells visible from a cells;. The diagram
ability mass in each of these cells. Such a nonparametusepicts three cells fully visible from the midpoint of and one cell that,
representation is well-suited for representing the Comp|e_because of an obstruction, is only partially visible. Alifecells are included
multimodal distributions that arise in global localizatio n V;.

This discretization can be viewed as a piecewise-constant

approximation to the underlying density function. We deid any errors introduced by the discretization) that the activ
each edge: of OW into [length(e)/(2¢)] equally-spaced |ocalization problem has been solved. Figure 3 shows a

cells. LetS = {s1,...,sn}, in which eachs; € S is line  starting distribution and possible solution for a very sienp

segment iMW, denote the set of discrete cells generated iBnyironment.

this way.

Under this discretization, we can represent the robot's Ill. PASSIVE LOCALIZATION

uncertainty as am:-dimensional column vector In this section, we solve the passive localization prob-

- lem, in which the task is to observe the robot’s execution
Pe=[Pe1 -+ Pum |, (1) and maintain a probability distribution of possible pasits
in which P, ; is the probability of the robot being in cedf ~ Within the environment.
at stagek. We assume a uniform prior, so that The robot receives as input a descriptioriif represented
as a doubly-connected edge list. As a preprocessing step, we
length(s;)

Pyj=——2"Y__| (2) compute for each cely; in the environment discretization

" perimeter(9W) S alist V; C S of cells that are visible, either fully or

If additional information about the robot’s starting pasitis  partially, from the midpoint ofs;. See Figure 4. This step

available (for example, a known starting position), thiia can be accomplished in tin®@(mn logn) by computing the
condition can be changed accordingly. visibility polygon in W of each such midpoint [26].

In this context, the input to the passive localization prob- Given the environment’, a commanded motion direction
lem is the environmentV, a discretizationS, a motion wu, and a belief distributionPy, the problem of passive
direction u, and a probability vecto’;; the output is a localization is to compute an updated distributiBp, ;. To
probability vectorP;;, the updated to reflect this motion. accomplish this, we compute a transition matf ; such
Similarly, note that if at least — § of the probability mass that
is concentrated in a single cell, we can be certain (modulo Pyy1 =Ry 1Py 3)



= Algorithm 1 PassivelLocalization W, S, P, u)
1: Ry, < m x m matrix of zeros
2: for i € {1,...,m} do
m; < midpoint of s;
for s; € V; do
if s; # s; then
p1p2 < maximal subset of; visible fromm;
01— u— ANGLE(pl — mi)
Oy — u — ANGLE(pQ — mi)
Ru,k,l,i — ‘f@ef pk(¢)d¢‘
10: end if
Fig. 5. Computing a single entry iR, ;. Orientation errors betweefy 1 end for
and 6 will lead the robot froms; to s;. 122 Rk« 1-— Zlgjgm,j;éi Rk,
13: end for
14: Piy1 +— Ry 1Py
The interpretation of?,, j;, is that the entry at row, column  15: return Py
4 contains the fraction of probability mass that moves from
cell s; to cell s;, under a motion in direction.. We use
the subscript: on the transition matrix? to emphasize the  We propose a certain form of entropy as a progress
dependence on time-varying the orientation error distidiou  measure in Section IV-A, describe how we generate subplans
Dk in Section IV-B, and combine these two elements to form a
It remains to describe how to compufg, .. Columni complete active localization plan in Section IV-C.
of this matrix describes how probability mass moves frorrA Progress measure
s; to each other cell of the discretization. Since the robot”
moves in a straight line, this fraction is nonzero only for We follow [6] and others in using entropy as a heuristic
cells visible froms;, that is, the cells ift/;. For each of these, for measuring the progress of the algorithm. Recall that
we compute two angle; andés that bound the intervalof approximates the density of a continuous random variable
orientation errors that, given commanded motion directipn fepresenting the robot's true position. Lgt, : 9W — [0, 1]
leads the robot from the midpoint ef into a visible portion denote the (piecewise constant) approximation to the true
of s;. By integratingp;, over the interval betweefy andds, density function induced by,.. This density has differential
we obtain the transition probability from ceil} to cell s;. ~ €ntropy
Sincep, has a continuous cumulative distribution function,
the integral is guaranteed to exist. After all of the visibés h(fp) = - /aw fp.(2)log fp, (z)dx )

