Motion Planning: The Essentials

Steven M. LaValle

This is the first installment of a two-part tutorial. The goal
of the first part is to give the reader a basic understanding
of the technical issues and types of approaches to solving
the basic path planning or obstacle avoidance problem
The second installment will cover more advanced issues
including feedback, differential constraints, and ureiet.
Note that is a brieftutorial, rather than a comprehensive
surveyof methods. For the latter, consult recent textbooks

[41, [9].
I. INTRODUCTION

Motion planning involves getting a robot to automat-
ically determine how to move while avoiding collisions
with obstacles. Its original formulation, callethe Piano
Mover’s Problem is imagined as determining how to move
a complicated piece of furniture through a cluttered housi
Have you ever argued about how to move a sofa up
stairwell? It has been clear for several decades that getti
robots to reason geometrically about their environments ar
synthesize such plans is a fundamental difficulty that 1®CUEig. 2. A 3D automotive assembly task that involves insertingemoving
all over robotics. a windshield wiper motor from a car body cavity. This problemsvgolved

The stages of motion planning development are parell@r clients using the path planning software of Kineo CAM.
to those of integral calculus: 1) The integration problens wa

clearly identified and defined; 2) perfect, exact solutioesen alygons. Motion planning formulations extend well beyond

Qe\_/eloped for many classes of f‘?”C“O”S? 3) since these Weﬁﬁid polygons and polyhedra, but such extensions aredeft t
limited to a small subset of functions that people care abouéection VI and the second part of this tutorial

numerical integration methods were developed with great The basic path planning problens informally summa-

success in practice. The similar stages of motion planniqued as: Given arinitial placement of the robot, compute

were: 1) It clearly defined in the 1970s; 2) the 1980s saW v to gradually move it into a desiregbal placement so

the _deveI(_)pment of p?”ec" comblnatorlgl sc_JIutlons, \hh'cthat it never touches the obstacle region. See Figures 1 and
are ideal in some settings, but not practical in most; 3) thf for examples

1990s brought samplm_g-based methods, which are no_t aSConsider the task in terms of algorithm inputs and output.
elegant, but offer practical solutions to modern induktria

INPUTS: An initial placement of the robot, a desired goal

grade problems. O\{er the pas§ decadg, motion plann|pg al acement, and a geometric description of the robot and
rithms have been widely used in robotics and automation al stacle region

have_ furtherm_ore found application well beygnd, in_CIUdingbUTPUT: A precise description of how to move the robot
the fields of virtual prototyping and computational biology gradually from its initial placement to the goal placement
II. PROBLEM FORMULATION while never touching the obs_tacle region.

Let W denote theworld, which contains a robot and ob- "T.hf outp;t tdetscrlpftlon Vt\'”” be ?&ath t?)rciu%h the tsett c:f
stacles. For a 2D world)) = R? and® C W is theobstacle a .";1 ermediate transformations of the robot, from star
region, which has a piecewise-linear (polygonal) boundar);.'nIS :

(The complemenw \ O is assumed to be a bounded open I1l. LIVING IN C-SPACE

set.) Therobot is a rigid polygon that can move through  ajhough the motion planning problem is described in the
the world, but must avoid touching the obstacle region. FQlorld, it really lives in a another space: The set of all rigid

a 3D world, the only differences are thav = R”, and  y),4y transformations that can be applied to the robot. Ehis i
O and the robot are defined with polyhedra, instead Qfyjieq theconfiguration spacer C-space Finding a solution

S. M. LaValle is with the Department of Computer Science, Ursig amoumsl to computing a path t_h'fOUQh the part of the C-space
of lllinois at Urbana-Champaighaval | e@ii uc. edu that avoids robot-obstacle collisions.



sense and accounts fér(the “circle” is obtained by gluing
0 and~ together). The C-spaagis a 3D manifold, and each
ary o<y element is nicely described gs= (z,:,). Remembering

that 6 “wraps around” at2r is crucial to motion planning;
Fig. 3. The first three are manifolds because they locally Kitike” ~ Otherwise, an artificial barrier or redundant exploratioif w
R?; the last two are not because at some points the dimensionehamg be introduced. If the robot is not allowed to rotate, then
branching occurs. we obtain thetranslation-onlycase, and’ = R? with ¢ =

(xhyt)'
A rigid body may translate and rotate. Most people are _For the 3D world, the concepts mostly extend as you

much more familiar with performing@ne transformation to mlght ?xpeﬁt.t_Threeltran;la;t[{?]n pz;\]ramgtﬁgsgt,zkgppisr
place a body into a scene, rather than thinking akajut 2N¢ @ transiation-only robot then has L.-spce K= wi

transformations. The notion of configuration space was tI”tF’e:b (xé’é’t’ %) .'fHI(()jwel\I/ebr’ t_rt1e ;et 01; 3? rotatt|ons t_urn.T out
key insight to Lagrangian mechanics of rigid bodies [1],0 € mantioid all by itset, and It Is not as S'Tp e" as
circle or sphere topologically. The best way to “see” its

as it allowed dynamics to be expressed using the preciée . ) . .
degrees of freedom of a body. The idea was introduced ructure is to use quaternions to represent rotationseSin

motion planning by Lozano-Perez [12] and Udupa [17]. The is a brief tutorial, only the essence is given here, and

