
Toward the Design and Analysis of Blind, Bouncing Robots

Lawrence H. Erickson and Steven M. LaValle

Department of Computer Science

University of Illinois at Urbana-Champaign

{lericks4, lavalle}@uiuc.edu

Abstract— What kind of tasks are robots with extremely
simple control laws capable of performing? Consider a point
robot that navigates by aligning itself to a certain fixed angle
relative to the environment boundary, then driving in a straight
line. Even without knowing the robot’s exact location, basic,
noisy odometry and counting sensors can be used to narrow
down the robot’s possible locations over time. This paper
describes methods of determining the possible locations of the
robot after the robot has moved a sufficient distance or has
impacted the boundary a sufficient number of times.

I. INTRODUCTION

Consider a robot whose entire navigation strategy consists

of driving in a straight line until it contacts the environment

boundary, then bouncing off of it at an angle determined by

a function of the vector normal to the boundary point that

was struck and the angle relative to the normal at which the

robot contacted the boundary. What kind of behaviors can be

expected from such a robot? Can it do anything useful? Can

it explore the entire environment? Can the robot be easily

localized? Can it navigate reliably?

Since the robot’s next destination is entirely determined

by its current location, these bouncing strategies define a

dynamical system. Our goal is to model this dynamical

system, then design control laws to take advantage of it.

A closely related dynamical system is mathematical bil-

liards. In mathematical billiards, an environment contains

an agent that travels in a straight line until it contacts the

environment boundary, at which point the agent makes a

specular bounce and travels in a straight line again. A bounce

is specular if the incident path and the post-collision path

make the same angle relative to the normal of the boundary

(see Figure 1). Mathematical billiards are of particular inter-

est in physics for the modeling of ideal gases [11]. There

are also applications in the study of elastic collisions and

optics [12]. The path of the agent is known to be chaotic

in numerous environments [5]. The ergodicity properties of

such agents in polygons are also heavily studied [8].

θrθi

Fig. 1. A bounce is specular if the incident angle relative to the surface
normal θi is equal to the reflected angle θr .

When the agent is deflected towards the normal instead of

making a purely specular bounce, the problem is referred to

as pinball billiards [10]. The special case where the bounce

is normal to the boundary contacted by the robot (with

the incident angle being irrelevant) is referred to as slap

billiards. The authors of [10] were primarily interested in

the properties of the system’s attractors.

In this paper, we have chosen to examine a family of

bouncing strategies that have the robot bounce at a constant

angle relative to the normal of the edge that was impacted

(see Figure 2) with the incident angle being irrelevant. This is

a generalization of the slap billiards model. We are primarily

interested in localization and navigation questions. Both tasks

rely on making the movement of the robot “predictable” in

some fashion. We attempt to accomplish part of this task by

determining, for a given bouncing strategy, which portions

of the polygon will be unreachable to the robot after it has

bounced a certain number of times or travelled more than

a certain distance. The remainder of the polygon can be

considered a “trap” region that the robot is localized to after

a sufficient amount of travel.

Fig. 2. [top] The paths created when the robot is instructed to bounce in
the direction perpendicular to the edge that was contacted. [bottom] The
paths created when the robot is instructed to bounce at an angle 50 degrees
clockwise of perpendicular.

Strategies for localization in robots equipped with contact

sensors include [7] and [9]. However, in these papers, the

angle at which the robot leaves the wall is a function of the

number of prior bounces. Even if there is a small amount of

uncertainty in the robot’s orientation, it is generally possible

to force the robot into a relatively small area. This is gen-

erally going to be impossible under the strategies examined

in this paper. Also related are sensorless manipulation and

localization strategies using tilted platforms [6], conveyor

systems [1], vibrating surfaces [3], and microactuators [4].

While the wild, sensorless “weaselball” robots of [2] pro-

vided some inspiration for the system studied in this paper,

they have little to do with each other. The system studied in

this paper is entirely deterministic, and “weaselball” robots

do not bounce off of environment boundaries at some fixed

angle relative to the normal.

The remainder of this paper is organized as follows.