in V; are accounted for, the remaining probability remains m
-3 [ @ fais @)
i=1 Y95

concentrated ins;. This procedure is pictured Figure 5
and summarized in Algorithm 1. The algorithm runs in

time O(m?), which (holdingperimeter(9W) constant), is
O(e72). = —Zlength(si)Pkﬂilongﬂi. (6)

i=1

IV. ACTIVE LOCALIZATION Note in particular that this formulation differs from the
discrete entropy of;, because the contribution of each cell
Now we turn to the problem of active localization. Weto h(fp, ) is weighted by the size of that cell. Our algorithm
present an algorithm that chooses motions for the robot &elects a series of motions, . . ., u; intended to minimize
order to eliminate uncertainty in its position. The intoiti A (fp, ).
is to chain together a sequence of subplans, each of which .
“merges” the probability mass from two cells into a singIeB' Candidate subplans
destination. This basic structure is inspired by the athori ~ Suppose two cells; ands; each have nonzero probability
of [25], but because we admit errors in control, the algonith in Px. What actions by the robot will transfer (most of)
requires significant modifications. Our algorithm is greedyhe probability mass in these cells into a single common
in the sense that it selects, from a group of candidagestination? A solution to a similar problem for a robot
subplans, the subplan that makes the most “progress” towakéfthout errors appears in [25]. The approach is based on
localization. pursuit-evasion, in which one point (representing a pdssib

position of the robot) chases another, repeatedly moving in
INote that, if the visibility ofs; by the midpoint ofs; is obstructed by an the direction of the first step of the shortest pathlin

obstacle small relative te, then visible portion ok; need not be a segment. hetween the two points until they finally merge.
Although, in general, this indicates thds too large for localization iV, '

this case can be handled in Algorithm 1 by integrating ovehemnnected Unfortu_nately’ this solution 'S_ not d|reCtly gppllcable,
component of the visible portion of; and summing the results. because it often generates motions that require the robot



Algorithm 2 AdjustAction (u, s;, k)
1: (z1,x2) < endpoints ofs;, ordered so that the interior
of W is on the clockwise side.
cmo— (11 + x2)/2
1 — ANGLE(zq — m)
g «— ANGLE(z2 — m)
Umin — min(u, ANGLE((z2 — 1))
Umaz — max(u, ANGLE((z2 — 21)%))
U (umaz + umzn)/2
: b<_ f[d)zv 1]pk(9)d9
- if b <« then
return u
:end if
: while |b — | > ¢ do
if b <« then
Umin < U
else
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Fig. 6. Adjusting robot's motion angle. [top] An initial, liodal distribu-  step, however, we apply Algorithm 2 to adjust those motions

tion. [middle] Because of orientation errors, a motion pafdao the wall to allow for orientation errors. This process continueslunt

leaves a large fraction of the probability mass unaffecfiedttom] A small . ) . .

adjustment to the motion direction, computed by Algorithmith o = 0.1,  the two representatives are merged. Since, in contrasbip [2

corrects the problem. some motions may actually increase the robot’s uncertainty
we truncate the subplan at the stage at which entropy is

. _ o lowest. The complete algorithm to generate subplans appear
to move very close t&)WW without triggering its contact i Algorithm 3.

