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Abstract— A robot navigates in a polygonal region populated
by a set of partially distinguishable landmarks. The robot's
motion primitives consist of actions of the form “drive toward
a landmark of class z”. To effectively navigate, the robot
must always be able to see a landmark. Also, if the robot
sees two landmarks of the same class, its motion primitives
become ambiguous. Finally, if the robot wishes to navigate
from landmark so to landmark sg.q: with a simple graph
search algorithm, then there must be a sequence of landmarks
[s0, 81,82, ..., Sk = Sgoat], iIN Which landmark s; is visible from
si—1. Given these three conditions, how many landmark classes
are required for navigation in a given polygon P? We call this
minimum number of landmark classes theconnected landmark
class number, denoted xcr (P). We study this problem for the
monotone polygons, an important family of polygons that are
frequently generated as intermediate steps in other deconusi-
tion algorithms. We demonstrate that for all odd &, there exists
a monotone polygon M}, with %(k2 + 2k + 1) vertices such
that xcr(P) > k. We also demonstrate that for anyn-vertex
monotone polygonP, xcr(P) < n/3 + 12.

|I. INTRODUCTION

the treasure is found. The robot would not even require a
priori knowledge about the number of landmarks or their
arrangement. Due to the first condition, the landmarks are
always locally distinguishable to the robot. This provides
the robot sufficient information to use the graph searching
algorithm described in [6].

Problems about landmark sets that satisfy the second
condition are typically calleart gallery problemsand there
is a great deal of prior work on the subject. Determining
the minimum number of landmarks required is NP-complete
[13]. Tight bounds on the number of landmarks required are
demonstrated in [2] and [5]. An approximation algorithm
with a log(n) approximation factor is described in [8], and
an exact algorithm with empirically fast performance is
described in [3]. Results are also available for rectilinea
polygons [10], [14], [21], monotone polygons [19], and
regions with curved boundaries [11].

The problem of determining the minimum number of
landmark classes required for a landmark set that satisifies

Suppose a point robot is searching for a treasure in a Siflg first and second conditions above is calleddh®matic

ply connected polygonal environment populated by a set gf

partially distinguishable landmarks that the robot carediet
visually. The robot’'s motion primitives are “drive towaralet

red landmark”,

drive toward the green landmark”,

drive

rt gallery problem This problem is discussed in [4], where
upper and lower bounds on the number of landmark classes
required to satisfy these constraints are determined for se
eral families of polygons.

toward the blue Iandmar‘lf”,_ ete. If the robot can see the g thirg condition means that thsibility graph of the
treasure, then the robot “wins”. What properties can a sgfard set must be connected. Landmark sets that satisfy the

of partially distinguishable landmarks have that woulawall
such a robot to find an arbitrarily placed treasure?

second and third conditions are calledoperative guard
sets Tight bounds on the number of landmarks required for

Suppose a landmark set satisfied the following thregygperative guard set were determined in [9], and with a

conditions:

different method in [22]. Tight bounds on a weaker version

1) There is no point where the robot can see two landf this problem, where each landmark must see at least one
marks of the same class at the same time (the roboigher landmark, were described in [17].

motion primitives are never ambiguous).

2) For each point in the environment, there exists

What kinds of robots are capable of exploiting a landmark
8et that meets the three conditions? Light gradient aseent i

landmark visible from that point (the robot is nevergne navigation method that could produce a robot capable

without bearings on which to base its primitives).
For any two landmarks; and sq.q, there is a se-
quence of landmarks$si,ss,...,Sk—1,5x = Sgoal
such thats; is visible froms;_; for all : from 2 to
k.

3)

only of the “drive toward a landmark of class$ primitives

and nothing else (each landmark is a light source of a certain
color). Navigation via light gradients was described in][18
Since these are sufficient conditions for a robot with the
aforementioned primitives, landmark sets with these three

An environment containing such a landmark set could beestrictions could be effectively used for navigation by an
easily searched for treasure. The treasure must be visilstebotic system capable of performing these primitivesneve

from one of the landmarks, and the robot could use

B their actuation and sensor suites allow them to perform

graph searching algorithm to travel to each landmark untdther primitives as well. Many robotic systems that navégat



by visual landmarks fall into this category, including thees  this is a different structure than the conflict graphs, P).
used in [15], [23] and the RGBD-sensing robots of [1].  In fact, VG(S, P) is a subgraph of7(S, P) (they have the

The problem of adding some set of artificial, indistinguishsame vertex set, bu#(S, P) generally has more edges). A
able landmarks to an environment for the purposes of robotguard setS is cooperativeif V' G(S) is connected.
navigation was studied in [16]. Indistinguishable landksar Let S,;; be the set of all cooperative guard setsfoflLet
are used so that no landmark coding or identification systey(G) be the chromatic number of the gra@ghthe minimum
is needed. The results in this paper could be applied imumber of colors required in a proper coloring. We are inter-
a similar manner by adding some partially distinguishablested in theconnected landmark class numhrP, denoted
landmarks to the environment for the purposes of simplasycr(P), and defined to beiinges,,, x(G(S, P)). Due to
fying navigation. Instead of totally eliminating a coding o the relationship of the the connected landmark class number
identification system, our aim is to make such a system &s cooperative guard sets and graph coloring, “landmark
simple as possible by minimizing the number of landmarklasses” will usually be referred to as “guard colors” from
classes. this point on.