Section II formally describes the robot movement model and

provides definitions used throughout the paper. Section III

describes some common traits that the paths produced by

these robots possess. Section IV describes an algorithm that

incrementally classifies the boundary into “trap” and “non-

trap” regions. Section V discusses the results and directions

for future research.

II. MODEL AND DEFINITIONS

A point robot R moves in a closed polygonal region P
with boundary ∂P . The robot’s motion strategy is dependent

on a single parameter θ, where −π/2 < θ < π/2. The robot

drives in a straight line until contacting ∂P . After contacting

∂P , the robot rotates until its heading is θ radians clockwise

of the inward-facing normal of the edge with which the robot

is in contact. It then moves in a straight line until contacting

∂P again, and the process is repeated indefinitely (see Figure

3).

Fig. 3. Paths of the robot starting from the blue circle. [left] The robot’s
path when θ = 0. [right] The robot’s path when θ = π/4.

Since the incident angle of the robot when it strikes a wall

has no effect on the direction of the robot, the movements

of the robot can be described by a map Bθ : ∂P → ∂P ,

where the robot impacting the boundary at p ∈ ∂P will

next impact the boundary at Bθ(p). A superscripted Bk
θ will

denote k applications of the map to the input. We will call

this map the robot’s bouncing strategy. A sequence of points

[p0, . . . , pk] is a flow of Bθ if pi = Bθ(pi−1) for 1 ≤ i ≤ k.

We note that the bouncing strategy is not well-defined for

vertices of ∂P . However, since the number of points of ∂P
that would send the robot to a vertex is finite (each ordered

pair of source edge and destination vertex can produce at

most one such point), we will ignore flows that would have

the robot impact a vertex.

Let q be a point in ∂P . Given a bouncing strategy Bθ,

a flow [p0, . . . , pk] is a trail of q if pk = q. A flow is a

trajectory of q if p0 = q. Note that for all natural n, the

n-step trajectory of q is unique, while an n-step trail of q
may not be unique. In fact, it is possible for an n-step trail

of q not to exist (for example, if there exists no p ∈ ∂P
such that Bθ(p) = q). Let T (q, Bθ) denote the set of trails

of q under bouncing strategy Bθ . Let d(p, q) be the distance

between points p and q. The distance of a flow [p0, . . . , pk]
is equal to

∑k−1

i=0
d(pi, pi+1). We will say that T (q, Bθ) is

distance unbounded if for any positive real a, there exists a

trail t ∈ T (q, Bθ) in which the length of t is at least a. The

link distance of a flow [p0, . . . , pk] is equal to k. We will say

that T (q, Bθ) is link unbounded if for any positive integer j
there exists a trail t ∈ T (q, Bθ) such that t has link distance

at least j.

We choose to focus on these notions of distance bounded

and link bounded due to the ease at which they can be

used by a robot with simple sensors. If the robot has a

linear odometer and a map of the polygon (even a noisy

odometer that gives a lower bound on the distance travelled

up to some constant factor of the truth), then as it travels, it

can gradually rule out distance bounded regions as possible

locations. Similarly, if the robot has a counter that keeps

track of how many times it has bounced, it can gradually

rule out link bounded regions as possible locations.

III. BEHAVIORS

This section describes some common behaviors observed

in the trajectories produced by these bouncing strategies, for

the purpose of providing the reader with some intuition about

how these robots move about.

Regardless of the precise value of θ, the bouncing strategy

Bθ always exhibits two notable behaviors. First, parallel

lines cause the robot to get “stuck” in a 2-cycle. This is

a generalization of an observation in [10].

Observation 1: Let e1 and e2 be parallel edges of P . Let

p1 ∈ e1 and p2 ∈ e2 be points on the boundary of P . If

Bθ(p1) = p2, then Bθ(p2) = p1.

Proof: If Bθ(p1) = p2, then there are no edges

of P intersecting p1p2. Since e1 and e2 are parallel and

Bθ(p1) = p2, the inward-facing normal of e1 is the opposite

direction as the inward-facing normal of e2. Therefore, θ
radians clockwise of the inward-facing normal of e1 is the

opposite direction as θ radians clockwise of the inward-

facing normal of e2. Since no edges of P intersect p1p2,

we get that Bθ(p2) = p1.

