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Abstract— A robot navigates in a polygonal region populated
by a set of partially distinguishable landmarks. The robot’s
motion primitives consist of actions of the form “drive toward
a landmark of class x”. To effectively navigate, the robot
must always be able to see a landmark. Also, if the robot
sees two landmarks of the same class, its motion primitives
become ambiguous. Finally, if the robot wishes to navigate
from landmark s0 to landmark sgoal with a simple graph
search algorithm, then there must be a sequence of landmarks
[s0, s1, s2, . . . , sk = sgoal], in which landmark si is visible from
si−1. Given these three conditions, how many landmark classes
are required for navigation in a given polygonP? We call this
minimum number of landmark classes theconnected landmark
class number, denotedχCL(P ). We study this problem for the
monotone polygons, an important family of polygons that are
frequently generated as intermediate steps in other decomposi-
tion algorithms. We demonstrate that for all odd k, there exists
a monotone polygonMk with 3

4
(k2 + 2k + 1) vertices such

that χCL(P ) ≥ k. We also demonstrate that for anyn-vertex
monotone polygonP , χCL(P ) ≤ n/3 + 12.

I. I NTRODUCTION

Suppose a point robot is searching for a treasure in a sim-
ply connected polygonal environment populated by a set of
partially distinguishable landmarks that the robot can detect
visually. The robot’s motion primitives are “drive toward the
red landmark”, “drive toward the green landmark”, “drive
toward the blue landmark”, etc. If the robot can see the
treasure, then the robot “wins”. What properties can a set
of partially distinguishable landmarks have that would allow
such a robot to find an arbitrarily placed treasure?

Suppose a landmark set satisfied the following three
conditions:

1) There is no point where the robot can see two land-
marks of the same class at the same time (the robot’s
motion primitives are never ambiguous).

2) For each point in the environment, there exists a
landmark visible from that point (the robot is never
without bearings on which to base its primitives).

3) For any two landmarkss1 and sgoal, there is a se-
quence of landmarks[s1, s2, . . . , sk−1, sk = sgoal]
such thatsi is visible from si−1 for all i from 2 to
k.

An environment containing such a landmark set could be
easily searched for treasure. The treasure must be visible
from one of the landmarks, and the robot could use a
graph searching algorithm to travel to each landmark until

the treasure is found. The robot would not even require a
priori knowledge about the number of landmarks or their
arrangement. Due to the first condition, the landmarks are
always locally distinguishable to the robot. This provides
the robot sufficient information to use the graph searching
algorithm described in [6].

Problems about landmark sets that satisfy the second
condition are typically calledart gallery problems, and there
is a great deal of prior work on the subject. Determining
the minimum number of landmarks required is NP-complete
[13]. Tight bounds on the number of landmarks required are
demonstrated in [2] and [5]. An approximation algorithm
with a log(n) approximation factor is described in [8], and
an exact algorithm with empirically fast performance is
described in [3]. Results are also available for rectilinear
polygons [10], [14], [21], monotone polygons [19], and
regions with curved boundaries [11].

The problem of determining the minimum number of
landmark classes required for a landmark set that satisifies
the first and second conditions above is called thechromatic
art gallery problem. This problem is discussed in [4], where
upper and lower bounds on the number of landmark classes
required to satisfy these constraints are determined for sev-
eral families of polygons.

The third condition means that thevisibility graph of the
guard set must be connected. Landmark sets that satisfy the
second and third conditions are calledcooperative guard
sets. Tight bounds on the number of landmarks required for
cooperative guard set were determined in [9], and with a
different method in [22]. Tight bounds on a weaker version
of this problem, where each landmark must see at least one
other landmark, were described in [17].

What kinds of robots are capable of exploiting a landmark
set that meets the three conditions? Light gradient ascent is
one navigation method that could produce a robot capable
only of the “drive toward a landmark of classx” primitives
and nothing else (each landmark is a light source of a certain
color). Navigation via light gradients was described in [18].
Since these are sufficient conditions for a robot with the
aforementioned primitives, landmark sets with these three
restrictions could be effectively used for navigation by any
robotic system capable of performing these primitives, even
if their actuation and sensor suites allow them to perform
other primitives as well. Many robotic systems that navigate



by visual landmarks fall into this category, including the ones
used in [15], [23] and the RGBD-sensing robots of [1].

The problem of adding some set of artificial, indistinguish-
able landmarks to an environment for the purposes of robotic
navigation was studied in [16]. Indistinguishable landmarks
are used so that no landmark coding or identification system
is needed. The results in this paper could be applied in
a similar manner by adding some partially distinguishable
landmarks to the environment for the purposes of simpli-
fying navigation. Instead of totally eliminating a coding or
identification system, our aim is to make such a system as
simple as possible by minimizing the number of landmark
classes.