There are two primary reasons why one would wish to A polygon P is monotoneif there exists a line such
minimize the number of landmark classes that the robdhat the intersection of and any line perpendicular t&
uses to navigate. First, if the robot is required to distisju is connected. Without loss of generality, we can assume
from among fewer landmark classes, then it may be possilflieat /7 is a horizontal line (by rotating the polygon). For
to construct the robot with a less powerful (and thus, less polygonP so rotated,P is monotone if there exist two
costly, less complex, etc.) sensor suite. Second, the uae oflistinct vertices ofdP, vfront and vpger, such thatv ot
small number of landmark classes may allow only the mos$ the vertex ofoP with the smallestz-coordinate,vpqcx
“different” types of landmarks to be used for navigationr Fois the vertex ofo P with the largestz-coordinate, and the
example, a robot that navigates via red and green landmanksnainder ofoP forms two paths fromvs,on: t0 Upeck
is probably more robust than one that navigates via rethat each have monotonically increasingoordinates. The
green, and teal landmarks, as green and teal may be easifyper subchaiiis the path with the highey-coordinates, and
confused. This is closely related to the data associatidhe lower subchains the path with the lowey-coordinates.
problem that frequently arises in landmark-based nawigati The verticesvs,on: and vy, are considered to be part of
discussed in [12], [20], and [24]. both the upper and lower subchains.

The contributions of this paper are non-trivial lower and
upper bounds on the number of landmark classes required
for monotone polygons. Although robotic environments are From [4], it is known that there is a monotone polygon
typically not monotone, these bounds are still useful beeauwith 3k vertices that requires colors in any guard set. This
there exist many algorithms for decomposing polygons intprovides a trivial lower bound, because the same polygon
monotone pieces. We believe that if care is taken with theust require at leagt colors in any strongly connected guard
monotone decomposition, the results in this paper can Iset. The following theorem provides a better bound.
used to create a cooperative guard set for a general polygoriTheorem 1:For any oddk € N, there exists a mono-
that requires few landmark classes. tone polygoni/; with %(kQ + 2k + 1) vertices such that

Section 1l formally describes the problem. Section Ilxcr(My) > k.
describes a pathological family of monotone polygons that Proof: This lower bound is provided by a variant
require Q(y/n) colors in ann-vertex polygon. Section IV of the “comb” polygon (with(k + 1)?/4 notches) used to
describes a way of placing guards in afvertex monotone demonstrate the lower bound for the art gallery problem in
polygon that requires onlyr/3 + 12 colors. Section V [2] (see Figure 1). Each of the triangular notches is very
discusses the implications of this research and directidns thin; therefore it is impossible to use the same guard todyuar
further research. two notches simultaneously. We define two types of guards.
Notch guardsare guards placed inside the triangular notches.
Body guardsare guards placed in the lower trapizoidal

Let P be a closed bounded simply connected polygonaegion. Letz .., and xp.q, denote the number of colors
subset ofR2. Let 9P be the boundary of°. Since P is a assigned to each type of guard. Note that each body guard
closed regionpP C P. For a points € P, the visibility requires its own unique color, all body guards are mutually
polygonVis(s) is the set{p € P | 5p € P}. A finite set of visible, and two notch guards in different notches require a

IIl. LOWERBOUNDS

Il. PROBLEM STATEMENT

points S C P is aguard setof P if | J .4 Vis(s) = P. path throughV’ G(S, P) for which the non-endpoint vertices
Let G(S, P) be theconflict graphof a finite set of points are body guards.
S C P, in which the vertex set of7(S, P) is S, ands;, s; € Due to the thinness of the notches, a body guard can only

S share an edge Wis(s;) N Vis(s;) # 0. We will say that guard a single notch tip. A single color assigned to notch
two members of5 conflictif they share an edge i&(S, P). guards could be used to guard each notch tip, but then each
Let VG(S, P) be thevisibility graph of a finite set of notch guard would require its own body guard (with a unique

points.S C P, in which the vertex set oV’ G(S, P) is S, color) to ensure that G(S, P) is connected, which would
and s;,s; € S share an edge if; € Vis(s;). Note that require the number of colors to be linear in the number of
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- Fig. 2. Polygons from [22] that demonstrate that a monotaiggon may
N require |[n — 2] /2 guards in a cooperative guard set.