Note that small adjustments to the robot’s bouncing strat-

egy or to the robot’s position will not cause this cycle to

disappear.

Secondly, the robot will tend to “escape” corners (see Fig-

ure 4). Regardless of the choice of θ, a sequence of bounces

between two non-parallel edges will cause the robot to move

further away from the point where the edges intersect (or

where they would intersect if they were extended). Lemma

2 describes exactly how this process works.

Fig. 4. The robot escaping a corner for two different values of θ.

Though the robot tends to escape corners, certain struc-

tures will cause the robot to become “trapped”. The simplest

example is when θ = 0 and P is an obtuse triangle. The robot

will eventually become confined to a region of P centered

around the obtuse vertex (see Figure 5). In fact, for a fixed

value of θ, polygons generally have some portion of the

boundary that is unreachable after the robot has contacted the

wall some minimum number of times, and some portion of

the boundary that is unreachable after the robot has travelled

some minimum distance. The remainder of the boundary can

be considered a “trap” for that particular choice of θ.

Fig. 5. A robot bouncing in an obtuse triangle with θ = 0. Regardless
of the robot’s starting point, it will eventually be confined to the portion of
the triangle between the purple lines. A sample path is shown.

IV. CLASSIFICATION OF THE BOUNDARY

In this section, the goal is to determine what portions of the

boundary correspond to distance unbounded regions, distance

bounded link unbounded regions, and link bounded regions

for a fixed value of θ.

This section is divided into two subsections. Subsection

IV-A describes in detail the behavior of the robot when it

is escaping corners, as that behavior is what produces the

distance bounded link unbounded regions of the boundary.

Subsection IV-B describes an algorithm that classifies the

boundary, and discusses its limitations.

A. Codependent Segments

If the interior angle of a vertex of ∂P is less than |π/2−θ|,
then the vertex is a codependent vertex. If the robot bounces

between two edges incident to a codependent vertex, then it

moves away from the codependent vertex, at a rate described

in the following lemma.

Lemma 2: Let e1 and e2 be non-parallel edges of P .

Let q be the point where the infinite extensions of e1 and

e2 intersect. Let φ be the interior angle of the extensions

of e1 and e2. Let p1 ∈ e1 be a point, and suppose that

Bθ(p1) ∈ e2. If B2
θ(p1) ∈ e1, then there exists some

c, where c > 1, dependent only on θ and φ such that

cd(p1, q) = d(B2
θ (p1), q).

Proof: The law of sines establishes that

d(p1, q)

sin(π
2
+ θ − φ)

=
d(Bθ(p1), q)

sin(π
2
− θ)

(1)

and
d(B2

θ (p1), q)

sin(π
2
+ θ)

=
d(Bθ(p1), q)

sin(π
2
− θ − φ)

. (2)

Combining these equations and simplifying the terms

inside the sines yields

d(B2
θ (p1), q) =

(

cos 2θ + 1

cos(2θ) + cos(2φ)

)

d(p1, q) = cd(p1, q).

(3)

Since cos(2φ) < 1 (as 0 < φ < π/2), we get that c > 1.

We will describe a pair of line segments ℓ1, ℓ2 that meet

at a codependent vertex v ∈ ∂P as codependent segments if

for each point p1 ∈ ℓ1, there exists a point p2 ∈ ℓ2 such that

Bθ(p2) = p1 and Bθ does not map any distance unbounded

point of ∂P \ ℓ2 to p1. Additionally, for each q1 ∈ ℓ2, there

exists a point q2 ∈ ℓ1 such that Bθ(q2) = q1 and Bθ does

not map any distance unbounded point of ∂P \ ℓ1 to q1 (see

Figure 6).

Fig. 6. The area in between the purple lines is distance unbounded when
θ = 0. The pair of blue segments on the left side of the triangle are
codependent. Note that Bθ does not map any point on the top right edge
to the blue area on the left. The pair of blue segments on the right are also
codependent.