C-space in physics and control theory is usually called quaternion algebra is avoided here since it is not critioal t
Lie (pronounced “Lee”) group In that context, which is motion planning. Every 3D rotation can be expressed as a

much more widely studied than motion planning, the C-spaégtaﬂon by an anglé 'e.[07 2m) apout;omefixed gxis that
is considered as differentiable manifold which leads to P2SS€S through the origin. Let this axis be described by some

considerable technical and notational hurdles. The Cespai‘hn't vr?ctor_v = (”ﬁ’”’v?)' Th!zlalready mzkehs I appezlir "
used in motion planning requires no calculus; therefore, fpat beare |s|a SP ereho |p033| ehaxesh, an Tth_en a”;;t(.:e °
is described as #opological manifold which is fortunately possible angles at each place on the sp ere. This co lon

much simpler to define and manipulate. The definition o ircles glued together around the sphere is called the Hopf

an n-dimensional (topological) manifold is a subset of ibration. .NOW there is another trouble. Just @sand 27
R™ for n < m such that every; € C is contained in were equivalent in the 2D case, for the 3D case we have

at least one open subset 6f (pick a small one!) that is thatv apde produce the sanje.rotation. ag and2r — 0. A
homeomorphit to R™. The intuition is that in the local conyenlent way to handle th|'s s to define- (C.L’b’ ¢, d) and
vicinity of every ¢, a manifold behaves [ik&R™. It is a asf'gna,:;c’zs(eﬁ)’ bh: v12 5122(9/22)’ 2;_“;51“(9/2.)’ aﬂd
nicely behaved “surface”. The existence of sharp cornefs= U3 sin(6/2). Note thata® +b°+c*+d° = 1, meaning that

does not even matter; however, branching or locally changi Itlets_ on a_'l“_';:'t sghere. Fufrthethofez;mdf—hlla:rseDequ;v?Ient .
dimensions is not allowed. See Figure 3. rotations. 1he f£-space for the set ot a rotations s

We now take a look at C-spaces that commonly aristégerefore nicely “visualized” as a 3-dimensional sphere-a

in planning. Consider a 2D world. Letl c R? denote a subset oft—in WhiCh opposite (calledntipoda) points are
polygonal robot. It could, for example, be all points insafe the sam? ' Thfhmeans thhat to gﬁt the Zet t;)fta" rottaglons,
a triangle defined by vertices-1,0), (1,0), and(0,1). We we can stay in the upper hemisphere 0), but must be

could rotate the robot counterclockwise by ahy [0, 27) Care:‘ftﬂ ata :,,O’Tﬁeiauﬁe. oplaosnef potlrr:ts on ltth's equato_r
and then translate it by any; € R in the X-direction and are "the same". The technical term for the resufting space 1s

. . _ 3
anyz; € R in theY direction. This allows for any possible :ezl f:ﬁjicuvs?t’rsgaﬁ de:‘?t?(flf‘li .v\l’:or gt]aen::a]}z? 0]%;3&3
position and orientation, and every;,y;,6 combination obot that can transiate or rotation, we o x '

leads to a unique robot placement. Let= (z7,y;,0) be which is a six-dimensional manifold. We can represent the
. — ty Yt

called theconfiguration A point (,y) € A would then COMMguration as(z,, gy, 2, a,b,¢,d), while enforcing that
appear at somér’, ') € W (in the world) given by a® + b* + ¢ + d° = 1. The use of quaternions means that

the set of all 3 by 3 rotation matrices is parametrizedaby

x/ cosf) —sinf x T b, ¢, andd:

y | = |sinf cosf y vy, Q)

1 0 0 1 1 2(a? +b%) -1 2(bc — ad) 2(bd + ac)
2(bc+ad)  2(a®+c*) -1 2(cd — ab)

which uses the standard 3 byh@mogeneous transformation 5 9
. . . . 2 — 2 2 —1
matrix. The upper-left, 2-by-2 block is just a rotation matrix. (bd - ac) (cd + ab) (a +d%) )

The set :?f all configurationg = (2:,y:,0) is clearly & \wjth different possible parametrizations of rotationsr fo
subset ofR”, but to define the C-space we must take intgp or 3p worlds, it is important to realize that if two

accougt th?ﬂ_izﬂ yield? equivalent rotations. We write that yoints are “close” under one representation, they might be
€ =R*x 57, inwhich S denotes a circle in the topological «tar» ynder another. Furthermore, if there are singulesiti
1 ) ) in the parametrization mapping (e.g., yaw-pitch-roll epr
Homeomorphic means that for the open set, aythere exists a . h iah h
continuous, bijective functiorf : O — R™, for which the inversef —! Sent?‘t'on)’ the C-space mig t_ not even represent the same
is also continuous. manifold as the set of all rotations.



