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Abstract. Given a collection of robots sharing a common environment, assume
that each possesses an individual roadmap for its C-space and a cost function for
attaining a goal. Vector-valued (or PARETO) optima for collision-free coordination
are by no means unique: in fact, continua of optimal coordinations are possible.
However, for CYLINDRICAL obstacles (those defined by pairwise interactions), we
prove a finite bound on the number of optimal coordinations. For such systems, we
present an exact subquadratic algorithm for reducing a coordination scheme to its
Pareto optimal representative.

1 Introduction

In numerous settings, the coordination of multiple robots remains a basic and
challenging research issue. Autonomous guided vehicles (AGVs) are used in a
wide variety of industrial settings for problems such as material handling, pal-
letizing, paper roll handling, assembly, conveying, and people moving. Typi-
cally, AGVs reliably traverse a fixed roadmap of paths in a complicated fac-
tory environment. Although the paths avoid collisions with obstacles in the
workspace, the efforts of numerous AGVs may have to be coordinated in a
way that avoids collisions between AGVs while at the same time maximizing
productivity.

If we wish to coordinate the motions of N robots in a common environ-
ment, what is an appropriate notion of optimality? Minimizing the average
time robots take to reach their goal? Minimizing the time that the last robot
takes? Such approaches are common (e.g., [12,16,23]) and may be appropri-
ate in some cases; however, it is important to recognize that scalarization
of a vector of N criteria occurs in this process. Each robot has its own cost
function, e.g., elapsed time. These N criteria are then converted — often in
an arbitrary manner — into a single criterion to be optimized.

In this paper, we investigate the optimization problem for multiple robot
coordination without scalarizing the vector-valued cost function. This centers
on the notion of Pareto optimality [19,20], a concept which is widely used in
mathematical economics to model individual consumers striving to optimize
distinct economic goals. This brand of optimization is more “faithful” in the
sense that no data is lost by scalarization. In particular:
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1. Any optimum of any scalarization of the vector-valued cost function
(which is monotone increasing in the components) is in fact one of the
Pareto optima: see Lemma 1.

2. For settings in which priorities change over time, knowledge of the Pareto
optima allow for easy adaptation. This is particularly relevant in automa-
tion settings where repetitive motions are subject to priority changes.

3. By filtering out all of the motion plans that are not worth considering and
presenting the user with a small set of the best alternatives, additional
criteria, such as priority or the amount of sacrifice one robot makes, can
be applied to automatically select a particular motion plan.

Given the desire to filter the space of all possible coordination schemes to
a small set of best cases independent of biases on the agents, we are cer-
tainly most interested in the cases where this collection of optima is finite. A
finiteness criterion and an exact algorithm for these optima are the principal
results of this paper.

1.1 History

The problem of coordinating robots along fixed roadmaps can be considered
as a special case of general motion planning for multiple robots. Previous
approaches to multiple-robot motion planning are often categorized as cen-
tralized or decoupled. A centralized approach typically constructs a path in a
composite configuration space, which is derived from the Cartesian product of
the configuration spaces of the individual robots (e.g., [1,2,21]). A decoupled
approach typically generates paths for each robot independently, and then
considers the interactions between the robots (e.g., [4,10]). In [3,6,18,22] robot
paths are independently determined, and a coordination diagram is used to
plan a collision-free trajectory along the paths. In [14,24], an independent
roadmap is computed for each robot, and coordination occurs on the Carte-
sian product of the roadmap path domains. The suitability of one approach
over the other is usually determined by the trade-off between computational
complexity associated with a given problem, and the amount of complete-
ness that is lost. In some applications, such as the coordination of AGVs, the
roadmap might represent all allowable mobility for each robot.

In this paper, we focus on the multiplicity of Parteo-optimal path coor-
dinations among cylindrical obstacles — those determined by pairwise colli-
sions (see §1.4 below). In [15], an approximate Dijkstra-like algorithm to find
Pareto-optimal solutions in this context was given. To our knowledge, the
only previously known exact solution is that of [8], which applies only to the
case of two robots that translate on acyclic roadmaps.



Pareto optimal coordination on roadmaps 3

1.2 Coordination spaces

This paper concerns the coordination of N robots, each having a roadmap
I; (a graph within the C-space of the i*" robot) precomputed independent
of the other agents.