Corollary 3: Let ℓ1 ⊆ e1 and ℓ2 ⊆ e2 be codependent

segments that meet at a convex vertex v. For each point

p ∈ ℓ1∪ℓ2, there exists some constant d such that the distance

of each t ∈ T (p,Bθ) is less than d.

Proof: Because e1 and e2 are codependent segments

and meet at a vertex, for each k, p has only one trail of

length k, which we will denote as [pk−1, . . . , p2, p1, p0 = p].
Lemma 2 implies that there exists some constant c such that

ci|pi+1pi| = |p1p0|. Since c > 1, we have, for all k ≥ 1,

that
∑k−1

i=0

1

ci
< d for some constant d.

Lemma 4: Let S = {t0, t1, t2, . . .} be a subset of link

unbounded T (p0, B) such that t0 = [p0], t1 = [p1, p0], etc.,

and for each real number a, there exists a member of S that

has length at least a. For each natural k, there exists three

edges of P and a j such that for all i > j, the trail ti contains

at least k points on each of the three edges.

Proof: Suppose that this lemma were false, and there

existed such a subset S that satisfied the condition of the

lemma but contained trails that had arbitrarily high numbers

of points on only two edges.

Without loss of generality, we may assume that ti contains

points from only two edges, because if only two edges are

represented an arbitrarily high number of times, then there

exists some k such that for all j ≥ k, pj is on one of two

edges. The sum
∑

0≤i<k |pipi+1| is finite. We must then

consider the set of trails S′ = {t′0, t
′
1, t

′
2, . . .}, where t′0 =

[pk], t
′
1 = [pk+1, pk], etc. Obviously, S contains a trail of

length a for each possible a if and only if S′ does as well,

and the trails of S′ contain points from only two edges.

If all ti contains only two edges, then by Lemma 2,

c|pipi−1| = |pi−1pi−2| for some constant c where c > 1.

This implies that the distance of ti as i → ∞ converges to

some constant.

Note that each distance unbounded set of trails must

contain a subset of the type described in Lemma 4.

B. Classification Algorithm

The classification algorithm (Algorithm 1) in this section

operates by first determining which segments are obviously

link bounded (segments that are not in the image of Bθ)

and which segments are obviously distance bounded link

unbounded (codependent segments). After this determination

is made, the areas that are still potentially distance (link)

unbounded are checked to see if Bθ only maps to them

from distance (link) bounded areas. This process repeats

recursively. Algorithms 2 and 3 are subroutines of Algorithm

1.

The θ-projection of an interval w, denoted Project(θ, w),
is the set {p ∈ ∂P | ∃q ∈ w where p = Bθ(q)}.

Algorithm 1 DIVIDE(P) - Divide ∂P into distance

unbounded, link unbounded distance bounded, and link

bounded regions).

1: Label all of ∂P as link bounded.

2: for Each edge ei do

3: Label Project(θ, ei) as distance unbounded.

4: end for

5: Let S0 be the set of intervals marked as distance un-

bounded.

6: Let f = ∪s∈S0
Project(θ, s).

7: for Each unordered pair of edges ei,ei+1 that meet at

vertex vi do

8: if vi 6∈ f then

9: Determine the maximal subset of ei \ f containing

vi as an endpoint, and mark it as link unbounded

distance bounded.

10: Determine the maximal subset of ei+i\f containing

vi as an endpoint, and mark it as link unbounded

distance bounded.

11: end if

12: end for

13: Mark all distance bounded intervals as “changed”.

14: while Any interval is marked as “changed” do

15: for Each vertex v ∈ ∂P that is not incident to a pair

of link unbounded distance bounded intervals do

16: CHECK-VERTEX(v)
17: end for

18: for Each interval t marked as changed and edge ej
do

19: UPDATE(t, ej)
20: end for

21: Remove all “changed” labels.

22: Change all “recently changed” labels to “changed”

labels.

23: end while

Theorem 5: For each point p ∈ ∂P , there exists a k such

that after k iterations of the “WHILE” loop of Algorithm 1,

p is classified correctly.

Proof: Call a point q ∈ ∂P minimal if it is not part

of the projection from any edge. The minimal points can be

easily found by exhaustively checking all projections.