sensor. In extreme cases, the robot makes a “collapsing
transition” by sliding along an edge @/. Such motions C. A complete localization plan
are not reliable for the robot model in this work, because so Now we can state the complete active localization algo-
much probability mass lies between angles occupied by thighm, which appears in Algorithm 4. At each step, it consid-
wall the robot is currently touching. This probability massers a set of candidate subplans generated by Algorithm 3 and
corresponds to the possibility that the robot may collidthwi appends to its master plan the candidate that improves the
the wall immediately. Figure 6 illustrates the phenomenonentropy the most. This process continues until no entropy-
This behavior can be minimized by adjusting the robot'seducing candidate can be found.
motion direction away from the boundary, thereby incregsin  Which candidate subplans should be considered? Ideally,
the probability that the robot will move. Select an algarith all 2 —m possibilities should each be evaluated, but because
parameter: € (0, 1/2], representing the maximum allowablegenerating each subplan is computationally expensive, thi
chance of the robot failing to make a move. Then, given approach is impractical. Instead, we choose an algorithm
desired motion directiom and a cells;, we can compute a parameterN and we assign a scorB, ; Py, ; to each pair
new motion direction.’, defined as the direction closest to(s;, s;) of cells. The algorithm considers only thé pairs
v that leaves at most probability of the robot not moving with the highest scores. This had the effect of excluding
from s;. The resulting angle.’ will always be between:  low-probability unions that would more likely scatter the
and the angle normal to the in the interior direction. This probability mass around the environment rather than lower
u’ can be approximated to within a toleran¢eising binary the entropy. Note that the pairs;,s;) and (s;,s;) are
search. Algorithm 2 summarizes this method, which runs igistinct (and therefore considered separately) but akays
time O(log(1/¢)). identical scores. In practice, we obtained acceptabldtsesu
This adjustment technique allows us to construct a subplaetting N as low as 10.
that attempts to unify the probability mass in a given pair
of cells s; and s;. We use the midpoints of the cells
as representatives, and apply the pursuit-evasion tegbniq We have implemented this algorithm and evaluated its
introduced in [25] to unify those representatives. At eackffectiveness in localizing a Roomba autonomous vacuum

V. EXPERIMENTAL RESULTS



Algorithm 3 CandidateSubplan(s;, s;, Pr)

1: g1 < midpoint of s;

2: g2 < midpoint of s,

3: szn — Pk:

4. ™ «— empty list of actions

5: while |¢1 — ¢2| > €/2 do

6: u « first step of the shortest path from to ¢
7. s« cell in S containingq,

8  u < ADJUSTACTION(u, s, k)

9: appendutow

10: R, < PASSIVELOCALIZATION (W, S, Py, u)
11: Pk+1 — Ru,kpk

122 k+—k+1

13:  if h(fp,) < h(fp,,,) then

14: Tmin < T

15: Prin — P

16:  end if

17:  q1 < SHOOTRAY (W, q1,u)

18: o < SHOOTRAY (W, g2, u)

19: end while

20: return (mpmin, Prin)

Algorithm 4 ActiveLocalization (1)

1. S

«— discretization ofoW into cells no larger thage

2: m « empty list of actions )
4: k0

5: loop

6: S—S9SxS5—{(s,9)|se€S}

7. sort S by decreasing values df; ; Py ;

8: deleteall but the first N elements fromS
9: Pmln — Pk

10: T — empty list of actions

11:  for (s;,s;) in 8 do

12: (Tean, Pean) < CANDIDATE SUBPLAN(S;, S;, Pr)
13: if h(fp,.,) <h(fp,.,) then

14: Tmin < Tcan

15: Pmln — Pcan

16: end if

17:  end for

18:  if m,i, IS emptythen

19: return
20: else
21: append 7, tO T
22: k — k + length(mmn )
23: Py — Pin
24: endif
25: end loop

Fig. 7.  Two laboratory environments we used to test Alganitd. The
floor is a pitted vinyl surface, and the walls are covered e@ibibcks.

cleaner robot. In this section, we describe those expetsnen

Since the Roomba is a disk rather than a point, we perform
computations using the configuration space of the robot
in W, rather thanW itself. Where the boundary of the
configuration space is a circular arc, we use a piecewise-
linear approximation by segments of length less than