Definition 1. A ROADMAP COORDINATION SPACE of {I;}} is any space of
the form X := ([ x --- x I'y) — O, where O denotes an (open) obstacle set.

For the remainder of the paper, all coordination spaces are assumed to
be piecewise linear (PL) and regularly closed (i.e., X is the closure of its
interior). These assumptions rule out obstacle sets O which are too intricate
to have a nice local structure or for which the system “locks up” in a singular
configuration. We expect that the results of this paper hold under much
weaker assumptions (one should be able to ignore regularly closed and replace
PL with piecewise analytic or algebraic).

A special example of a roadmap coordination space arises when all of the
roadmaps I; are identical, and the obstacle set is an open neighborhood of
{z; = z; : for some i # j}. In this case, one can consider the workspace
to be the graph itself, and the roadmap coordination space is precisely the
configuration space of N labelled objects on the graph.

1.3 Pareto optimality

Pareto optimization refers to optimization of vector-valued functions. In the
context of robotics applications, Pareto optimization arises when distinct
agents possess distinct goals and cost functions for evaluating performance.
Each agent wishes to optimize its cost function independently of the others.

Mathematically, this is characterized as follows. Given a parameterized
path v : [0,T] — X in a coordination space, each robot executes the projected
path ; := PROJ; o 7, where PROJ; denotes projection onto the it* factor.
Given cost functions {r;}, ¢ = 1...N, the cost vector for v is the vector
7(y) := (7:(7i))N. The case in which 7; measures elapsed time from start to
goal is an important and characteristic example, though more general cost
functions are allowed.

We assume that each roadmap I is outfitted with a metric such that the
speed of the i** robot travelling along this graph at maximal speed is exactly
one; hence all admissible paths have speeds whose components are bounded
above by one. It will be assumed for simplicity that the cost functions 7;
agree with elapsed time (a suitable class of more general cost functions can
be used by deforming the geometry of the coordination space).

A path v : [0,T] —» X is PARETO-OPTIMAL iff 7(y) is minimal with
respect to the partial order on vectors:

() < 7(v") © 7(v) < () Vi (1)
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The Pareto optima comprise the set of all optima for all monotone scalar-
izations (such as, e.g., average time-to-goal and all non-linear generalizations
thereof):

Lemma 1. For any scalarization f : R" — R with 0f/0z; > 0, all minima
of f o1 are Pareto optima.

Proof: Given any minimal path for f o7 which is not Pareto-optimal, deform-
ing it to a Pareto-optimal path decreases some 7; without increasing any of
the others; hence it decreases the f-value: contradiction. O

O °] O o]

Fig. 1. [left] The unique Pareto optimal path on a rectangle with regards to elapsed
time; [right] an envelope of Pareto optimal paths weaving through obstacles forms
a single equivalence class.

Pareto optimal paths are rarely unique. Two paths v and 4’ are PARETO
EQUIVALENT iff they are homotopic through Pareto-optimal paths which are
equal in the partial order; i.e., () = 7(v'). Fig. 1[right] illustrates a single
Pareto-optimal class with many representatives. We show in §2 that certain
roadmap coordination spaces admit a continuum of Pareto-optimal classes.

1.4 Contributions

For a special class of coordination spaces, we give a finiteness bound for the
number of Pareto optima and an exact algorithm for computing Pareto-
optimal representatives of paths.

We say that the obstacle set O for X = [[ I; — O is CYLINDRICAL if O is
of the form

O:U VAYRIR HFk , (2)

i<j k#i,j

with A; ; C I; x I',. Physically, this means that whenever two agents experi-
ence an obstacle (e.g., collision), the states of all other agents are irrelevant:
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collisions are pairwise-determined. We require each A;; to be the interiors
of disjoint PL polygonal subsets of I x I.

Main Theorem: Let X be a cylindrical coordination space:

1. Locally Pareto-optimal path classes are in bijective correspondence with
homotopy classes of paths (fixing the endpoints).

2. There is a finite bound on the number of globally Pareto-optimal path
classes.

The first statement is that every path in X is homotopic to a unique
class which is Pareto-optimal among paths in its homotopy class; the second
statement is that only a finite number of these local optima are in fact global.
Proofs appear in §4.