There are two primary reasons why one would wish to
minimize the number of landmark classes that the robot
uses to navigate. First, if the robot is required to distinguish
from among fewer landmark classes, then it may be possible
to construct the robot with a less powerful (and thus, less
costly, less complex, etc.) sensor suite. Second, the use ofa
small number of landmark classes may allow only the most
“different” types of landmarks to be used for navigation. For
example, a robot that navigates via red and green landmarks
is probably more robust than one that navigates via red,
green, and teal landmarks, as green and teal may be easily
confused. This is closely related to the data association
problem that frequently arises in landmark-based navigation,
discussed in [12], [20], and [24].

The contributions of this paper are non-trivial lower and
upper bounds on the number of landmark classes required
for monotone polygons. Although robotic environments are
typically not monotone, these bounds are still useful because
there exist many algorithms for decomposing polygons into
monotone pieces. We believe that if care is taken with the
monotone decomposition, the results in this paper can be
used to create a cooperative guard set for a general polygon
that requires few landmark classes.

Section II formally describes the problem. Section III
describes a pathological family of monotone polygons that
requireΩ(

√
n) colors in ann-vertex polygon. Section IV

describes a way of placing guards in ann-vertex monotone
polygon that requires onlyn/3 + 12 colors. Section V
discusses the implications of this research and directionsof
further research.

II. PROBLEM STATEMENT

Let P be a closed bounded simply connected polygonal
subset ofR2. Let ∂P be the boundary ofP . SinceP is a
closed region,∂P ⊂ P . For a points ∈ P , the visibility
polygonV is(s) is the set{p ∈ P | sp ∈ P}. A finite set of
pointsS ⊂ P is a guard setof P if

⋃
s∈S V is(s) = P .

Let G(S, P ) be theconflict graphof a finite set of points
S ⊂ P , in which the vertex set ofG(S, P ) is S, andsi, sj ∈
S share an edge ifV is(si) ∩ V is(sj) 6= ∅. We will say that
two members ofS conflict if they share an edge inG(S, P ).

Let V G(S, P ) be thevisibility graph of a finite set of
pointsS ⊂ P , in which the vertex set ofV G(S, P ) is S,
and si, sj ∈ S share an edge ifsi ∈ V is(sj). Note that

this is a different structure than the conflict graphG(S, P ).
In fact, V G(S, P ) is a subgraph ofG(S, P ) (they have the
same vertex set, butG(S, P ) generally has more edges). A
guard setS is cooperativeif V G(S) is connected.

Let Sall be the set of all cooperative guard sets ofP . Let
χ(G) be the chromatic number of the graphG, the minimum
number of colors required in a proper coloring. We are inter-
ested in theconnected landmark class numberof P , denoted
asχCL(P ), and defined to beminS∈Sall

χ(G(S, P )). Due to
the relationship of the the connected landmark class number
to cooperative guard sets and graph coloring, “landmark
classes” will usually be referred to as “guard colors” from
this point on.

A polygon P is monotoneif there exists a lineH such
that the intersection ofP and any line perpendicular toH
is connected. Without loss of generality, we can assume
that H is a horizontal line (by rotating the polygon). For
a polygonP so rotated,P is monotone if there exist two
distinct vertices of∂P , vfront and vback, such thatvfront
is the vertex of∂P with the smallestx-coordinate,vback
is the vertex of∂P with the largestx-coordinate, and the
remainder of∂P forms two paths fromvfront to vback
that each have monotonically increasingx-coordinates. The
upper subchainis the path with the highery-coordinates, and
the lower subchainis the path with the lowery-coordinates.
The verticesvfront and vback are considered to be part of
both the upper and lower subchains.

III. L OWER BOUNDS

From [4], it is known that there is a monotone polygon
with 3k2 vertices that requiresk colors in any guard set. This
provides a trivial lower bound, because the same polygon
must require at leastk colors in any strongly connected guard
set. The following theorem provides a better bound.

Theorem 1:For any oddk ∈ N, there exists a mono-
tone polygonMk with 3

4
(k2 + 2k + 1) vertices such that

χCL(Mk) ≥ k.
Proof: This lower bound is provided by a variant

of the “comb” polygon (with(k + 1)2/4 notches) used to
demonstrate the lower bound for the art gallery problem in
[2] (see Figure 1). Each of the triangular notches is very
thin; therefore it is impossible to use the same guard to guard
two notches simultaneously. We define two types of guards.
Notch guardsare guards placed inside the triangular notches.
Body guardsare guards placed in the lower trapizoidal
region. Letxnotch and xbody denote the number of colors
assigned to each type of guard. Note that each body guard
requires its own unique color, all body guards are mutually
visible, and two notch guards in different notches require a
path throughV G(S, P ) for which the non-endpoint vertices
are body guards.