To illustrate the philosophy of combinatorial planning,
consider the case in whichy = R? and contains aoint
robot (A = {(0,0)}) that cannot rotate. In this cage= R?,
and the task is simply to “connect the dots” in the plane with
a curve that avoids the obstacles; see Figure 5(a).

Here is a simple technique that contains all the essential
ingredients of combinatorial planning. All methods first
compute aroadmap which is a graph in which each vertex
is a configuration irCy,.. and each edge is a “simple” path
throughCy,.. that connects a pair of vertices. Here is one
way to achieve this:

Fig. 4. In the C-space the problem looks simple: Congedbd g while

remaining InC . ve. 1) DecomposeCy,.. into trapezoids with vertical side

segments. Figure 5(b) shows the result. From each
polygon vertex, an attempt is made to shoot rays

Now that different possibilities fof have been presented, upward and downward. Each ray may be immediately

consider the parts of that are prohibited due to collision. blocked, or it may travel until hitting another part of
Let A(q) C W denote a closed set of points in the world __ the obstacle boundary. .
occupied by the robal when it transformed to configuration 2) Place one vertex in the interior of every trapgzmd. It
q. A configurationg € C places the robot intoollision if and doesn't really matter where; for simplicity, pick the
only if A(q) N O #  (the robot and obstacle are attempting centroid. _ _

to occupy at least one common point)it). The set of all 3) _Place one vertex in every vgrtlcal segment. The result-
non-colliding configurations is often called tlieee space ing vertices are shown in Figure 5(c).

and is defined as 4) Con_nect e_ach _segment vertex to. the two vgrtices that
are in the interior of the neighboring trapezoids. Each
Crree ={q €C | A(g) N O = 0}. 3) connection forms an edge in the graph and corresponds

The complement is called thebstacle region in C-space o a straight-line path.

Cobs = C \ Cree- The result is a roadmap that appears to capture the structure
The problem statement of Section Il seemed somewh@t Cyrece. How would you implement these steps? For the
informal; however, using the C-space, the basic path ptanni first step, we could iterate over each vertex and determine
problem can be precisely defined: Given a robot descriptiddfecisely where each upward and downward ray intersects
A, an obstacle descriptio®, a C-space, aninitial con- other segments. We could then easily identify the first
figuration ¢; € C, and agoal configurationgs, compute Segment hit by the vertical ray in the above and below
a continuous pathr : [0,1] — Cf. With 7(0) = ¢; and directions. For an example as simple as Figure 5(a), this

7(1) = q¢. See Figure 4. A typical way to expressis is a fine method. However, if there anepolygonal edges in
as a sequence of line segments, which ignores the particut@tal andn is large (say;, = 20,000), then the method is
parametes < [0, 1], but is good enough for motion planning not efficient because it takes tint@(n?).
results. Note the path must be continuous; otherwise, theBy proceeding carefully, this computation can be reduced
robot would appear to “teleport” from one place to anotheto time O(nlgn) by employing theplane sweep principle
which is obviously cheating. Gradual motions through [6], which underlies many decomposition algorithms used fo
make the robot move gradually through. combinatorial planning. First, sort the polygon verticesnf
left to right, requiring timeO(n Inn). During the algorithm
IV. COMBINATORIAL PLANNING execution, a list of some polygon segments is maintained,

Although the motion planning problem lives in tlwen- sorted from top to bottom as they are stabbed by a vertical
tinuous C-space, computation idiscrete Therefore, if we line. The method proceeds incrementally from vertex to
want an algorithmic solution, we need a way to “dis-vertex, traveling from left to right. At each step, the edge
cretize” the problem. This has led to two main schools ofist is updated by simple insertions and deletions, whiathea
thought: 1) combinatorial planning which thrived in the takeO(lgn) time using self-balancing binary search trees. If
1980s, constructs structures in the C-space that disgreté¢he edges incident to the vertex are both to the left, then the
and completely capture all information needed to perfornwo edges are deleted from the list. If they are both to the
planning. 2) sampling-based planningdeveloped mainly right, they are inserted into the list (in order). Otherwige
across the 1990s, uses collision detection algorithmsabepr one to the left is deleted, and the one to the right is inserted
and incrementally search the C-space for a solution, rath&hanks to this ordering, we can determine(ilgn) time
than completely characterizing all of tlig,... structure. The the segments directly above and below the vertex, which are
second approach is most widely used in practice; howevdirst stabbed by upward and downward rays. It is furthermore
the first one is far superior in many instances. It is theeforsimple and efficient to incrementally extend the graph ak eac
worth studying both. vertex is processed. For more details, see Section 6.29 of |



(d)

Fig. 5. A combinatorial planning illustration: a) A 2D polygal obstacle

or Section 6.1 of [6].