Fig. 1. [top] A “comb” polygon with five notches. The yellow ard is
a notch guard, and the blue guard is a body guard. [middlegiNgtiards
require body guards to connect them to the rest of the \tyilgraph. No
notch guards that share a connecting body guard can havertie color.
[bottom] A body guard can guard one notch by itself.

left

Fig. 3. [leftf A hemimonotone polygon that is monotone rekmtto a
notches. A sef” of notch guards can share one uconnectingi_no_rizontal line. [right] A degenerate hemimonotone polygehere the base
body guard, but only ifﬂteT Vis(t) # 0. which means is intersected by a vertex on the non-base path.
that all members of" must use different colors (this body
guard could guard a notch by itself). Suppose the notch
are grouped into sets of siza, guarded bym — 1 notch
guards andl body guard, in which the same — 1 colors
are used in the notch guards of each set. There is no rea
to make the sets different sizes (if one set ugelors in
its notch guards, and another uses< y colors, then the
second set could include more notches without raising t
total number of colors used). If the notches are grouped
this way, thenz,,orcn, > m — 1 and zpoay > (k + 1)%/4m.

Sincexcr(Mk) = Tnoten + Tvoay, We Obtain Vis(vpack ), thenP can be easily decomposed into two hemi-
(k+1)2 monotone polygons by using the line segmeRG, tUpack-
4m |meN}y (1) However, if those two points cannot see each other, a more
complicated approach is required.
There are three types of line segments and pairs of lines
s jfsegments that can be exploited to guarantee that a pair
which every notch is a part of a sizé’g—l set that all of hemimonotone polygons are separated enough to use

share a common body guard actually exists, merely that aﬁ?ﬁmical cqlor sets. Suppqse there exists a Iing segméht wi
realizable grouping would use at least as many colors. "€ endpoint, (the endpoint of the segment with the lower

Since each notch requir@svertices and the polygon has z-coordinate) on the lower subchain that first intersects a
(k + 1)2/4 notches, M, has%(kz 42k + 1) vertices. m reflex vertex-; of the upper subchain, then intersects a reflex

vertexr, of the lower subchain, and then has an endpeint
IV. UPPERBOUNDS on the upper subchain (or alternately, a line segment wih th
: same behavior with the upper and lower subchains reversed).
An upper bound on the number of landmarks required fo& . S o
. . all such a line segmentwalid bitangent A valid bitangent
an n-vertex monotone polygon is(n — 2)/2], provided by

[9] and [22]. Coincidentally, this bound is actually tightem divides the polygon into four reglons- (§ee Figure 4).

for monotone polygons, because the pathological family of * F1 - A monotone polygon containingy; o

polygons provided by Pinciu [22] is monotone (see Figure 2). « P2 - A hemimonotone polygon witiai; as a base.

Since one could simply place a set of landmarks according® £3 - A hemimonotone polygon v_vit_hm as a base.

to Pinciu’s algorithm and give them all different colors, we * F4 - A monotone polygon containingac -

have a trivial bound ofycr(P) < |(n — 2)/2]. However, Note that for a poinp; € Py \err1, Vis(p1)N(PsUPy) =

one can generally do better than this by reusing colors. Iy because; blocksp;’s view of P3, andry blocksp;’s view

this section, we demonstrate that . (P) < n/3 + 12. of P,. Similarly, for a pointp, € P, \ 72e3, Vis(ps) N (P U
We begin by defining a decomposition of the monotoné) = (), becauses blocksp,’s view of P,, andr; blocks

polygon P into a number of smallehemimonotongoly- p4's view of P,. Thereforep; andp, do not conflict, which

gons. A polygonP is hemimonotone if there exist two means that, other than the portion«d®2 that each polygon

vertices of the boundary oP, v,.¢+ and v.;4n: Such that contains, guards placed iR, can reuse the colors of the

P can be aligned so that the boundary Bf consists of guards placed irP;.

two paths whose-coordinates are monotonically increasing
&Rd one of the paths is a straight line segma&nf;vyigh:
which will be referred to as thbase(see Figure 3). Note
that vi.r+ and vyg5: Cannot be reflex vertices. Let =
ﬁ%{!ﬁ,vl,vg,vg, ..., Urignt] be the sequence of vertices of
0P, ordered as per their appearance on the path between
viere @andupigne (the path that is not the base). We allow the

emimonotone polygons to ltkegeneratemeaning that it is
lﬂossible forv; to intersectjcrrvrign: (S€€ Figure 3).