In §5, we present an exact algorithm for determining the local Pareto-
optimal representative of a path in X' (under the reasonable assumption that
robots do not backtrack). The algorithm is output sensitive with respect
to the complexity of the path it computes. Fix the number of robots; let
m denote the complexity of the obstacle set O; and let p and p’' denote
the complexities of the input and output paths respectively. Algorithm 2
executes in O(p + mlogmp + p'v/mlogm) time. An extension to arbitrary
paths involving backtracking is outlined.

2 Examples

We illustrate a few examples of simple coordination spaces and Pareto opti-
mal path classes.

Ezample 1. Consider the case where N = 2, Il = I3 = [-2,2], and O =
{(z,y) : ? + y? < 1}, which corresponds to a pair of identical disc-shaped
AGV’s sliding along interval roadmaps which intersect in the workspace at
right angles. There are exactly two Pareto-optimal classes of paths from
(—2,-2) to (2,2), as illustrated in Fig. 2[left]. The difference between these
two paths lies in which robot decides to pause in order to allow the other to
pass through the intersection. Note also that this is a cylindrical coordination
space and hence satisfies the Main Theorem above.

Example 2. We modify the previous example by letting N = 3 and choosing
O to be around ball of radius 1 at the origin. By the symmetry of X about the
diagonal of the cube, it is clear that there is a circle’s worth of paths which
begin at (—2,—2), trace a straight line which is tangent to O, and then
exit this sphere tangentially with slope one. The projection of this family
of paths to the first two coordinates includes as special cases the distinct
Pareto optima of Example 1, as well as a continuum of paths whose goal
times interpolate between these two. Hence, there is a continuum of Pareto
optimal classes.
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Fig. 2. [left] The case of two agents with a disc obstacle possesses two Pareto-

optimal classes; [right] Three agents with a spherical obstacle possesses a continuum
of Pareto-optimal classes.

Though neither of these examples is PL, the arguments for the number
of Pareto-optimal classes are robust and valid for PL approximations to O.

Ezample 3. Coordination problems without the fixed path constraint can
have continua of optima much more easily than in the fixed path case. Con-
sider the problem of translating two unit squares in the plane in such a
way as to exchange their positions. Assume that the squares are centered
at (—1,0) and (1,0). It is straightforward to show a continuous family of
Pareto-optimal classes. Extrema of this family consist of those coordinations
for which one square translates exclusively in the horizontal direction, while
the other square moves vertically in order to get out of the way. The interme-
diate coordinations involve one square translating up by an amount 0 < A < 1
and the other translating down by a total amount 1 — h. This example works
with arbitrary translations, or with translations restricted to coordinate axes
directions.

3 Discretized coordination spaces and cube paths

The key step in our analysis of cylindrical coordination spaces is a spatial dis-
cretization of them into cubical complexes. This step is inspired by techniques
in geometric group theory (e.g., [17]) which have found other applications in
robotics contexts [11].

Consider a coordination space X' for roadmaps {I;}. For simplicity, as-
sume that all the edge lengths of the graphs I'; are rationally related. Because
of this, one may choose a length § > 0 so that all edge lengths are integer
multiples of 4. Denote by Fi(n) the graph obtained from I'; by subdividing it
into edges of length 27"4.

Definition 2. For each n > 0, denote by X" C 1"1(") X oo X FJ(V") the
maximal closed subcomplex of the product cubical complex which does not
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intersect the obstacle set (0. This cubical complex is called the STAGE-n
DISCRETIZED COORDINATION SPACE.

These discretized coordination spaces “converge” (in homotopy type) to
the full coordination space X as n — oco. The cubical nature of these spaces
forms a convenient structure with which to manipulate paths. Our strategy
is to approximate Pareto-optimal paths with paths which follow along the
diagonals of cubes in X(™) for n sufficiently large.

Definition 3. Let X denote a cubical complex. A CUBE PATH from vertices
vp to vy in X is an ordered sequence of closed cubes C = {C;}V of X which
satisfy (1) C; N Cij41 = v;, a vertex; and (2) C; is the smallest cube of X
containing v; _; and v;. A cube path is said to be LEFT-GREEDY if in addition
Vi (3) Cip1 NSt(C;) = v;, where St(C;) is the STAR of C; (all cells, including
C;, which have C; as a face).