Note that a point p ∈ ∂P is distance unbounded if and

only if there exists some q ∈ ∂P such that q is distance

unbounded and Bθ(q) = p. Similarly, p is link unbounded if

and only if there exists some link unbounded q ∈ ∂P such

that Bθ(q) = p. The points in the trails of p can be arranged

into a trail tree with p at the root. The children of a node

representing a point q are the points {s ∈ ∂P | Bθ(s) = q}.

A path from the root terminates at a leaf when a minimal

Algorithm 2 CHECK-VERTEX(v) - Check to see if there

are segments incident to v that have become codependent.

1: Let ei and ei+1 be the edges incident to v.

2: Let S be the set of distance unbounded intervals on edges

other than ei and ei+1.

3: Let g =
⋃

s∈S Project(θ, s).
4: if v 6∈ g then

5: Let hi ⊂ ei be the maximal interval with v as an

endpoint such that hi ∩ g = ∅.

6: Let hi+1 ⊂ ei+1 be the maximal interval with v as an

endpoint such that hi+1 ∩ g = ∅.

7: Mark hi and hi+1 as link unbounded distance

bounded, and mark both as “recently changed”.

8: end if

Algorithm 3 UPDATE(t, e) - Check to see if any intervals

have become link or distance bounded due to a change in t.

1: Let f = Project(θ, t) ∩ e.

2: if t is link bounded then

3: Let S be the set of link unbounded intervals.

4: Let g =
⋃

s∈S Project(θ, s) ∩ e.

5: Mark f \ g as link bounded.

6: Mark all intervals of f \ g as “recently changed”.

7: else if t is link unbounded distance bounded then

8: Let S be the set of distance unbounded intervals.

9: Let g =
⋃

s∈S Project(θ, s) ∩ e.

10: let h be the portion of f that is link bounded.

11: Mark f \ (g∪h) as link unbounded distance bounded.

12: Mark f \ (g ∪ h) as “recently changed”.

13: end if

point or point whose only descendants would form an infinite

path that alternates between two edges (see Figure 7). Note

that p is distance bounded if and only if its tree is finite, and

it is link bounded if and only if all of its leaves correspond

to minimal points.

Let the tree depth of a point p ∈ ∂P be the maximum

distance in p’s trail tree between the root node and any leaf.

Note that if p is distance unbounded, then p has infinite tree

depth.

The algorithm initially labels every point in ∂P as distance

unbounded unless it is a minimal point or a point in a

codependent segment. Note that this means that at the start

of execution, the points of ∂p with tree depth 0 are classified

correctly.

Assume that after k − 1 iterations of the “WHILE” loop,

all distance bounded points with trail trees of depth k − 1
or less are classified correctly. On the kth iteration of the

loop, each point that is in the projection of an interval of

points of depth less than k is checked to see if it is in the

projection of an interval that has not yet been classified as

distance bounded. If it is not, then the point is classified as

distance bounded (link unbounded if it is in the projection

of a link unbounded interval, link bounded otherwise).

However, the process described in the above paragraph

Fig. 7. [top left] The trail of a link bounded point of ∂P . Minimal link bounded portions of the polygon are in red. Minimal link unbounded distance
bounded portions are in yellow. Non-minimal portions are in purple. [middle left] Part of the trail of a distance unbounded point of ∂P . The links of the
trail become lighter as it goes further from the starting point. [bottom left] The full classification of ∂P , in which red is link bounded, yellow is link
unbounded distance bounded, and green is distance unbounded. [middle] The trail tree of the top left subfigure. The red vertex indicates a link bounded
minimal point. [right] A portion of the trail tree of the middle left subfigure. Dotted lines indicate infinitely deep subtrees that are not shown in the middle
left subfigure. The red and yellow vertices indicate minimal points.

cannot find a vertex whose only possible descendants con-

sist of a path whose vertices alternate between two edges.

Therefore, if a codependent vertex vi (incident to ei and

ei+1) is in the projection of an interval of depth less than k,

we must check if there is a pair of intervals qvi ⊆ ei and

rvi ⊆ ei+1 such that the only distance unbounded interval

that projects onto qvi is rvi and vice versa. In that case, for

any point p ∈ qvi ∪ rvi, all potential descendants of p in

a trail tree form a path that alternates between points on ei
and ei+1. Therefore, p should be a leaf in the trail tree.