The roadmap is constructed without considering the query
pair, g; and ¢5. Once the investment is made, the same
roadmap can be used for multiple query pairs. In other words,
we can easily solve numerous maotion planning problems in
a world that contains the same obstacles and robot. Here is
a simple way to use the computed roadmap from Figure 5:

1) Find the trapezoids that contaifn and gg.

2) Connectg; and g¢ to the vertices in their respective

trapezoids.

3) Search the graph for a path that connegts$o ¢¢.

The first step can be performed trivially i®(n) time

by testing whethely; (or ¢g) lies in each trapezoid; this
can be shaved down tO(lgn) time by developing clever
hierarchicalpoint location data structures [6]. The second
step takes constant time, and the final step can be performed
in O(n) time using simple graph search algorithms such as
breath-first or depth-first.

For the simple case of a point robot in a polygonal world,
numerous alternative algorithms exist that yield complarab
performance. We could, for example, decompG@gg.. into
triangles instead of trapezoids. The general principles ar
that each cell should be easy to traverse (convex is ideal),
the decomposition into cells should be easily computable,
and the adjacencies between cells should be straightfdrwar
to determine. Based on these properties, a useful roadmap is
obtained.

Roadmaps need not be obtained by cell decompositions.
For example, ashortest path roadmapyields distance-
optimal paths and is constructed by connecting certairspair
of vertices that can “see” each other and each have interior
angle greater tham. A maximum clearance roadmagan
also be computed efficiently. In general, a roadmap is ex-
pected to have two properties to be useful for planning: 1)
Accessibility:It is simple to reach a point on the roadmap
from any g € Cyr. While trivially avoiding collisions; 2)
Connectivity-preservingFor any pairq;, ¢o of points that
is connected to the roadmap, a path exists between them
in the roadmap if and only if there was a path between
andg.. In other words, ifg, is generally reachable fromy,
then traveling between them via the roadmap must also be
possible.

It seems up to this point that combinatorial planning
solutions have beautiful properties. Most importantlygyth
construct adiscreterepresentation of the problem thex-
actly captures the solution. In other words, there are no
“approximation” or “sampling” errors. These methods are
called complete meaning that for any input problem, they
correctly determine in finite time whether or not a solution
exists.

region with proposed; andg¢ (one possible solution is shown in a dashed Here comes the trouble: Most motion planning problems

path); b) the trapezoidal decomposition; c) constructingaslg by placing
a vertex in every vertical edge segment and every trapezo@ion;, d)
connectingg; and gg to the graph and searching for a solution path.

involve robots that are not modeled as points and they can
rotate in addition to translating. How many of these nice
combinatorial planning ideas extend? First consider tlse ca
of a polygonal translation-only robot. If the robet and
obstacle® are convex polygons, thef,s is a polygon

in which every edge corresponds to a point-to-edge contact



RRT(g)
1 G.init(qo);
@ 2 repeat
3 Qrand — RANDOM_CONFIG(C)
4 Gnear NEAREST(Ga Q'r'and);
5 G'addedgeeneara Qra,nd);

Fig. 6. A triangular robot and a rectangular obstacle.
Fig. 8. A simple outline of the RRT algorithm.

V. SAMPLING-BASED PLANNING

Sampling-based approaches are by far the most com-
mon choice for “industrial-grade” problems becaugg;
is composed of an unwieldy number of facets. They aban-
LT don the idea of explicitly characterizings,.. and Cops,
(a) (b) and essentially leave the planning algorithm “in the dark”
Fig. 7. (a) Slide the robot around the obstacle while keepiregn both Whe,n, explorlngicfree. Th,e only ”|.|ght". is provided by a
in contact. (b) The edges traced out by the origindform C,.. collision detection algorithm, which is a black box that
probesC to determine whether some configuration (or a
small ball around it) lies inCy,... These algorithms often
work by hierarchically representind and© and attempting
. to quickly determine collision at a course resolution [11].
betwegnA an_d 0. S“ee Figures 6 ?nd /. Can you see hoVK/Iany collision detection methods aiacremental which
to achieve this by “reassembling” the edges.4fand O oang that they can yield extremely fast performance by

into Cops, with the edges appearing in an ordering having, iy g information from a previous execution on a nearby
to do with edge normals? Once this conversion is made, t %nfiguration