Due to the thinness of the notches, a body guard can only
guard a single notch tip. A single color assigned to notch
guards could be used to guard each notch tip, but then each
notch guard would require its own body guard (with a unique
color) to ensure thatV G(S, P ) is connected, which would
require the number of colors to be linear in the number of



Fig. 1. [top] A “comb” polygon with five notches. The yellow guard is
a notch guard, and the blue guard is a body guard. [middle] Notch guards
require body guards to connect them to the rest of the visibility graph. No
notch guards that share a connecting body guard can have the same color.
[bottom] A body guard can guard one notch by itself.

notches. A setT of notch guards can share one “connecting”
body guard, but only if

⋂
t∈T V is(t) 6= ∅, which means

that all members ofT must use different colors (this body
guard could guard a notch by itself). Suppose the notches
are grouped into sets of sizem, guarded bym − 1 notch
guards and1 body guard, in which the samem − 1 colors
are used in the notch guards of each set. There is no reason
to make the sets different sizes (if one set usesy colors in
its notch guards, and another usesz < y colors, then the
second set could include more notches without raising the
total number of colors used). If the notches are grouped in
this way, thenxnotch ≥ m − 1 andxbody ≥ (k + 1)2/4m.
SinceχCL(Mk) = xnotch + xbody, we obtain

χCL(Mk) ≥ min{m− 1 +
(k + 1)2

4m
| m ∈ N}. (1)

The value ofm that minimizes the right side ism =
k+1

2
, which after substitution reduces it toχCL(Mk) ≥ k.

Note that we do not claim that a grouping of notches in
which every notch is a part of a sizek+1

2
set that all

share a common body guard actually exists, merely that any
realizable grouping would use at least as many colors.

Since each notch requires3 vertices and the polygon has
(k + 1)2/4 notches,Mk has 3

4
(k2 + 2k + 1) vertices.

IV. U PPERBOUNDS

An upper bound on the number of landmarks required for
an n-vertex monotone polygon is⌊(n− 2)/2⌋, provided by
[9] and [22]. Coincidentally, this bound is actually tight even
for monotone polygons, because the pathological family of
polygons provided by Pinciu [22] is monotone (see Figure 2).
Since one could simply place a set of landmarks according
to Pinciu’s algorithm and give them all different colors, we
have a trivial bound ofχCL(P ) ≤ ⌊(n − 2)/2⌋. However,
one can generally do better than this by reusing colors. In
this section, we demonstrate thatχCL(P ) ≤ n/3 + 12.

We begin by defining a decomposition of the monotone
polygon P into a number of smallerhemimonotonepoly-
gons. A polygonP is hemimonotone if there exist two
vertices of the boundary ofP , vleft and vright such that
P can be aligned so that the boundary ofP consists of

Fig. 2. Polygons from [22] that demonstrate that a monotone polygon may
require⌊n− 2⌋/2 guards in a cooperative guard set.
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Fig. 3. [left] A hemimonotone polygon that is monotone relative to a
horizontal line. [right] A degenerate hemimonotone polygon where the base
is intersected by a vertex on the non-base path.

two paths whosex-coordinates are monotonically increasing
and one of the paths is a straight line segmentvleftvright
which will be referred to as thebase(see Figure 3). Note
that vleft and vright cannot be reflex vertices. LetL =
[vleft, v1, v2, v3, . . . , vright] be the sequence of vertices of
∂P , ordered as per their appearance on the path between
vleft andvright (the path that is not the base). We allow the
hemimonotone polygons to bedegenerate, meaning that it is
possible forvi to intersectvleftvright (see Figure 3).

If a monotone polygonP is structured such thatvfront ∈
V is(vback), thenP can be easily decomposed into two hemi-
monotone polygons by using the line segmentvfrontvback.
However, if those two points cannot see each other, a more
complicated approach is required.

There are three types of line segments and pairs of lines
segments that can be exploited to guarantee that a pair
of hemimonotone polygons are separated enough to use
identical color sets. Suppose there exists a line segment with
one endpointe1 (the endpoint of the segment with the lower
x-coordinate) on the lower subchain that first intersects a
reflex vertexr1 of the upper subchain, then intersects a reflex
vertexr2 of the lower subchain, and then has an endpointe2
on the upper subchain (or alternately, a line segment with the
same behavior with the upper and lower subchains reversed).
Call such a line segment avalid bitangent. A valid bitangent
divides the polygon into four regions (see Figure 4).

• P1 - A monotone polygon containingvfront.
• P2 - A hemimonotone polygon withe1r2 as a base.
• P3 - A hemimonotone polygon withr1e2 as a base.
• P4 - A monotone polygon containingvback.