Only points in the projection of an interval of depth k− 1
need to be tested, as a point with a trail tree depth of k
must contain a point with a trail tree of depth k − 1 in its

tree. Therefore, after k iterations, all points of depth k are

correctly classified.

While Algorithm 1 eventually classifies each point cor-

rectly, it is not guaranteed to terminate. For an example,

consider an equilateral triangle with θ set to π/2−ε for some

small value of ε. There are only three distance unbounded

points in ∂P , and they correspond to the vertices of an

inscribed triangle (in clockwise order, let the vertices of this

inscribed triangle be p, q, r). However, Algorithm 1 initially

labels the entire triangle boundary as distance unbounded. As

the WHILE loop of Algorithm 1 the portions of the boundary

that are still labelled as potentially distance unbounded

decrease, but they remain intervals, and never shrink down

to individual points (see Figure 8).

Fig. 8. Algorithm 1 in an equilateral triangle when θ = π/3. [left] Initially,
the entire boundary is marked as distance unbounded (green). [middle] Since
portions of the boundary are not in the projection of any distance unbounded
interval, some areas are marked as link bounded (red). [right] This process
repeats, further shrinking the intervals marked as distance unbounded, but
never reducing them to points. The endpoints of the blue inscribed triangle
are the only actual distance unbounded points.

For an input polygon P and bouncing angle θ, let the

complexity be the minimum number of intervals required

to classify the boundary of ∂P , where each interval I is

a connected subset of ∂P that lies on a single edge with all

points in I being either distance unbounded, link unbounded

distance bounded, or link bounded. Since the running time

of any algorithm that classifies the boundary of a polygon P
as a set of intervals must be at least as large as the number of

intervals produced, it would be convenient if the complexity

could be bounded by the number of edges. However, this is

not the case.

Theorem 6: For each natural number k, there exists a

polygon with 5 vertices with complexity at least k.

Proof: See Figure 9. The blue point in each polygon

is actually an extremely small edge. The exact size of the

edge can be made small enough that its projections can be

considered points. The precise orientation of the edge causes

some number of distance unbounded intervals to appear on

the left side of the polygon. As the projection from the small

blue edge moves closer to the left corner of the polygon,

more distance unbounded regions appear. In order to prevent

these regions from merging, the blue edge needs to shrink

as the projection moves closer to the left corner.

While Algorithm 1 converges to the correct classification

over time, there are no monotonicity guarantees with regard

to the amount of the boundary reclassified in each step

of the “WHILE” loop. In fact, it is possible to construct

polygons where an arbitrarily large amount of the boundary

is reclassified after an arbitrarily high number of iterations

(see Figure 10).

V. CONCLUSION AND DISCUSSION

This paper has introduced a family of motion strategies for

a robot based on a simple bouncing rule, and has provided

an algorithm that determines which portions of the polygon

the robot is able to be located in after using the strategy for

a sufficiently long time (the distance unbounded regions).

In order to use the “traps” formed by the distance un-

bounded regions of the polygon, they must appear in some

formation that makes control of the robot straightforward.

Manipulation of the θ parameter by a small amount will

Fig. 9. A family of polygons, each with five edges, that can have arbitrarily
high complexity. As the projection from the small blue edge on the right
moves closer to the left corner, additional distance unbounded regions are
created. The blue edge is small enough that its projection can be treated as
a point. In this example, θ = π/2, though the same technique will work
with arbitrary θ.