If a monotone polygorP is structured such thaty,o,: €

xcor(Mg) > min{m — 1+

The value of m that minimizes the right side isn =
Ex1which after substitution reduces it tacr(My) > k.

Note that we do not claim that a grouping of notche



Fig. 4. A valid bitangent segment and the four regions cteate such a
segment.

Fig. 6. A hybrid bitangent and the six regions formed by sudracture.
Note that a vertical segment is added abeve ensure tha#’s and P, are
hemimonotone.

Fig. 5. An L-gadget and the six regions formed by such a stractNote o
that a vertical segment is added belew to ensure that?, and Ps are e« Ps - A monotone polygon containinGygck -

hemimonotone. Note that for a poinp; € P, \ e171, Vis(p1) C Py U Py,
LI%ecauserl prevents the visibility polygon from extending
into the other four regions. Similarly, for a poipt € Ps \
T3e3, Vis(ps) C Ps U Ps, becauses prevents the visibility
polygon from spreading into the other four regions.

Certain pairs of line segments can also be exploited
ensure separation. If there exists a pair of line segmerus,
andezes, such thaky, es, andes are on the upper subchain,

has a higherz-coordinate thare,, has a higherz-
2 gnew L € gnew Lemma 2:Let P be a monotone polygon that has been

coordinate thares, €1e; intersects the lower subchain at a ially d d th h the addit f a a6t of
reflex vertexr;, andezes intersects the lower subchain at gPartally decompose roug € addition of a 0

’ .
reflex vertexry (again, one could swap the use of uppel’Ine segments. LeP” C P be the subpolygon with edges

- - —_ - M U QP that containsvp..x. A line segmentm; may
and lower in the preceeding description). These two lin back- "1 v
segments (which will be referred to collectively as b&n f%]e” ad_ded toM tthat.decomposef such thatm; has the
gadge}, along with a line segment perpendicularibthat ollowing properties.

intersectse,, divide the polygon into six regions (see Figure ¢ The first line segment placedy,, containsvs,on; as
5). an endpoint and intersects a reflex vertex.

o The last line segment placeth;, containsvy,., as an
endpoint and intersects a reflex vertex.

« If m; does not have an endpoint@t..,; Or vyeck, then
it is a valid bitangent, the latter half of airgadget (the
ezes edge), or the latter half of a hybrid bitangent (the
ce3 edge).

_ i ’ ) Proof: Note that we can assume that,.,: ¢

A point p, € P1 \ er1 cannot conflict with & poinps € y75(4,,.1,) (otherwise the polygon could just be decomposed

Ps \Te3, becausd/is(p;) cannot extend far enough right to ity TrrontUhack)- SINCEV ront & Vis(vpack), the Euclidean

reache,, andVis(ps) cannot extend far enough left to reachgpgrtest path fromfmm'to Ubael, MUSE CONtaIN @ segment

ea. Therefore, other than the aforementioned line segments;—- \wherer is a reflex vertex. The segmemfgng? N P
P, and Ps can be guarded by guards that use the same s@l$, pe used as,.

« P, - A monotone polygon containingy,on:.

« P, - A hemimonotone polygon witlaje; as a base.
« P3 - A hemimonotone polygon witliie; as a base.
« P, - A hemimonotone polygon witlaz7 as a base.
« P5 - A hemimonotone polygon witlazes as a base.
« Ps - A monotone polygon containing,..

of colors. . _ . _ Next is the case where the, does not contaif .., or
Another exploitable pair of line segments is a morg, . Assume that all prior edges have been placed accord-

complicated type of bitangent that will be referred to as gg to the guidelines. Assume without loss of generalityt tha

hybrid bitangent This consists of a line segmedfes that  the endpoint ofin;_; that is in P’ is on the lower subchain.

intersects a reflex vertex of the upper subchain. There is cg|| that pointp. The other endpoint afi;_; NP’ must then

also a bitangent line segmefg, with endpointc € 7rez that  pe on the upper subchain. Call that pojntWe assume that

first intersects a reflex vertex of the lower subchainthen o point inm;_; can seevpac.

a rgflex vertex of the upper sub.cha_igl_ Thg othgr endpoint Let y be a ray that extends upwards frgmLet end(y)

es is on the lower subchain. This dividés into six regions pe the point ord P that intersectg that is furthest fromy’s

(see Figure 6). source point. Sincé”’ is monotone relative to a horizontal
« P, - A monotone polygon containingy,on:. line, end(y) must initially be some point in the upper
« P, - A hemimonotone polygon witlates as a base.  subchain. Rotate the direction af clockwise until any
« P5 - A hemimonotone polygon witii;¢ as a base. further rotation would causend(y) to be on the lower
« P, - A hemimonotone polygon witlae; as a base. subchain (if there is no such point, then rotate to the first