trapezoidal decomposition approach is easily applied4 If

_and(’) are nonconvex, then they first need t(_) be decomposeé%d searching’,.. for a path, gradually revealing more
Into CONVEX PIECES, to_ _construc_t convex piecesCgy;. A and more of it with the collision detector. In this way,
trapezoidal decompos!t_lon algorithm could even be used f?ﬁotion planning feels like using a robot with a weak sensor
the convex decomposition o4 and O! to explore an unknown environment. This might seem odd
Now introduce rotation. For the translation-only casesince O and A are given; however, the “environment”
Csree has a piecewise linear boundary because translationtising explored isCy,.. (or equivalently,C.s), which is
a linear transformation. Unfortunately, rotation is noetr high-dimensional and prohibitive to explicitly represent
and commonly represented using trigonometric function&ampling-based approaches attempt to find a solution quickl
Various ways to reparametrize rotation matrices lead tahile cheating their way out of building a full “map” of
improvements; however, nonlinearity is unavoidable. Fof;,... Don't compute more than you have to!
computation, polynomial parametrizations are preferféun: To get a feeling for sampling-based planning issues, we
previous piecewise-linear representations then are aegla first introduce a frequently used method basedrapidly
with semi-algebraicrepresentations, meaning each “facet’exploring random trees (RRTsfrigures 8 and 9 show the
of A, O, andC.s is represented as the roots of implicitalgorithm and its result. The idea is to aggressively probe
polynomials. Constructing,,s in terms of polynomial roots and explore the C-space by expanding incrementally from
is straightforward, but a combinatorial explosion occinatt an initial configurationg,. The explored territory is marked
produces far too many facets for practice (the example iy a tree rooted atjy. Each iteration extends the tree by
Figure 6 already produces more thz). For 3D problems, adding a leaf vertex and edge that connects it to the rest
it becomes considerably worse. The next difficulty is taf the tree. Each edge is a collision-free path between two
perform a cell decomposition. The first motion planningconfigurations. The RRT algorithm picks a poipt,,.q at
method to accomplish this is the cylindrical decompositiomandomin C (not Cy...), and then tries to connect the tree
method of Schwartz and Sharir [13], which produces # it by extending the nearest point in the tree. This biases
number of cells that is doubly exponential in the dimensiothe tree toward aggressively reaching unexplored part§ of
of C. More efficient cell decomposition methods exist, andut eventually settling on uniform coverage.
there is Canny’s algorithm [3], which directly produces a Some implementation details are needed to clarify Figure
roadmap througlts,.. in singly expoential time without a 8. Step 1 initialize<~ to contain a single vertex, correspond-
prior decomposition. These methods provide solutionséo thing to qo and no edges. In Step 3, a random configuration
general path planning problem; however, they are rarelyp ev@enerator is used to obtain,,.q € C. A random translation
implemented due to numerical issues and inefficiency fromould be selected uniformly from a bounded region (often
the combinatorial explosion. an axis-aligned rectangle). A random 2D rotation is obtine

Cobs @

Planning algorithms then work by incrementally probing



(b)

Fig. 11. Rotational vs. translation domination: (a) The tasto move the
“C” shape to the right. Rotation dominates. Performance shauprove
if rotation is weighted heavily in the metric. (b) In this casenslation
dominates, and should therefore be weighted more heavilyisffttt is
45 iterations 2345 iterations known in advance.

,um!ﬂé:%&ié a2

Fig. 9. In the early iterations, the RRT quickly reaches thexplored In
parts. However, the RRT is dense in the limit (with probapitihe), which
means that it gets arbitrarily close to any point in the space.

dn

Grand @ Qrand

q Fig. 12. For implementation ease, intermediate vertices candeeted to
0 avoid checking for closest points along line segments. Téaetoff is that
the number of vertices is increased dramatically.

Fig. 10. A new edge is added that connects from the random samp| 4
to the nearest point it¥, which is the vertexy,.
among all those explored could lie along an edge. Rather
than incur expensive computational cost, a common tradeoff
easily by randomly selecting sonfee [0, 27). It turns out is to check some intermediate points at regular intervals
that selecting a uniformly random 3D rotation is technigall along an edge; see Figure 12. This introduces an unfortunate
more challenging. Here is an amazingly simple methogarameter to tune, but often simplifies implementationss (it
Choose three points;, us, us € [0, 1] uniformly at random also reasonable to avoid all of this and just use the vejtices

and then let [14]: Finally, Step 5 extends the tree.df,, were empty, then
a = /T =y sin 27ug b = /T =y cos 2mus " an edge can be made froq;lm t0 Grand- If Gnear 1S @
¢ = /Uy sin 2mus d = /iy cos 2mus (4)  vertex inG, then the endpomts of the new edge arg.-
_ ) ] and g,qnq- If gneqr 1S @ point along the interior of an edge,
in the rotation matrix (2). then that edge must first be split, with.., introduced as