To each cube path is associated a PL path in X given by the chain of
straight line segments from v; to v;41 for ¢ = 0...N — 1. Roughly speaking,
a left-greedy cube path is one which uses the highest dimensional cubes as
early as possible in the path. This hints at the intuition of left-greedy paths
as Pareto-optimal, an intuition which is entirely justified.

4 Topological bounds on Pareto optima

In this section we demonstrate a uniqueness result for Pareto optimal classes.
The strategy of our proof is to show that any Pareto-optimal path class con-
tains a representative which is Pareto-equivalent to a unique left-greedy cube
path. For the remainder of the paper, X will denote a cylindrical roadmap
coordination space. The cylindrical structure yields uniqueness results for
left-greedy cube paths.

Proposition 1. Any path between vertices of X(™) is homotopic to a unique
left-greedy cube path.

Proof: Existence of a left-greedy path follows from Algorithm 1 and Lemma 4
following. The techniques of the proof for uniqueness are simple, but lie out-
side the scope of this paper. Briefly, one uses the cylindrical structure of X to
prove that X'(™) is NONPOSITIVELY CURVED (see, e.g., [11] for a definition).
Then, a standard result from geometric group theory (Prop. 3.3 of [17]) im-
plies that left-greedy paths are unique up to homotopy. O

Lemma 2. Any L™ geodesic path on X can be continuously perturbed to an
L -close cube path in X for n sufficiently large.
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Proof: Given any L*° geodesic in X, we begin by “pushing” it to an L*°-
approximate path a which lies completely in the interior of X'. This step
relies crucially on the assumption that X is regularly closed, so that the
interior is always accessible from the path.

We next approximate a by a cube path. Since the image of a is compact,
there exists an € > 0 so that a tube of radius € about the image of a does
not intersect 00. Choose n so that the grid size 4 is less than €. Modify a so
that its endpoints are at vertices of X(™). Consider the vertex v° := (0) and
the L balls B, := B (¢v°) of radius r about v° in X(™ . Let w' := aN 8B
and w? := a N O0By;s.

Let F := Bs;(v°) N Bs(w?). Clearly, w' € F and for any z € F it holds
that the PL path v© — z — w? is of the same L™ length as the restriction
of a to this neighborhood. We claim that F' contains a vertex of the grid
structure on X(™. To see this, note that F is a subset of some face of Bj
defined by the set of all points z = (z;) such that

z; € [0) — 6,00 + 6] N[w? —§,w?+6] ; i=1...N (3)

Since these intervals have the same length, it follows that either v) — § or
v? 4§ lies within the intersection for each i. Therefore, F' contains a gridpoint
v! of X(") and we may replace the segment of the path a with a PL path
from v to v! to w?. Repeat the argument inductively, beginning at the vertex
v! and considering the L balls about v' of radius § and 24.

Marching along yields a PL path passing through vertices of X(™ which
are sequentially of L°°-distance d. This is therefore a cube path in X(™. O

Lemma 3. Let a be a Pareto-optimal path on X. One can find homotopic
cube paths with endpoints close to those of a such that all the goal times
approximate those of a.

Proof: Apply Lemma 2 inductively and use the fact that the restriction of a
Pareto-optimal path to any subpath is an L* geodesic. O

A simple algorithm, LeftGreedy, converts a cube path C into a left-greedy
cube path by sweeping along C from left to right, comparing the star of
each cube with its neighbor to the right (line 3), and shifting the common
directions to the left cube (lines 4-5).

Lemma 4. Given a Pareto-optimal cube path C, LeftGreedy(C) is a left-
greedy cube path which is Pareto equivalent to C.

Proof: Since common directions are shifted to the left, each sweep through
C for which Cj11 N St(C;) # {v;} for some i strictly decreases the positive
integer-valued function ), i - dim(C}); hence, convergence.

To argue that LeftGreedy can be executed through Pareto-equivalence,
note first that the shifting process of lines 4-5 results in a homotopic path,
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Algorithm 1 LeftGreedy(C)
Require: C = {C;}1" is an L*°-geodesic cube path
1: while C is not left-greedy do

2: fori=1..m do

3 Z <+ Ciyan St(Ci)
4: C’i-‘,—l — Ci+1/Z

5: Ci+CixZ

6 end for

7: end while

since all modifications take place within St(C;) U Ciy1. If the jt* coordinate
x; reaches its goal at vertex v; of C, then all subsequent vertices vy (k > i)
lie within the hyperplane of X having the same j** coordinate. Hence, in line
3, the common factor Z is trivial in the j** coordinate for v; and beyond.
Thus, the time-to-goal for z; is unchanged by steps 4-5. O

We now may prove the Main Theorems:

Theorem 1. Locally Pareto-optimal path classes on X are in bijective cor-
respondence with homotopy classes of paths (fizing the endpoints).