Note that for a pointp1 ∈ P1\e1r1, V is(p1)∩(P3∪P4) =
∅, becauser1 blocksp1’s view ofP3, andr2 blocksp1’s view
of P4. Similarly, for a pointp4 ∈ P4 \ r2e2, V is(p4)∩ (P1 ∪
P2) = ∅, becauser2 blocksp4’s view of P2, andr1 blocks
p4’s view of P1. Therefore,p1 andp4 do not conflict, which
means that, other than the portion ofe1e2 that each polygon
contains, guards placed inP4 can reuse the colors of the
guards placed inP1.



P1

P3

P4

r2

e1

e2

P2

r1

Fig. 4. A valid bitangent segment and the four regions created by such a
segment.
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Fig. 5. An L-gadget and the six regions formed by such a structure. Note
that a vertical segment is added belowe2 to ensure thatP2 and P3 are
hemimonotone.

Certain pairs of line segments can also be exploited to
ensure separation. If there exists a pair of line segments,e1e2
ande2e3, such thate1, e2, ande3 are on the upper subchain,
e2 has a higherx-coordinate thane1, e3 has a higherx-
coordinate thane2, e1e2 intersects the lower subchain at a
reflex vertexr1, ande2e3 intersects the lower subchain at a
reflex vertexr2 (again, one could swap the use of upper
and lower in the preceeding description). These two line
segments (which will be referred to collectively as anL-
gadget), along with a line segment perpendicular toH that
intersectse2, divide the polygon into six regions (see Figure
5).

• P1 - A monotone polygon containingvfront.
• P2 - A hemimonotone polygon withe1e2 as a base.
• P3 - A hemimonotone polygon withr1e2 as a base.
• P4 - A hemimonotone polygon withe2r2 as a base.
• P5 - A hemimonotone polygon withe2e3 as a base.
• P6 - A monotone polygon containingvback.

A point p1 ∈ P1 \ e1r1 cannot conflict with a pointp6 ∈
P6\r2e3, becauseV is(p1) cannot extend far enough right to
reache2, andV is(p6) cannot extend far enough left to reach
e2. Therefore, other than the aforementioned line segments,
P1 andP6 can be guarded by guards that use the same sets
of colors.

Another exploitable pair of line segments is a more
complicated type of bitangent that will be referred to as a
hybrid bitangent. This consists of a line segmente1e2 that
intersects a reflex vertexr1 of the upper subchain. There is
also a bitangent line segmentce3, with endpointc ∈ r1e2 that
first intersects a reflex vertex of the lower subchainr2, then
a reflex vertex of the upper subchainr3. The other endpoint
e3 is on the lower subchain. This dividesP into six regions
(see Figure 6).

• P1 - A monotone polygon containingvfront.
• P2 - A hemimonotone polygon withe1e2 as a base.
• P3 - A hemimonotone polygon withr1c as a base.
• P4 - A hemimonotone polygon withce2 as a base.
• P5 - A degenerate hemimonotone polygon withce3 as

a base.
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Fig. 6. A hybrid bitangent and the six regions formed by such astructure.
Note that a vertical segment is added abovec to ensure thatP3 andP4 are
hemimonotone.

• P6 - A monotone polygon containingvback.

Note that for a pointp1 ∈ P1 \ e1r1, V is(p1) ⊂ P1 ∪ P2,
becauser1 prevents the visibility polygon from extending
into the other four regions. Similarly, for a pointp6 ∈ P6 \
r3e3, V is(p6) ⊂ P6 ∪ P5, becauser3 prevents the visibility
polygon from spreading into the other four regions.

Lemma 2:Let P be a monotone polygon that has been
partially decomposed through the addition of a setM of
line segments. LetP ′ ⊂ P be the subpolygon with edges
in M ∪ ∂P that containsvback. A line segmentmi may
be added toM that decomposesP ′ such thatmi has the
following properties:

• The first line segment placed,m1, containsvfront as
an endpoint and intersects a reflex vertex.

• The last line segment placed,mk, containsvback as an
endpoint and intersects a reflex vertex.

• If mi does not have an endpoint atvfront or vback, then
it is a valid bitangent, the latter half of anL-gadget (the
e2e3 edge), or the latter half of a hybrid bitangent (the
ce3 edge).
Proof: Note that we can assume thatvfront 6∈

V is(vback) (otherwise the polygon could just be decomposed
with vfrontvback). Sincevfront 6∈ V is(vback), the Euclidean
shortest path fromvfront to vback must contain a segment
vfrontr, wherer is a reflex vertex. The segment−−−−→vfrontr∩P
can be used asm1.

Next is the case where themi does not containvfront or
vback. Assume that all prior edges have been placed accord-
ing to the guidelines. Assume without loss of generality that
the endpoint ofmi−1 that is inP ′ is on the lower subchain.
Call that pointp. The other endpoint ofmi−1∩P ′ must then
be on the upper subchain. Call that pointq. We assume that
no point inmi−1 can seevback.