« P5 - A degenerate hemimonotone polygon wi#g as point that would causend(y) to be on the lower subchain).
a base. One of two things must have happened to make further



rotation impossible. Either the upper subchain has abruptis placed entirely a single line segment within the polygon

ended, in which casg intersects some reflex vertex,.,
of the upper subchain, or some reflex verigx,., of the
lower subchain is getting in the way. In the first cage,
forms the second half of an L-gadget (where= ¢, es = p,
To = Tupper, €3 = end(y), ande; is a point to the left of on
them;_; segment), so usgN P’ asm;. In the second case,
move the source of towardsq alongpg, but ensure thay
continues to interseat, .. Continue moving the source of
y toward ¢ until further movement would causeud(y) to

must have a connected visibility graph.

If |T'| # 0, then note that, for all < ¢ < |T|, ¢; €
Vis(t;—1). Therefore, the vertices df' form a connected
component inVG(S, P). Since guards are only placed on
members ofM, and each member of/ contains a vertex
in T', every vertex ofS \ T' is adjacent to a vertex df' in
VG(S, P). Therefore,VG(S, P) is connected. [ |

Additionally, two hemimonotone polygons generated by
this decomposition can be covered by guards using the same

move to the lower subchain (again, if no such point existgolor set if their bases are sufficiently separated.

move the source until the first point whered(y) is on the
lower subchain). If the source gfreaches;, andend(y) is
still on the upper subchain, thenforms a valid bitangent
(¢ = 71, Tlower = T2, end(y) = e2, ande; is a point on the
lower subchain belown; ), so usey N P’ asm;,. If the

movement ofy causes the ray to intersect a reflex vertex oarate P into several subpolygons, P, Ps, . ..

the upper chain in the segmept, .., theny forms a valid
bitangent £1 = rupper, T2 = Tiower, €2 = end(y), ande; is

Lemma 4:For pointsp; € m; \ {¢;}, andp;+3 € m;43\
{tive}, Vis(pi) N Vis(pits) = 0.

Proof: Sincem;,+; andm;,o are consecutive, either
they form an L-gadget, they form a hybrid bitangent, or one
of them is a valid bitangent. Therefore, ; andm, o sep-
Py, where
Viront € P, Vbaek € Py, and for all2 < ¢ < kK — 1,

P; is hemimonotone. Let; be the boundary betweeR;

on the other side ofn;_1, but the valid bitangent need notand P, and let{;, be the boundary betweeR,_; and P;.
actually be extended that far, because that region is aireaNote that no point inP; \ ¢; can conflict with any point in
decomposed). A vertical line must be extended upward frol; \ ¢ (see Figures 4, 5, and 6). Sinog N ¢; = {¢;} and

y to ensure that all subpolygons are hemimonotone. If the,; 3 N4 = {tit2}, Vis(p:) N Vis(pit3) = 0.

movement of the source af causesnd(y) to move to the

[ |
Now that the decomposition is defined, some results

lower subchain, then one of two things happened. Either tlabout the number of guards required for the hemimonotone

upper subchain ended abruptly, amdéhtersects some reflex
vertexry,,,., of the upper subchain, or a reflex vertey, ..

of the lower subchain got in the way. In the first cagérms
the second half of a hybrid bitangent (with= r1, p = es,

Tlower = T2, Tupper = T3, €nd(y) = e3, and the source of

polygons are necessary.

Lemma 5:A hemimonotone polygorP with n vertices
can be guarded by a set bf/3] guards, where all guards
are placed O ftUrignt-

Proof: The polygonP is monotone with respect to a

asc), so usey asm;. In the second case, continue movindgine H, which we can assume is monotone.

the source of) closer tog, but ensure thag intersects-; ...

This will proceed via induction om, the number of

instead ofry,,. (@and replace the reflex vertex on the lowervertices in P. The base cases are when= 3, n = 4,
chain intersected by repeatedly if the need arises). Thisandn = 5. If P is convex, a guard at;. ¢+ will suffice to
process must eventually terminate, because there are onlgward the whole polygon. Therefore, assume tHais not

finite number of reflex vertices on the lower subchain.
For the last edge:, note that some point omj_; must
be able to seey..x. If the ¢ point of my_; can seevpqck,
thenquyao, can be used asi, becausey is a reflex vertex.
If ¢ & Vis(vback), then letz be the point ingp N Vis(vpack)
closest tag. There must be some reflex vertexhat prevents
a point closer tay from seeinguyqcr- Therefore Top,q, can
be used asn;, because it intersects reflex vertex [ |

convex (which means that=4 orn =5). If n =4 and P
is not convex, then eithar, or v, is reflex (assume without
loss of generality that, is the reflex vertex). This means
that P can be triangulated by adding an edge betwegn
andv,ign:. The two triangles making up’ share a vertex at
Uright, SO @ single guard on,;4,: can guard all ofP.