Proof: Assume there are two locally Pareto optimal paths, a and o/, which
are homotopic. Approximate these paths by homotopic cube paths C and C’
on X(™ for some large n via Lemma 3. Feed these cube paths to LeftGreedy.
Via Lemma 4, the outputs are left-greedy cube paths which are Pareto equiv-
alent to C and C’ respectively. By Proposition 1, C and C’ are the same path
and hence have the same output times. Therefore, o and o' have output times
which are arbitrarily close. O

It does not automatically follow that there is a bound on the number of
Pareto optimal paths, since any cylindrical coordination space X which is
not simply connected must have a countably infinite number of homotopy
classes of paths. However, all but a finite set of these can be eliminated as
global optima:

Theorem 2. The number of globally Pareto optimal paths between fixed end-
points on X is finite.

Proof: Fix endpoints and consider an infinite collection of Pareto optimal
paths, all in different homotopy classes. We induct on K, the dimension of
the smallest hyperplane (subset obtained by fixing certain coordinates) of
X containing all the paths. The induction hypothesis is that for any such
infinite collection of paths, there is an infinite subsequence of paths whose
goal times {77} satisfy T}, , > T/ +1 for i = 1...00 and j = 1...N. Assume
that K = 1. Then, the subspace in which the paths live is a graph, and any
infinite collection of homotopy classes must contain representatives which
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go around a cycle an arbitrarily high number of times, leading to a set of
uniformly increasing goal times.

Assuming the hypothesis for systems in a hyperplane of dimension K,
consider without loss of generality a system with K + 1 degrees of freedom.
Given an infinite number of Pareto optimal classes of paths {v;}, we may, by
choosing a subsequence and reindexing, assume that T} converges to a con-
stant T as a non-increasing sequence and that TZ-K *1 5 0. By compactness
of the L®-ball of radius 7", we have that the points v;(T!) converge to some
point x € X. After reaching the first goal, the remainders of all the paths lie
in a hyperplane of dimension K containing the point z.

We know by induction that, after restricting to a subsequence, the goal
times T} (j = 2...K +1) must march to infinity at a rate bounded from below,
since they all have starting point approximately at z. The only way for these
paths to be Pareto optimal is to have the times T}! be a strictly decreasing
sequence. However, one can perform an arbitrarily small perturbation of the
paths near z to switch to a low-i path after arriving at . This makes all the
other goal times shorter, contradicting the Pareto assumption. O

It follows easily from the compactness of X' that there is a finite bound on
the number of optima which is independent of the endpoints. This completes
the proof of the Main Theorem.

5 Algorithms

We now consider the algorithmic problem of computing exact Pareto optimal
paths. For concreteness, we restrict attention to coordination problems for
N robots Ri,...,Rnx in which each robot is modelled by a convex polygon
translating along a PL path in R?. As a first step, we develop an algorithm for
deforming a path to its Pareto-optimal representative. This is analogous to
Algorithm 1 but operates directly on X, rather than using the cube paths in
some X'(")_ This algorithm is presented in §5.1, followed by an implementation
in §5.2 and a discussion in §5.3 of the complexity of computing the set of all
Pareto optimal solutions.

5.1 Computing Pareto optimal paths

A path is MONOTONE if it is nondecreasing in each dimension. This is equiv-
alent to the requirement that robots may not “back up” along their paths.
For simplicity, we present our algorithm for the case of monotone paths and
then outline the changes required to deal with non-monotone paths.