Let y be a ray that extends upwards fromp. Let end(y)
be the point on∂P that intersectsy that is furthest fromy’s
source point. SinceP ′ is monotone relative to a horizontal
line, end(y) must initially be some point in the upper
subchain. Rotate the direction ofy clockwise until any
further rotation would causeend(y) to be on the lower
subchain (if there is no such point, then rotate to the first
point that would causeend(y) to be on the lower subchain).
One of two things must have happened to make further



rotation impossible. Either the upper subchain has abruptly
ended, in which casey intersects some reflex vertexrupper
of the upper subchain, or some reflex vertexrlower of the
lower subchain is getting in the way. In the first case,y
forms the second half of an L-gadget (wherer1 = q, e2 = p,
r2 = rupper , e3 = end(y), ande1 is a point to the left ofq on
themi−1 segment), so usey∩P ′ asmi. In the second case,
move the source ofy towardsq alongpq, but ensure thaty
continues to intersectrlower. Continue moving the source of
y toward q until further movement would causeend(y) to
move to the lower subchain (again, if no such point exists,
move the source until the first point whereend(y) is on the
lower subchain). If the source ofy reachesq, andend(y) is
still on the upper subchain, theny forms a valid bitangent
(q = r1, rlower = r2, end(y) = e2, ande1 is a point on the
lower subchain belowmi−1), so usey ∩ P ′ as mi. If the
movement ofy causes the ray to intersect a reflex vertex on
the upper chain in the segmentyrlower, theny forms a valid
bitangent (r1 = rupper , r2 = rlower, e2 = end(y), ande1 is
on the other side ofmi−1, but the valid bitangent need not
actually be extended that far, because that region is already
decomposed). A vertical line must be extended upward from
y to ensure that all subpolygons are hemimonotone. If the
movement of the source ofy causesend(y) to move to the
lower subchain, then one of two things happened. Either the
upper subchain ended abruptly, andy intersects some reflex
vertexr′upper of the upper subchain, or a reflex vertexr′lower

of the lower subchain got in the way. In the first case,y forms
the second half of a hybrid bitangent (withq = r1, p = e2,
rlower = r2, r′upper = r3, end(y) = e3, and the source ofy
as c), so usey asmi. In the second case, continue moving
the source ofy closer toq, but ensure thaty intersectsr′lower

instead ofrlower (and replace the reflex vertex on the lower
chain intersected byy repeatedly if the need arises). This
process must eventually terminate, because there are only a
finite number of reflex vertices on the lower subchain.

For the last edgemk, note that some point onmk−1 must
be able to seevback. If the q point of mk−1 can seevback,
thenqvback can be used asmk, becauseq is a reflex vertex.
If q 6∈ V is(vback), then letx be the point inqp∩V is(vback)
closest toq. There must be some reflex vertexr that prevents
a point closer toq from seeingvback. Therefore,xvback can
be used asmk, because it intersects reflex vertexr.

Guard sets based on the decomposition defined in Lemma
2 that meet certain conditions have connected visibility
graphs, as described in the following lemma. For the pur-
poses of the following two lemmas, index the members of set
M = {m1,m2, . . . ,m|M|} in the order that they were added.
Also, letT = {t1, t2, t3, . . . , t|M|−1} be a set of points such
that ti is the intersection ofmi andmi+1.

Lemma 3: In a hemimonotone decomposition of a mono-
tone polygonP by the process described in Lemma 2, and
a guard setS of P whereT ⊂ S, and for all s ∈ S there
exists anℓ ∈ M such thats ∈ ℓ, the graphV G(S, P ) is
connected.

Proof: If |T | = 0, then vfront ∈ V is(vback) and
vfrontvback is the only member ofM , and a guard set that

is placed entirely a single line segment within the polygon
must have a connected visibility graph.

If |T | 6= 0, then note that, for all1 < i ≤ |T |, ti ∈
V is(ti−1). Therefore, the vertices ofT form a connected
component inV G(S, P ). Since guards are only placed on
members ofM , and each member ofM contains a vertex
in T , every vertex ofS \ T is adjacent to a vertex ofT in
V G(S, P ). Therefore,V G(S, P ) is connected.

Additionally, two hemimonotone polygons generated by
this decomposition can be covered by guards using the same
color set if their bases are sufficiently separated.

Lemma 4:For pointspi ∈ mi \ {ti}, andpi+3 ∈ mi+3 \
{ti+2}, V is(pi) ∩ V is(pi+3) = ∅.