Fig. 10. When θ is π/2−ε, the only distance unbounded (green) intervals
of the triangular region on the left are the endpoints of the blue inscribed
triangle. The green triangular region on the right is initially labelled as
distance unbounded by Algorithm 1. However, when the small region of
∂P under the purple dot is correctly labelled as link bounded (red), much
of the boundary of the triangular region on the right will be reclassified as
link bounded (red) or distance bounded link unbounded (yellow).

slightly move the distance unbounded regions along the

boundary, but large alterations in θ may cause drastic changes

in the distance unbounded regions. Each value of θ induces

some signature on each polygon edge corresponding to the

ordering of link bounded, link unbounded distance bounded,

and distance unbounded intervals on that edge. A value of θ
is critical if θ+ ε and θ− ε produce different signatures for

some edge for arbitrarily small values of ε. If all critical

values could be identified for some input polygon, then

Algorithm 1 (or some variant with better guarantees about

termination) could be run once for each θ that lies halfway

between two consecutive critical values, which would reveal

the maximum degree of control that this family of bouncing

strategies would provide in the input polygon. However, the

authors have not been able to prove that the number of critical

values is even finite.

Alternately, one could design environments for which con-

trol strategies are relatively simple. Figure 11 demonstrates

an environment where a value of θ very close to π/2 or

−π/2 forces the robot into the bottom triangle. Gradually

altering θ eventually forces the robot into either the left or

right triangle, depending on whether a value close to π/2 or

−π/2 was used initially.

Fig. 11. [left] When θ is very close to π/2, the robot will be forced into
the bottom triangle, and its path will converge to the red triangle. As θ is
gradually lowered, the robot’s path converges to an inscribed triangle in the
bottom region (orange, then yellow triangles). [right] When the inscribed
triangle’s corner touches the opening into the right region, the robot will
fall into the right region and its path will converge to the inscribed yellow
triangle in the right region.

ACKNOWLEDGEMENTS

This work is supported in part by NSF grant 0904501

(IIS Robotics), NSF grant 1035345 (CNS Cyberphysical

Systems), DARPA SToMP grant HR0011-05-1-0008, and

MURI/ONR grant N00014-09-1-1052.

The authors would like to thank Vadim Zharnitsky and

Nanxin Zhao for their assistance with this project.

REFERENCES

[1] S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason, “Sensorless
parts feeding with a one joint robot,” in Algorithms for Robotic Motion

and Manipulation, J.-P. Laumond and M. Overmars, Eds. Wellesley,
MA: A. K. Peters, 1997, pp. 229–237.

[2] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. LaValle,
“Controlling wild bodies using linear temporal logic,” in Proceedings

of Robotics: Science and Systems, 2011.
[3] K.-F. Bhringer, V. Bhatt, B. R. Donald, and K. Goldberg, “Algorithms

for sensorless manipulation using a vibrating surface,” Algorithmica,
vol. 26, pp. 389–429, 2000.

[4] K.-F. Bhringer, B. Donald, R. Mihailovich, and N. MacDonald, “Sen-
sorless manipulation using massively parallel microfabricated actuator
arrays,” in Proc. IEEE International Conference on Robotics and

Automation, 1994, pp. 826–833.
[5] N. Chernov and R. Markarian, Chaotic Billiards. American Mathe-

matical Society, 2006.
[6] M. A. Erdmann and M. T. Mason, “An exploration of sensorless

manipulation,” IEEE Transations on Robotics and Automation, vol. 4,
no. 4, pp. 369–379, Aug. 1988.

[7] L. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Proba-
bilistic localization with a blind robot,” in Proc. IEEE International

Conference on Robotics and Automation, 2008.
[8] S. Kerckhoff, H. Masur, and J. Smillie, “Ergodicity of billiard flows

and quadratic differentials,” The Annals of Mathematics, Second

Series, vol. 124, no. 2, pp. 293–311.
[9] J. S. Lewis and J. M. O’Kane, “Reliable indoor navigation with

an unreliable robot: Allowing temporary uncertainty for maximum
mobility,” in Proc. IEEE International Conference on Robotics and

Automation, 2012.
[10] R. Markarian, E. J. Pujals, and M. Sambarino, “Pinball billiards with

dominated splitting,” Ergodic Theory and Dynamical Systems, vol. 30,
pp. 1757–1786, 2010.

[11] Y. G. Sinai, “Dynamical systems with elastic reflections. ergodic
properties of dispersing billiards,” Russian Mathematical Surveys,
vol. 25, no. 1, pp. 137–189, 1970.

[12] S. Tabachnikov, Geometry and Billiards. American Mathematical
Society, 2005.