We know from §4 that it suffices to compute ' to be the unique left greedy
path homotopic to 7. Informally, left greedy implies that each robot should
move at the fastest possible speed. Each speed change can be characterized
in one of four ways: (1) stopping to avoid an immediate collision (when the
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Algorithm 2 EXACTLEFTGREEDY(X,7)

Require: +« is a monotone collision-free coordination in X.
x0<—(0,...,0)
w0
O + OBSTACLEREGIONS(X)
E + CRITICALEVENTS(O, )
t«0
while z; # zg0a: do
tt+1
v ¢~ MAXIMALLOCALLY COLLISIONFREEVELOCITY (z, w, O)
9: e+ NexTEVENT(z,v, E,O)
10:  w < UrDATEWAITFORSET(p, €, w)
11: x4 < x4—1 +v-e.time
12: end while
13: return (zo,...,x¢)

path reaches the boundary of a coordination space obstacle); (2) stopping to
avoid a future collision (when a projection of the path reaches a horizontal
or vertical extremum of some obstacle about which it may not go around);
(3) restarting from case 2 when one of the obstacles has been successfully
traversed; and (4) stopping when any robot reaches its goal.

The response to reaching a critical event depends on . The homotopy
class of a monotone path is uniquely determined by assigning to each obstacle
in each projection an orientation CW or CCW indicating the direction around
which the path passes. As a result, if we build 4/ in such a way that it induces
the same orientation as v on each obstacle, we can be certain that v and ' are
homotopic. This is accomplished by stopping only at vertical critical events
for obstacles with CW orientation and horizontal critical events for obstacles
with CCW orientation.

Our algorithm builds a path by starting with a single point at (0,...,0)
and adding linear path segments sequentially until the goal is reached. We
have already classified the critical events at which a robot may need to change
speed in a left-greedy coordination. Thus, at every step, we need to compute
the appropriate left-greedy velocity v, use v to determine which of these
events will occur next, and add a segment to our coordination advancing
to this point. We maintain as an invariant that w records the set of robots
halted because of a critical event. This method is summarized in Algorithm 2;
details follow. In our analysis, N denotes the number of robots, m the to-
tal complexity of the pairwise obstacle regions, and p the number of linear
segments in . We consider N fixed.

The function OBSTACLEREGIONS computes the m obstacle regions using a
simple collision detection method. In CRITICALEVENTS, we can generate the
critical events using a straightforward generalization of the standard vertical
decomposition algorithm in [9] in time O(mlogm). To assign an orientation
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to an obstacle o C O, we need to determine whether o is above or below .
Since « divides each projection of X into two regions with PL boundaries,
computing the orientation for each obstacle is a planar point location problem
easily solved for all obstacles O(p+m log p) time using recursive triangulation
methods [13]. Computing NEXTEVENT involves a ray-shooting query in each
projection requiring total time O(y/mlogm) to execute the algorithm of [7].

Computing local left greedy gradients Given a point z in coordination
space, we want to compute the maximal velocity v = (v1,...,vn) that does
not result in a local collision. It is straightforward to show that v is the solu-
tion to a linear program in O(N?) constraints with maximization objective
>; vi- For fixed N, such a program can be solved in constant time. In prac-
tice, the number of constraints is a function of the complexity of obstacle
intersections and should be rather small.

Analysis Our algorithm is output sensitive in the sense that the run time
is a function of the complexity p’ of the locally Pareto optimal path gener-
ated. Each iteration of loop on lines 6-12 adds an additional segment to «'.
Therefore, Algorithm 2 executes in O(p + mlogmp + p'v/mlogm) time.

Dealing with nonmonotonicity We now relax the monotonicity require-
ment. The primary difficulty to be overcome is that obstacle orientations are
no longer sufficient to determine a path’s homotopy class. Indeed, one may
revisit obstacles numerous times in opposite orientations.

To collate this data, extend rays upward and downward from each ob-
stacle vertex that is a horizontal local extremum and do the same mutatis
mutandis for vertical extrema. For each ray, assign a symbol a; to represent
the action of crossing this ray in the forward direction and let a; ' denote
crossing the ray backward. The homotopy class of a path is completely deter-
mined by the sequence in which it crosses these critical events (extending our
earlier usage of the term) and the direction of each crossing. That is, a path’s
homotopy class is uniquely determined by its representation in the language
L= {ai,ajl}*.

Conversely, if two paths are homotopic, then by continuously deforming
one into the other, the crossing sequence will change by a simple transpo-
sition when the deformation passes an intersection point between a pair of
critical events or when the order of successive events in different projections is
reversed. Thus, we admit commutativity between symbols corresponding to
events in different projections and to intersecting events in the same projec-
tion. We consider L with these relations as a group under word concatenation.