What does uniform random really mean &? Recall from g intermediate vertex. Sindg, is usually not empty, there
Section Il that the set of transformations could be exprssgre two issues: 1) A collision detection algorithm make®sur
in numerous ways, meaning that the notion of uniform rannhat we can travel frong,,cq, toward g,q,4 while staying in
domness appears to be arbitrary. There is, however, a we@ll;m, and 2) we might not be able to reagh,,,; without
defined notion of uniformity based draar measurewhich  jtting C,,,. If it is not possible to reach,.»q4, then the new
is beyond this tutorial; see Section 5.2 of [9]. Intuitivelfy yertex is instead placed at the configuratipnthat gets as
we rotate the coordinate frame on which the rotations arggse as possible, as shown in Figure 13. (If no progress is
defined, then uniformity should be preserved. The methogspssible, then no new edge and vertex are created.)
for rotation above, including (4), achieve this. The RRT algorithm presented in Figure 8 aggressively

Step 4 findSg,car, the closest point i 10 grand; S€€  exploresC,..; however, if the tree is grown frong;, there

Figure 10. What does it mean to be closest? This agaj§ no consideration ofi;. Now consider ways to solve the
depends on precisely ho@is represented and implies thatpasic path planning problem using RRTS.

a distance function has been defined. The distance functionyere s a simple adaptation. Start the RRT wjth= ¢;
p+ CxC = [0,00) is formally called ametric and and at every 100th iteration, forag.,. := g instead of
usually satisfies the following axioms for all, q,r € C:
1) p(p,q) = 0, 2) p(p,q) = 0 if and only if p = ¢, 3)
p(p,q) = p(g,p), and 4)p(p, q) + p(g,7) > p(p,r). In vir-
tually all sampling-based planning algorithms, perforgean
depends on the choice of metric. It is sometimes difficult
to set the relative weights between rotational distances an o
translational distances; see Figure 11.

Now that “closest” has been established, which pointsin
are checked for being nearestgq,,s? The simplest is check Fig. 13. If there is an obstacle, the edge travels up to thiaolesboundary,
the vertices and report the nearest one. But the closest po# far as allowed by the collision detection algorithm.
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Filling a well A “bugtrap”
Fig. 14. The C-space obstacles may contain wells that trapnpta in £
local minima or one-way doors that resemble bug traps. & \&
3 4 5

choosing a random configuration. df; is reached, then

a path has been found fromy to g, which solves the o ,
. . Fig. 15. The bidirectional RRT solves the Alpha 1.0 puzzleaifew

problem. This induces a gentle bias toward the goal. At ong:, ;ies.

extreme, we could picks every time, making a beeline for

qa- This would fail miserably when an obstacle is reached.

Figure 14(a) shows an example in which this would occu

. . . rof a second. Nevertheless, there are limitations to the edeth
Aggressively attempting to reacjfy; by settingq,qnq := qa

in every other iteration would still work, but might wasteto as well as any sa.mpllng—based method. It is not harq to
much effort running int&,; instead of éxploring Therefore construct pathological examples that cause the algorlt_hm
light bi h 008 100th iteration i ' d’(iti]o converge too slowly. In some cases, problem-specific
a light bias, such as every leration ',S recommen e- leuristics can then be developed to recover performance.
For many problems, though, such a simple strategy is
not enough. Figure 14(b) shows a kind of “bug trap” from
which it is difficult to escape. Due to the existence of suc T o
situations, which commonly occur in practiceyidirectional a graph is incrementally constructed insidedgf... Each

search is more effective and popular. The algorithm growwr?;?gdtohii Zne(;tenxexstelfgggor;mn:)entho\(ljg:i'ggs diﬁtei:]rg'nfz h
two RRTs: 1) Gy, rooted atq;, and 2) Gg, rooted at P 9 grapn.

¢c. Instead of always extending the trees using rando fter that, alocal planning methoaonstructs an edge from

' i L X the selected vertex, thereby extending the tree. In the case
nfigurations, half of the time i nt tryin xten ’ . .
configurations, halt of the time Is spent trying to exte dheacof an RRT, the vertex selection method picks the vertex

tree toward the newest vertex of the other tree. The follgwin .
ow closest t0¢,q.nq- The local planning method attempts to

four iterations are repeated: .
) o connect the vertex tg,..,4. As an example of an alternative
1) Generatey,qnq and use it to extends;, obtaining a jncremental sampling and searching method, the Expansive

The RRT-based methods fall into a larger family of meth-
ds calledincremental sampling and searchingh which

new leaf vertexgne.. Space Planner (ESP) [7] selects a vertex with probability
2) FOrceqrand = qnew and use it to extendsc. that is inversely proportional to the number of other vesic
3) Generate a newjqng and use it to extend&q, within a ball of predetermined size. The local planning

obtaining a new leaf vertey,c. . method then connects to a random configuration within the
4) FOIC€qrand := qnew and use it to extendr;. ball, but only with a probability that is inversely propantial