If n = 5, then each triangulation o contains a
vertex that meets all the triangles. If this vertexviss, or

Guard sets based on the decomposition defined in Lemma,., then P can be guarded with a single guard at that
2 that meet certain conditions have connected visibilityertex. If this vertex isvy, thenwv; and v must be convex
graphs, as described in the following lemma. For the pufor else they would blocks;'s view of vy and vyignt,
poses of the following two lemmas, index the members of seéspectively). In this case? can be decomposed into two

M = {mi,ma,..
Also, letT = {t,ta,t3,...,ta—1} be a set of points such
thatt; is the intersection ofn; andm; 1.

.,myp } in the order that they were added.

convex quadrilaterals through the addition of a line segmen
¢ that is perpendicular tél and intersects, anduie ¢ Uright,
and letp be the intersection of andT;cr;Uright. SinceP is

Lemma 3:In a hemimonotone decomposition of a monoimonotone with respect tél, the two vertices resulting from
tone polygonP by the process described in Lemma 2, andhe splitting ofv, must both be convex (or else a line formed

a guard setS of P whereT C S, and for alls € S there
exists an{ € M such thats € ¢, the graphVG(S, P) is
connected.

Proof: If |T| = 0, then vpron: € Vis(Upecr) and
UfrontUback 1S the only member of\/, and a guard set that

by extending would intersecO P at three points). Also note
that both vertices at point must be convex (the sum of their
angles in radians must bg because the vertices are formed
by splitting up a line segment). Sineg.¢¢, vVright, V1, Vs,
both vertices at;, and both vertices at are convex, and



D € Ulert, Uright, I can be guarded with a single guardpat

If the vertex that meets all the triangles in a triangulation
of P is v; or vz (assume without loss of generality that it is

v1, thenwvy must be convex, so as to not blogk's view of
v3). Let ¢ be a line segment that intersectsand e r£ Urignz.
and letp be the intersection of andvic7£0,ign¢. This divides
P into two quadrilaterals. Since, v,ign:, anduvs; are all
convex,v; andwvs are visible fromp. Add 77p ando3p to
make a triangulation o with a Steiner point ap where

all triangles sharey as a vertex. Therefore, a guard placed

at p can guard all ofP.

Now, for the inductive step. In the inductive step, the goal

is to decompose the-vertex hemimonotone polygah into
two polygonsR and R, whereQ is a hemimonotone polygon
with at mostn — 3 vertices, andR can be guarded by one
guard placed oMics, Urign: (there is a possibility that the
guard that guards is placed in@). Since the base cases
apply whenn < 5, we will assume that” has at least
vertices (note that this mear3 must contain a, vertex).
There are eight subcases, based on whether, andvs

are convex or reflex. Figure 7 provides illustrations of ghes

subcases.

1)

2)

3)

4)

v1, V2, andvz are convex Let R be the pentagon with
verticesvy, vg, v3, v, @anduert. Sincewvy, ve, anduvs
are convexyy € Vis(ues). This pentagon can be
triangulated withv;.y; present in each triangle, so a
guard placed at;.s; guardsR. The polygon() lacks
v1, v2, andws, so it hasn — 3 vertices.

vy andvg are convexys is reflex- If vy € Vis(vert),
then R has vertices), ve, vs, va, andui.f¢, and can

be triangulated and guarded in the same way as the

previous case. lby & Vis(viest), then let pointp be
the intersection ot f:v,ign: and the line formed by
extendinguzvz. The polygonR has vertices. ¢, v1,
ve, v3, andp. The polygonR is convex and can be
guarded with a single guard al.;:. The polygon()
lacks v1, va, vs, and vy, but does contaip as a
vertex, so) hasn — 3 vertices.

v1 andwvs are convexys is reflex- Let p be the point at
the intersection ofic 7045 and a line perpendicular
to H that intersects,. Sincev; andvs are convex,
p € Vis(va) NVis(viest). The polygonR has vertices
Vleft, V1, V2, U3, V4, andp. Since P is monotone with
respect toH and pv; is perpendicular toH, p €
Vis(vi1) N Vis(vs). Therefore,R can be triangulated
with all triangles sharing as a vertex. Therefore, a
guard atp guards all ofR. The polygon@ lacks vy,
va, v3, anduv.r¢, but does contaip as a vertex, s@)
hasn — 3 vertices.