Proof: Sincemi+1 and mi+2 are consecutive, either
they form an L-gadget, they form a hybrid bitangent, or one
of them is a valid bitangent. Therefore,mi+1 andmi+2 sep-
arateP into several subpolygons[P1, P2, P3, . . . Pk], where
vfront ∈ P1, vback ∈ Pk, and for all 2 ≤ i ≤ k − 1,
Pi is hemimonotone. Letℓ1 be the boundary betweenP1

andP2, and letℓk be the boundary betweenPk−1 andPk.
Note that no point inP1 \ ℓ1 can conflict with any point in
Pk \ ℓk (see Figures 4, 5, and 6). Sincemi ∩ ℓ1 = {ti} and
mi+3 ∩ ℓk = {ti+2}, V is(pi) ∩ V is(pi+3) = ∅.

Now that the decomposition is defined, some results
about the number of guards required for the hemimonotone
polygons are necessary.

Lemma 5:A hemimonotone polygonP with n vertices
can be guarded by a set of⌊n/3⌋ guards, where all guards
are placed onvleftvright.

Proof: The polygonP is monotone with respect to a
line H , which we can assume is monotone.

This will proceed via induction onn, the number of
vertices inP . The base cases are whenn = 3, n = 4,
andn = 5. If P is convex, a guard atvleft will suffice to
guard the whole polygon. Therefore, assume thatP is not
convex (which means thatn = 4 or n = 5). If n = 4 andP
is not convex, then eitherv1 or v2 is reflex (assume without
loss of generality thatv1 is the reflex vertex). This means
that P can be triangulated by adding an edge betweenv1
andvright. The two triangles making upP share a vertex at
vright, so a single guard onvright can guard all ofP .

If n = 5, then each triangulation ofP contains a
vertex that meets all the triangles. If this vertex isvleft or
vright, thenP can be guarded with a single guard at that
vertex. If this vertex isv2, thenv1 and v3 must be convex
(or else they would blockv2’s view of vleft and vright,
respectively). In this case,P can be decomposed into two
convex quadrilaterals through the addition of a line segment
ℓ that is perpendicular toH and intersectsv2 andvleftvright,
and letp be the intersection ofℓ andvleftvright. SinceP is
monotone with respect toH , the two vertices resulting from
the splitting ofv2 must both be convex (or else a line formed
by extendingℓ would intersect∂P at three points). Also note
that both vertices at pointp must be convex (the sum of their
angles in radians must beπ, because the vertices are formed
by splitting up a line segment). Sincevleft, vright, v1, v3,
both vertices atv2, and both vertices atp are convex, and



p ∈ vleft, vright, P can be guarded with a single guard atp.
If the vertex that meets all the triangles in a triangulation

of P is v1 or v3 (assume without loss of generality that it is
v1, thenv2 must be convex, so as to not blockv1’s view of
v3). Let ℓ be a line segment that intersectsv2 andvleftvright,
and letp be the intersection ofℓ andvleftvright. This divides
P into two quadrilaterals. Sincev2, vright, andvleft are all
convex,v1 and v3 are visible fromp. Add v1p and v3p to
make a triangulation ofP with a Steiner point atp where
all triangles sharep as a vertex. Therefore, a guard placed
at p can guard all ofP .

Now, for the inductive step. In the inductive step, the goal
is to decompose then-vertex hemimonotone polygonP into
two polygonsQ andR, whereQ is a hemimonotone polygon
with at mostn − 3 vertices, andR can be guarded by one
guard placed onvleft, vright (there is a possibility that the
guard that guardsR is placed inQ). Since the base cases
apply whenn ≤ 5, we will assume thatP has at least6
vertices (note that this meansP must contain av4 vertex).
There are eight subcases, based on whetherv1, v2, and v3
are convex or reflex. Figure 7 provides illustrations of these
subcases.

1) v1, v2, andv3 are convex- Let R be the pentagon with
verticesv1, v2, v3, v4, andvleft. Sincev1, v2, andv3
are convex,v4 ∈ V is(vleft). This pentagon can be
triangulated withvleft present in each triangle, so a
guard placed atvleft guardsR. The polygonQ lacks
v1, v2, andv3, so it hasn− 3 vertices.

2) v1 andv2 are convex,v3 is reflex- If v4 ∈ V is(vleft),
thenR has verticesv1, v2, v3, v4, andvleft, and can
be triangulated and guarded in the same way as the
previous case. Ifv4 6∈ V is(vleft), then let pointp be
the intersection ofvleftvright and the line formed by
extendingv3v4. The polygonR has verticesvleft, v1,
v2, v3, and p. The polygonR is convex and can be
guarded with a single guard atvleft. The polygonQ
lacks v1, v2, v3, and vleft, but does containp as a
vertex, soQ hasn− 3 vertices.

3) v1 andv3 are convex,v2 is reflex- Let p be the point at
the intersection ofvleftvright and a line perpendicular
to H that intersectsv2. Sincev1 and v3 are convex,
p ∈ V is(v4)∩V is(vleft). The polygonR has vertices
vleft, v1, v2, v3, v4, andp. SinceP is monotone with
respect toH and pv2 is perpendicular toH , p ∈
V is(v1) ∩ V is(v3). Therefore,R can be triangulated
with all triangles sharingp as a vertex. Therefore, a
guard atp guards all ofR. The polygonQ lacks v1,
v2, v3, andvleft, but does containp as a vertex, soQ
hasn− 3 vertices.