Steps 1 and 3 are identical to the execution in Figure 8p the number of vertices that lie within a ball centered on
but for G; and G, respectively. Steps 2 and 4 “trick” the random configuration. Another example that falls ints th
the RRT by using the most recent vertex from the othdamily is the randomized potential field planner [2], which
tree as a replacement fgf,,q. If either of these two steps implements gradient descentdn,... and uses random walks
ever succeed in connecting the trees to each other, then theescape local minima.
problem is solved. This method is quite effective for most A common nuisance with sampling-based planning meth-
practical problems, as aggressive exploration frgmand ods is that the produced paths are jagged as they traverse
qc is balanced with trying to connect the trees to solve th€y,... This makes the solution animation jumpy; causing
problem. robots to follow such awkward paths is a comically bad
An example that was solved in 2002 by the bidirectionaildea. Therefore path smoothingis usually performed to
RRT is the famousAlpha 1.0 puzzleintroduced by Nancy clean up solution paths. Fortunately, it is straightforvar
Amato and Boris Yamrom. The task is to pull apart théo produce a cleaner path once a jagged solution is given.
twisted nails, leading to an extremely narrow corridor iPA simple method is to iteratively pick a pair of points at
Cfree through which the solution path must travel. Therandom along the path and attempt to replace the path portion
solution is illustrated in Figure 15. Most problems are nobetween them with a “straight line” ifi¢,... If this survives
this challenging, and solutions are often found in a fractiothe collision-detection verification step, then use thedn
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Fig. 16. The probabilistic roadmap method attempt to achieaelmap
accessibility and connectivity preservation via randoming and con-
necting to nearby samples.

Fig. 17. Consider rearranging many rectangles, with no iosst inside
of a rectangular box iiR2. Without a limit on the number of rectangles,
the problem is NP-hard.

segment and discard the original part portion. After sdvera
dozen iterations, the path is usually much improved.

The discussion so far has focused only single-query obtained by replacing the random configuration generator by
algorithms, meaning that only ong, g pair will be given @ deterministic point sequence that leads to zero dispersio
so that there are no advantages of extensive precomputatiBhC in the limit (for example, consider a multiresolution grid
Recall from Section IV that planning problems can béhat refines forever).
quickly solved once a nice roadmap has been computed thatThe best way to learn more about sampling-based motion
offers the accessibi”ty and Connectivity-preservingqﬂﬁ planning is to eXperiment with implementations. You could
ties. This motivates mu|tip|e-queryapproach to Samp“ng_ download and install a free |ibrary, such as the Open Motion
based planning known aspgobabilistic roadmag8]. In this ~ Planning Library (OMPL) from Rice University, the Motion
case, a bunch (e.gLp00) of random configurations are cho- Strategy Library (MSL) from the University of lllinois, ohe
sen up front and declared to be roadmap vertices. Roadmi®tion Planning Kit (MPK) from Stanford. If you instead
edges are formed by attempting to connect each configurati$f@nt to start from the basics, then at least downloading a
to all vertices within some specified radius; see Figure L6. follision detection package, such as PQP from the Uniyersit
a roadmap can be constructed that satisfies accessibitity f North Carolina, is recommended.
connectivity preservation with high probability, then #rc
be used to efficiently search for solutions to multiple adii VI. DIRECT EXTENSIONS
goal query pairs. One difficulty is that the roadmap may have Now that the core motion planning ideas have been
as many edges and vertices as a high-dimensional grid [1@kplained for the case of rigid 2D or 3D robots among fixed
which provides motivation for pruning strategies thatmafpé obstacles, several straightforward extensions can beredve
to keep the good roadmap properties while reducing its sizer which the planning methods are virtually the same.
substantially. See, for example, the visibility roadmaparat The formulation of Section Il allowed only one moving
[15]. rigid body. This limited the C-space to having no more than

To conclude, we should emphasize that a tradeoff hamension three fodV = R? and six forWw = R?. If we
been made by going to sampling-based methods. Recall fraatiow multiple moving bodies, then there is no limit on the
Section IV that combinatorial planning leads to completelegrees of freedom, and hence, the dimensiah @fonsider,
algorithms: They always find a solution if it exists; othesaji for example, Figure 17, in which a bunch of rectangles need
they report failure. Since sampling-based methods solte be rearranged by translation only. Each contributes two
problems without fully characterizing,,;, completeness is dimensions taC. Interestingly, this problem is already NP-
reduced to weaker forms. The goal is to ensure that tHerd (and PSPACE-hard) if there is no maximum limit on
sampling eventually covers “all” af. This can be expressed the number of rectangles. (If the dimension(ofs bounded
in terms of dispersion which is the radius of the largest in advance, then the path planning problem is solvable in
empty (unsampled) ball irf. Sampling-based approachestime polynomial in the representation of the robot and world
usually achieveeesolution completenessneaning that they obstacles.)
will find a solution if one exists, but may run forever if Planning a collision-free path for multiple rigid bodies is
one does not, oprobabilistic completenesaneaning that no different conceptually to planning for a single body, @nc
the probability tends to one that a solution is found if oneve think in terms ofC andCy,... The configuration vector
exists (otherwise, it may still run forever). For exampleg € C includes coordinates to place each body. For example,
the RRT approaches described above lead to probabilisfor two translation-only rectangles; = (x1,y1,x2,¥2)
completeness, partly because the dispersion is reducedrépresents their position an@ = R*. The initial ¢; and
zero with probability one. Resolution completeness can tgoal go configurations now express the placemeneoéry