v1 IS convexps and vs are reflex- Note that ifv, €
Vis(viest), thenwvs € Vis(vest) because otherwise,
ve would have to blockv.s:'s view of vz, which
means that it would also block;.s;'s view of vy,
as vs is reflex. Therefore, ifuy € Vis(viest), then
R is a pentagon with vertices.¢¢, vi, v2, vs, and
vg, and R can be triangulated as per case luff¢
Vis(viest), then letp be the intersection afic 7z Uright

5)

6)

7

and the line formed by extendinguy. Let ¢ be the
intersection ofte r:Urign: and the line perpendicular
to H that intersectss. The polygonR has vertices
Vleft, V1,2, v3, and p. The polygon@ lacks vy, ve,
v3, and vif¢, but does contaip as a vertex, sa)
hasn — 3 vertices. The polygonk can be guarded
by a single guard at poinj (note that it is possible
for ¢ to not be inR). Sincepus is perpendicular to
H, ¢ € Vis(v1) N Vis(vs). Therefore, if¢g € R,
then R can be triangulated with a Steiner point @t
where all triangles share a vertexg@tso a guard ay
guardsR. If ¢ € R, then the polygor?’ with vertices
Uleft, V1, V2, U3, ¢ can be triangulated with all triangles
sharing a vertex aj. SinceR C R/, and a guard a
guardsR’, a guard ay guardsR.

vy is reflex,v, andvs are convex Let pointp be the
intersection ofvj r:vrigr: and the line perpendicular to
H that intersects; . Let R be the polygon with vertices
Uleft, V1, V2, U3, V4, andp. Sincevy andwvs are convex,
and poy is perpendicular toH, vg,v3, vy € Vis(p).
Therefore, R can be triangulated with all triangles
sharingp as a vertex, so a guard ptguardsR. The
polygon@ lackswvy, va, v3, andv ¢, but does contain
p as a vertex, s@) hasn — 3 vertices.

vy andvg are reflex,vy is convex- Let pointp be the
intersection oftjc r;vrign: and the line perpendicular to
H that intersect®,. Let pointq be the intersection of
UlefeUrighe @nd the line that intersectg andv, (such
an intersection may not exist iz z0rig5: iS Not long
enough). Ifg exists andd(v,ignt,q) < d(vright,p),
then letR be the polygon with verticege ¢, v1, v2, vs,
andg. In this case lacks vicf¢, vi,v2, andvs, but
containsq as a vertex, sa) hasn — 3 vertices. A
guard atp is sufficient to guardr, asw; is the only
reflex vertex of R, andwv; obviously cannot block’s
view of v+ Or v2, and the other vertices are on the
other side ofpu;. Therefore,R can be triangulated
with a Steiner point ap with all triangles sharing a
vertex atp, so a guard ap guardsR. If ¢ does not
exist or d(vrignt,q) > d(vrignt,p), then letR be the
polygon with vertices. ¢, v1, v2, v3, v4, andp. In this
case,( lacks vie s, v1,v2, andwvs, but containsp as
a vertex, so@) hasn — 3 vertices. The line segment
pus divides R into two quadrilaterals with one reflex
vertex a piece. Sincg is not adjacent to either reflex
vertex in either quadrilateral, a guard jatcan guard
both quadrilaterals, and thus all &

vy and v, are reflex,vs is convex Let pointp be the
intersection ofvicre, Urign: and the line perpendicular
to H that intersectss. Let R be the polygon with
verticesve ¢, v1, V2, v3,v4, andp. The line segment
pus divides R into a pentagon and a triangle. A guard
at p obviously guards the entire triangle, and the
pentagon has only three convex vertices, wheris
the middle convex vertex, so a guardaguards the
entire pentagon as well. The polygéhlacks vertices
Vleft, V1, V2, v3, but containsp as a vertex, sa@) has



Case 1: Case 5:
Case 2: Case 6:
Case 3: Case 7:
Case 4: Case 8:

q P
Fig. 7. lllustrations of the eight inductive step cases fenmma 5. The leftmost vertex ig.s;. The shaded area represents the subpolygofhe guard

is placed on the blue vertex. The black vertices represdmdratertices ofP or R. The pointsp and ¢ are labelled if applicable. These hemimonotone
polygons are monotone relative to a horizontal line.

n — 3 vertices.

8) w1, v9, anduvg are reflex- Let pointp be the intersection
of Tiere, Urigne and the line perpendicular té/ that
intersectsv,. Let R be the polygon with vertices
Vleft, V1, V2, U3, v4, andp. The polygon@ lacks ver-
tices vie e, v1, U2, v3, but containg as a vertex, s@)
hasn — 3 vertices. SinceR has only three convex
vertices and is the middle convex vertex, a guard at

b guards all ofR. Fig. 8. A monotone polygon decomposed, guarded, and colditeel thin
m solidlines are the hemimonotone bases, and the dottedditiesd vertically

.. . from the intersection of bases if needed to ensure that thpotygons are
Combining these lemmas leads to the desired result.  hemimonotone.