4) v1 is convex,v2 and v3 are reflex- Note that ifv4 ∈
V is(vleft), then v3 ∈ V is(vleft) because otherwise,
v2 would have to blockvleft’s view of v3, which
means that it would also blockvleft’s view of v4,
as v3 is reflex. Therefore, ifv4 ∈ V is(vleft), then
R is a pentagon with verticesvleft, v1, v2, v3, and
v4, andR can be triangulated as per case 1. Ifv4 6∈
V is(vleft), then letp be the intersection ofvleftvright

and the line formed by extendingv3v4. Let q be the
intersection ofvleftvright and the line perpendicular
to H that intersectsv2. The polygonR has vertices
vleft, v1, v2, v3, and p. The polygonQ lacks v1, v2,
v3, and vleft, but does containp as a vertex, soQ
has n − 3 vertices. The polygonR can be guarded
by a single guard at pointq (note that it is possible
for q to not be inR). Sincepv2 is perpendicular to
H , q ∈ V is(v1) ∩ V is(v3). Therefore, if q ∈ R,
thenR can be triangulated with a Steiner point atq
where all triangles share a vertex atq, so a guard atq
guardsR. If q 6∈ R, then the polygonR′ with vertices
vleft, v1, v2, v3, q can be triangulated with all triangles
sharing a vertex atq. SinceR ⊂ R′, and a guard atq
guardsR′, a guard atq guardsR.

5) v1 is reflex,v2 and v3 are convex- Let point p be the
intersection ofvleftvright and the line perpendicular to
H that intersectsv1. LetR be the polygon with vertices
vleft, v1, v2, v3, v4, andp. Sincev2 andv3 are convex,
and pv1 is perpendicular toH , v2, v3, v4 ∈ V is(p).
Therefore,R can be triangulated with all triangles
sharingp as a vertex, so a guard atp guardsR. The
polygonQ lacksv1, v2, v3, andvleft, but does contain
p as a vertex, soQ hasn− 3 vertices.

6) v1 and v3 are reflex,v2 is convex- Let point p be the
intersection ofvleftvright and the line perpendicular to
H that intersectsv2. Let pointq be the intersection of
vleftvright and the line that intersectsv3 andv4 (such
an intersection may not exist ifvleftvright is not long
enough). If q exists andd(vright, q) < d(vright, p),
then letR be the polygon with verticesvleft, v1, v2, v3,
and q. In this case,Q lacks vleft, v1, v2, and v3, but
containsq as a vertex, soQ has n − 3 vertices. A
guard atp is sufficient to guardR, asv1 is the only
reflex vertex ofR, andv1 obviously cannot blockp’s
view of vleft or v2, and the other vertices are on the
other side ofpv2. Therefore,R can be triangulated
with a Steiner point atp with all triangles sharing a
vertex atp, so a guard atp guardsR. If q does not
exist or d(vright, q) ≥ d(vright, p), then letR be the
polygon with verticesvleft, v1, v2, v3, v4, andp. In this
case,Q lacks vleft, v1, v2, and v3, but containsp as
a vertex, soQ hasn − 3 vertices. The line segment
pv2 dividesR into two quadrilaterals with one reflex
vertex a piece. Sincep is not adjacent to either reflex
vertex in either quadrilateral, a guard atp can guard
both quadrilaterals, and thus all ofR.

7) v1 and v2 are reflex,v3 is convex- Let point p be the
intersection ofvleft, vright and the line perpendicular
to H that intersectsv3. Let R be the polygon with
verticesvleft, v1, v2, v3, v4, and p. The line segment
pv3 dividesR into a pentagon and a triangle. A guard
at p obviously guards the entire triangle, and the
pentagon has only three convex vertices, wherep is
the middle convex vertex, so a guard atp guards the
entire pentagon as well. The polygonQ lacks vertices
vleft, v1, v2, v3, but containsp as a vertex, soQ has
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Fig. 7. Illustrations of the eight inductive step cases for Lemma 5. The leftmost vertex isvleft. The shaded area represents the subpolygonR. The guard
is placed on the blue vertex. The black vertices represent other vertices ofP or R. The pointsp and q are labelled if applicable. These hemimonotone
polygons are monotone relative to a horizontal line.

n− 3 vertices.
8) v1, v2, andv3 are reflex- Let pointp be the intersection

of vleft, vright and the line perpendicular toH that
intersectsv4. Let R be the polygon with vertices
vleft, v1, v2, v3, v4, and p. The polygonQ lacks ver-
ticesvleft, v1, v2, v3, but containsp as a vertex, soQ
has n − 3 vertices. SinceR has only three convex
vertices andp is the middle convex vertex, a guard at
p guards all ofR.