Note that even as simple a robot as the Roomba is
equipped with several sensors that we ignore in our models.
In particular, the robot has an infrared wall sensor withgean
approximately 5cm, a more powerful infrared sensor for re-
ceiving remote control commands, encoders for each wheel,
and several sensors that report on the internal conditibns o
the robot (battery voltage, battery current, etc.). Althlou
some of these sensors provide information that might be
helpful for localization, we ignore them in this work becaus
our intention is to find minimal sensor configurations that
enable localization solutions.

A. Error modeling

Since the robot uses dead reckoning to rotate, calibration
was required to minimize the rotational error. The robot was
commanded to rotate a certain amount of time in an effort to
get it to rotate a certain number of radians. Our resultsis th
calibration indicate that the manufacturer-specifiedtiotal
speeds were off by small amounts, though large enough that
they had to be considered. We also confirmed that the same
calibration works well for two other Roombas not used for
collecting the calibration data. The calibrations were enad
a floor with pitted vinyl tiles, and it is possible that diféet
flooring materials would require different calibrations.

At each stage, the rotation error is relatively small. In
our experiments, we modelled this error by using foa
Gaussian distribution with variancg® = 0.0001. Recall,
however, that at stagk, the accumulated orientation error
pr has variancer? = ko?.

B. Execution examples

We tested Algorithm 4 on two synthetic environments,
depicted in Figure 7. Figure 8 shows a localization plan
for the environment in the top portion of Figure 7. We
usede = 50mm, o = .05, and N = 10. The perimeter
of the boundary of the free space ¥s6m, resulting in



h(fp,) = 5.158354

0.017

Starting State

h(fp,) = 1.667621

-

h(fpyo) = 0.009535

Fig. 8. Localization in a simple environment. [top] The ialitprobability
distribution around the environment boundary. [middle] Atermediate
step resulting from the first two steps of the plan. [bottorhTresulting
distribution after the localization plan is run.

is incapable of performing. The right portion of Figure 10
shows an extreme example of this feature, where movements
by our robot between arms of the environment are difficult
to execute reliably.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented algorithms for both passive
and active localization problems a robot equipped with
only a contact sensor and a clock, and demonstrated its
usefulness experimentally. We have left several important
areas unexplored.

First, the active localization algorithm depends on sev-
eral constants that must be hand-tuned. The discretization
resolutione can be eliminated using dynamic discretization
methods [5]. We found that the performance of Algorithm 4
depends on only weakly oV, the number of candidate
subplans considered. It remains a challenging problem to
choosea in an automated way that balances overly long
localization plans (ifo is too small) against the inability to
deal with multimodal distributions (ié is too large).

Second, the environments we used for our experiments
are relatively small and artificial. We are actively working
to implement our techniques in a much larger, more realistic
office environment. We expect larger environments to signif
icantly increase the computation requirements and magnify

71 discretized cells. Our implementation took 18 secondthe noise of the robot’s control.

to compute a 10-stage plan that concentrated essentiallyFinally, we are also interested in solving navigation prob-
all of the probability mass in a single cell. The resultingems with similar sensor limitations. This problem is retht
plan consists primarily of movements approximately upwardo both path planning and active localization, because the
alternating with movements approximately left. The Roombeobot must carefully plan paths that keep uncertainty at
was able to repeatedly localize itself in this environmentnanageable levels throughout the robot’s motion. Priokwor

using this plan, without any failures. Our algorithm congaut

on so-called “coastal navigation” with longer-range sesso

a similar plan even if the variance in the rotational error i$29] is also relevant. More detailed tasks, such as mapping
increased by a factor of five. This occurs largely because tlve delivery, might require even more informative sensors.

environment is relatively simple, having few concavitiesia
no holes.

Figure 9 shows a significantly more difficult environment(D
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