Fig. 19. Seven links are attached via rotatable joints. theia allowed a

Fig. 18. The classic Puma 560 arm is a chain of three rotataddées®
(excluding the end effector) attached to a rigid base. Thetdy a three-
dimensional C-space, which is handled by the standard pigraigorithms.
(Photo courtesy of the Technical University of Berlin.)

full range of motion from0 to 27, thenC is a seven-dimensional torus.
body. Suppose there are bodies A, A, ..., A,, with

configuration parametets, . . ., ¢,. If A; is transformed into

configurationg;, it occupies.A;(g;) C W in the world. Let

q=(q,---,q,) represent the simultaneous configuration of

all bodies. A configuration is collision-free;, € Cyree, if

1‘\
T /
A \
and only if A;(¢;) N O = ( for everyi from 1 to n, and

A;i(gi) N Aj(q;) = 0 for everyi # j. In other words, for Fig. 20. Two or more arms manipulating the same object causessactlo
. kinematic chain.
q € Cyree there must be no body-obstacle collisions and no

body-body collisions.

OnceC, q1, qa, andCy,.. are defined in this way, the standard kinematics, we are once again interested in the
methods of Sections IV and V directly apply. The onlyset ofall possible transformations, resulting in the C-space.
difficulty is that the dimension of is large, which limits Once this has been defined, a manifold C-sp@aé® usually
applicability of combinatorial methods and some samplingsbtained, on whichy;, g, andCy,.. are straightforward to
based methods. This has motivated the development @éfine. HereCy,.. includes some configurations in which
various decoupledapproaches, which avoid considering allthere are body-body collisions, but only if these they are
bodies at once. For example, paths may be planned fattached by a joint. Once defined, the methods of Sections
each body individually, and then their motions along pathp/ and V once again apply, with the usual warning about
can be nicely times so that collisions are avoided. Sudhe dimension of’.
methods are not complete, but are practical in many settings A more serious complication is when a collection of
Alternatively, dimensionality reduction techniques, Isus  articulated bodies forms a loop, as shown in Figure 20. The
those based on the Johnson-Lindenstrauss Lemma, may h@dult is called aclosed kinematic chajnwhich occurs in
promise for adapting sampling-based planning methods farallel robots and if multiple robots contact the same body
directly account for all bodies simultaneously. for manipulation. In most cases, it is difficult to expligitl

If bodies are allowed to contact each other, several otheharacterize the set of configurations that satisfy the loop
motion planning variants are obtained. Two will be considelosure constraint. This makes it difficult to even paraimetr
ered here: 1) Articulated bodies, and 2) manipulation. Fagraths throughC. Sampling-based planning approaches have
articulated bodies, they are attached together by joirds thnevertheless been developed to step through this difficult
enable some freedom of motion between them, as showpace by ensuring that loop closure is maintained while
in Figures 18 and 19. The attachment of bodies removéscrementally searching for a solution path.
some of their collective degrees of freedom. Configuration Manipulation problems more generally require robots to
coordinates express how each body is situated with respectdetermine which bodies to grasp and how to carry them
bodies to which it is connected. Expressions for transfogmi to solve a problem. For example, the task might be to use
such bodies are just standard robot kinematics, coveredmanipulator arm to stack several boxes. The degrees of
in numerous textbooks [5], [16]. Somewhat different fronfreedom of boxes in addition to the robot are all included
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Fig. 21. A time-varying example with piecewise-linear obkamotion.
Planning through the state-time space occurs.

when definingC. The task is expressed by specifying a

space, which is the set of all transformations. Combinatori
planning solves simpler problems in a clean, elegant waty, bu
the running time is too high for industrial-grade problems.
Sampling-based planning provides practical solutions for
real-world problems, but offers weaker guarantees. Perfor
mance degrades for problems in which narrow doorways in
Csree are hard to find. Several extensions to the standard
path planning problem expand the C-space definition and
require only minor adaptations to the usual approaches. The
key issue is that the C-space dimension increases, which
generally raises computational complexity.

So we have seen powerful methods that generate a
collision-free path automatically. Not bad. This is usdful
many settings, extending well beyond robotics. But what if
a robot is not able to follow the path due to differential
constraints arising from kinematics and dynamics? What
if we cannot predict precisely where the robot will go?
What if the obstacle locations are uncertain and possibly
changing? These concerns, with which every roboticist is
familiar, motivate the topics in the second part of this tiatio
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