Theorem 6:For any n-vertex monotone polygonP,

xcr(P) <n/3+12. these polygons can be guarded by3 + 8 guards, all of
Proof: DecomposeP using Lemma 2. Let the guard Which may require unique colors. Since this is the set of

set S initially consist of the points inZ’. Due to Lemma hemimonotone polygons with three consecutive bases that
4, the members of” require only4 colors (because; € require a maximal number of guards, theése3 | + 8 colors
miz1 \ {tiz1}, andtiys € mipq \ {tizs}, so Vis(t;) N are sufficient to color all the guards generated by Lemma 5.
Vis(tiys) = 0). Use the methods described in Lemma g/ith the additionald colors required to color the members
to make a guard set for each hemimonotone polygon in ti 7', up ton/3 + 12 total colors are used.
decomposition, and add those guard setsStoLemma 3 Therefore,xcr(P) < n/3 +12. |
ensures that’ G(S, P) is connected. An example polygon that has been decomposed into

At most two hemimonotone polygons share as a base. hemimonotone polygons and given a guard placement and
In the decomposition, at leagt— 4 vertices of ak-vertex coloring is shown in Figure 8.
hemimonotone polygon are vertices of the original, unde-
composed monotone polygon that are not shared between
two or more hemimonotone polygons (the possible excep- We have presented a method of placing a set of landmarks
tions arevic s, vright, v1, anduy). Let j be the integer such in a monotone polygon so that the visibility graph of the
that the hemimonotone polygons with;, m;41, andm;;o  landmarks is connected, each point in the polygon is visible
as bases require a maximal sum total of guards. Theré arédrom a landmark, and the landmarks can be divided into
hemimonotone polygons total. The total number of verticea relatively small number of classes such that no two
in these hemimonotone polygons can be at mas24 (then  landmarks of the same class are visible from a common
vertices ofP, plus4 vertices in each hemimonotone polygonpoint. Such a set can be exploited for navigation by a robot
that could be added by the decomposition). By Lemma ®quipped with motion primitives of the form “drive toward

V. CONCLUSION



(1]

(2]

Fig. 9. The black lines are the polygon boundary, and the iresl Was 3]

a boundary added as part of a monotone decomposition. Theybaals
do not conflict within the monotone polygon under the red,libecause
they are separated by the blue L-gadget. However, they dilicton the

whole polygon, because they can both see the point at theséctéon of
the dotted lines.

[4]
a landmark of class”. [5]

Of course, robot environments are usually not monotone
However, monotone polygons are frequently generated a
intermediate steps in other decomposition algorithms. For
example, since monotone polygons can be easily triangllated’]
in linear time, they are often generated during triangafati
algorithms [7], [25]. In fact, the technique described i3][2
directly creates hemimonotone polygons (referred to as-‘on
sided” polygons in that work). This invites the possibildf [9]
taking a polygon, performing a monotone decomposition on
it, and then using the techniques in this paper to color eadH!
of the monotone pieces. If some sort of separation guarantee
could be made between each of the monotone pieces, then
it could be possible to show that for amyvertex polygon
P (not just monotone)ycr(P) < n/3 4+ C, whereC' is a
constant ([4] shows that this bound must be at léagt|).
Care must also be taken so that the decomposition does nl%ﬁ
violate the separation conditions within a single monoton%
polygon (see Figure 9).

There are numerous variations of this problem that woult4!
likely produce different bounds. There are many art gallery
results specific to rectilinear polygons including [10]4[1l [15]
[21], and it is likely that rectilinear polygons would reggii
fewer landmark classes than general polygons. One could
also discard the assumption that the environment is simpiys]
connected and determine bounds on the number of landmark
classes in terms of both the number of vertices in the
polygon and the number of holes. This paper has assumpgd
that the robot can see the landmark as long as there is
no obstacle in the way, regardless of the distance betwegg,
them. It is unknown how the bounds would change if the
robot could only detect landmarks present within some finit&°]
distance. Bounds based on the number of inflections could
even be determined for curvilinear regions, as bounds wejz]
determined for the corresponding art gallery problem ir].[11[21]

Finally, while the three conditions listed in the introdioct
are sufficient for a robot with the “drive toward a landmark22]
of classz” primitives to search an environment for treasure,
it is possible that weaker conditions may suffice as wellp3
A categorization of the types of landmark sets that would
permit searching by robots of this type would be helpful fo'f24]
describing the power of this very general robot model.

8l

(8]

[12]
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