Combining these lemmas leads to the desired result.
Theorem 6:For any n-vertex monotone polygonP ,

χCL(P ) ≤ n/3 + 12.
Proof: DecomposeP using Lemma 2. Let the guard

set S initially consist of the points inT . Due to Lemma
4, the members ofT require only4 colors (becauseti ∈
mi+1 \ {ti+1}, and ti+4 ∈ mi+4 \ {ti+3}, so V is(ti) ∩
V is(ti+4) = ∅). Use the methods described in Lemma 5
to make a guard set for each hemimonotone polygon in the
decomposition, and add those guard sets toS. Lemma 3
ensures thatV G(S, P ) is connected.

At most two hemimonotone polygons sharemi as a base.
In the decomposition, at leastk − 4 vertices of ak-vertex
hemimonotone polygon are vertices of the original, unde-
composed monotone polygon that are not shared between
two or more hemimonotone polygons (the possible excep-
tions arevleft, vright, v1, andvk). Let j be the integer such
that the hemimonotone polygons withmj , mj+1, andmj+2

as bases require a maximal sum total of guards. There are6
hemimonotone polygons total. The total number of vertices
in these hemimonotone polygons can be at mostn+24 (then
vertices ofP , plus4 vertices in each hemimonotone polygon
that could be added by the decomposition). By Lemma 5,

Fig. 8. A monotone polygon decomposed, guarded, and colored. The thin
solid lines are the hemimonotone bases, and the dotted linesextend vertically
from the intersection of bases if needed to ensure that the subpolygons are
hemimonotone.

these polygons can be guarded byn/3 + 8 guards, all of
which may require unique colors. Since this is the set of
hemimonotone polygons with three consecutive bases that
require a maximal number of guards, these⌊n/3⌋+8 colors
are sufficient to color all the guards generated by Lemma 5.
With the additional4 colors required to color the members
of T , up ton/3 + 12 total colors are used.

Therefore,χCL(P ) ≤ n/3 + 12.
An example polygon that has been decomposed into

hemimonotone polygons and given a guard placement and
coloring is shown in Figure 8.

V. CONCLUSION

We have presented a method of placing a set of landmarks
in a monotone polygon so that the visibility graph of the
landmarks is connected, each point in the polygon is visible
from a landmark, and the landmarks can be divided into
a relatively small number of classes such that no two
landmarks of the same class are visible from a common
point. Such a set can be exploited for navigation by a robot
equipped with motion primitives of the form “drive toward



Fig. 9. The black lines are the polygon boundary, and the red line was
a boundary added as part of a monotone decomposition. The twoguards
do not conflict within the monotone polygon under the red line, because
they are separated by the blue L-gadget. However, they do conflict in the
whole polygon, because they can both see the point at the intersection of
the dotted lines.

a landmark of classx”.
Of course, robot environments are usually not monotone.

However, monotone polygons are frequently generated as
intermediate steps in other decomposition algorithms. For
example, since monotone polygons can be easily triangulated
in linear time, they are often generated during triangulation
algorithms [7], [25]. In fact, the technique described in [25]
directly creates hemimonotone polygons (referred to as “one-
sided” polygons in that work). This invites the possibilityof
taking a polygon, performing a monotone decomposition on
it, and then using the techniques in this paper to color each
of the monotone pieces. If some sort of separation guarantee
could be made between each of the monotone pieces, then
it could be possible to show that for anyn-vertex polygon
P (not just monotone),χCL(P ) ≤ n/3 + C, whereC is a
constant ([4] shows that this bound must be at least⌊n/4⌋).
Care must also be taken so that the decomposition does not
violate the separation conditions within a single monotone
polygon (see Figure 9).

There are numerous variations of this problem that would
likely produce different bounds. There are many art gallery
results specific to rectilinear polygons including [10], [14],
[21], and it is likely that rectilinear polygons would require
fewer landmark classes than general polygons. One could
also discard the assumption that the environment is simply
connected and determine bounds on the number of landmark
classes in terms of both the number of vertices in the
polygon and the number of holes. This paper has assumed
that the robot can see the landmark as long as there is
no obstacle in the way, regardless of the distance between
them. It is unknown how the bounds would change if the
robot could only detect landmarks present within some finite
distance. Bounds based on the number of inflections could
even be determined for curvilinear regions, as bounds were
determined for the corresponding art gallery problem in [11].

Finally, while the three conditions listed in the introduction
are sufficient for a robot with the “drive toward a landmark
of classx” primitives to search an environment for treasure,
it is possible that weaker conditions may suffice as well.
A categorization of the types of landmark sets that would
permit searching by robots of this type would be helpful for
describing the power of this very general robot model.
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