One can show that the left greedy path in each homotopy class will have
a minimal-length crossing sequence in the group L. This dictates, for each di-
rection in each projection, the order in which critical events should be crossed.
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The straightforward method for doing word reduction in L is quadratic in
the length of the word, which itself is @(pm).

In light of this analysis, it is a simple matter to extend Algorithm 2 to op-
timize non-monotone paths. Having computed the minimal crossing sequence
from ~y, we can build 4" segment-by-segment, enforcing the sequence of criti-
cal event crossings prescribed for each robot. Each robot should stop rather
than cross any event other than the next prescribed in the sequence. At each
step, the correct direction for each robot (i.e., forward or backward) is de-
termined by the direction required to reach the next event in the sequence
for that robot. Aside from the additional preprocessing time required to do
word-reduction in L, the complexity remains unchanged.

5.2 Simulations

We have implemented a simple version of the algorithm for monotone paths.
In particular, we perform both the point-location step and the next event
selection using the obvious quadratic time algorithms. Our implementation
isin C++ on Linux and experiment times shown are for a 2.55GHz processor.
Figure 3 illustrates a simple coordination problem with n = 3 for which we
found the set of three Pareto optima by exhaustively enumerating monotone
homotopy classes. These coordinations took approximately 0.3 seconds to
compute. Figure 4 shows two more complex coordination simulations — one
in which 8 robots translate left-to-right, and a ‘swap’ problem in which 20
agents switch sides.

5.3 Complexity of enumeration

Coordination of large numbers of agents under tight constraints is computa-
tionally challenging.

Ezample 4. Consider the generalization of Example 1 with I; = [-2,2] for
i = 1...N and having N obstacles, each of the form z7 + 27 < 1for i < j. The
two Pareto optimal classes from Example 1 generalize (by the cubical sym-
metry of the space) to yield 2V~! optimal classes between opposite corners
in this coordination space.

This type of obstacle set — N intersecting cylinders — can be realized
physically by an AGV system with IV disc-like robots sliding along intervals,
the collection of which have an N-fold intersection at their midpoints. The
exponential complexity of this coordination problem is intuitively clear: since
everyone cannot pass through the shared center at the same time, they must
proceed through one at a time. There are a factorial number of ways so
to do. On the other hand, for systems in which the cylindrical obstacles
have bounded degrees of intersection in N, we expect the computational
complexity to be polynomial in N.
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Fig. 3. [top] A coordination problem with 3 robots, its coordination space, and
the projections thereof. [bottom] Snapshots of the three Pareto optima.

6 Discussion

It comes as no surprise that the enumeration of all Pareto optima is of high
complexity: coordination is inherently difficult, and Lemma 1 implies that
such an enumeration is akin to determining all minima for all monotone
scalarizations of the cost functions. The algorithms we present are effective
enough to be useful in factory AGV systems, where in practice the tracks
have relatively low multiplicity of intersection.

What is a surprise is that the set of Pareto optima is finite, the crucial
reason being that the cylindrical coordination spaces can be approximated by
cubical complexes without any “concave” corners (more specifically, vertices
of positive curvature). For such spaces, Pareto-optimal cube path classes are
unique up to homotopy. This is not the case for general cube complexes. For
example, if one approximates the spaces of Examples 2 and 3 by discretiza-
tions X" then, as before, there are a finite number of optimal left-greedy
cube paths. However, they are not unique up to homotopy, and the number
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Fig.4. Two complex coordination problems; [left] for 8 robots, the 37 optimal
coordinations were computed in 171.6 seconds by an exhaustive search of monotone
classes; [right] for 20 robots, a single coordination was computed in 1.53 seconds.

of such paths grows exponentially in the discretization step n, giving rise to
the continuum of optima in the limit.

We note that the problem of computing Pareto optima, is not dissimilar
to that of computing Euclidean geodesics. It is well-known that computing
shortest paths in 3-d is NP-hard in general [5]; we believe, based on our algo-
rithm for Pareto optimization, that the geodesic problem is likewise simpler
in the cylindrical case.

Among the several avenues for extending this work, we find the problem
of characterizing the set of Pareto optima for general (non-cylindrical) coor-
dination spaces to be the most fascinating. Working in the “cost space” (the
image of 7), one must deal with non-discrete sets in the most general case.
Do the set of 7-images have any nice structure in general?
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