
Motion Planning: The Essentials

Steven M. LaValle

This is the first installment of a two-part tutorial. The goal
of the first part is to give the reader a basic understanding
of the technical issues and types of approaches to solving
the basic path planning or obstacle avoidance problem.
The second installment will cover more advanced issues,
including feedback, differential constraints, and uncertainty.
Note that is a brieftutorial, rather than a comprehensive
surveyof methods. For the latter, consult recent textbooks
[4], [9].

I. INTRODUCTION

Motion planning involves getting a robot to automat-
ically determine how to move while avoiding collisions
with obstacles. Its original formulation, calledThe Piano
Mover’s Problem, is imagined as determining how to move
a complicated piece of furniture through a cluttered house.
Have you ever argued about how to move a sofa up a
stairwell? It has been clear for several decades that getting
robots to reason geometrically about their environments and
synthesize such plans is a fundamental difficulty that recurs
all over robotics.

The stages of motion planning development are parellel
to those of integral calculus: 1) The integration problem was
clearly identified and defined; 2) perfect, exact solutions were
developed for many classes of functions; 3) since these were
limited to a small subset of functions that people care about,
numerical integration methods were developed with great
success in practice. The similar stages of motion planning
were: 1) It clearly defined in the 1970s; 2) the 1980s saw
the development of perfect, combinatorial solutions, which
are ideal in some settings, but not practical in most; 3) the
1990s brought sampling-based methods, which are not as
elegant, but offer practical solutions to modern industrial-
grade problems. Over the past decade, motion planning algo-
rithms have been widely used in robotics and automation and
have furthermore found application well beyond, including
the fields of virtual prototyping and computational biology.

II. PROBLEM FORMULATION

Let W denote theworld, which contains a robot and ob-
stacles. For a 2D world,W = R

2 andO ⊂ W is theobstacle
region, which has a piecewise-linear (polygonal) boundary.
(The complementW \O is assumed to be a bounded open
set.) Therobot is a rigid polygon that can move through
the world, but must avoid touching the obstacle region. For
a 3D world, the only differences are thatW = R

3, and
O and the robot are defined with polyhedra, instead of

S. M. LaValle is with the Department of Computer Science, University
of Illinois at Urbana-Champaignlavalle@uiuc.edu

Goal

32

1

4

5 6

7

Fig. 1. A 2D example of basic path planning.

Fig. 2. A 3D automotive assembly task that involves inserting or removing
a windshield wiper motor from a car body cavity. This problem was solved
for clients using the path planning software of Kineo CAM.

polygons. Motion planning formulations extend well beyond
rigid polygons and polyhedra, but such extensions are left to
Section VI and the second part of this tutorial.

The basic path planning problemis informally summa-
rized as: Given aninitial placement of the robot, compute
how to gradually move it into a desiredgoal placement so
that it never touches the obstacle region. See Figures 1 and
2 for examples.

Consider the task in terms of algorithm inputs and output.
INPUTS: An initial placement of the robot, a desired goal
placement, and a geometric description of the robot and
obstacle region.
OUTPUT: A precise description of how to move the robot
gradually from its initial placement to the goal placement
while never touching the obstacle region.

The output “description” will be a path through the set of
all intermediate transformations of the robot, from start to
finish.

III. LIVING IN C-SPACE

Although the motion planning problem is described in the
world, it really lives in a another space: The set of all rigid-
body transformations that can be applied to the robot. This is
called theconfiguration spaceor C-space. Finding a solution
amounts to computing a path through the part of the C-space
that avoids robot-obstacle collisions.

1



Fig. 3. The first three are manifolds because they locally “look like”
R
2; the last two are not because at some points the dimension changes or

branching occurs.

A rigid body may translate and rotate. Most people are
much more familiar with performingone transformation to
place a body into a scene, rather than thinking aboutall
transformations. The notion of configuration space was the
key insight to Lagrangian mechanics of rigid bodies [1],
as it allowed dynamics to be expressed using the precise
degrees of freedom of a body. The idea was introduced to
motion planning by Lozano-Perez [12] and Udupa [17]. The
C-space in physics and control theory is usually called a
Lie (pronounced “Lee”) group. In that context, which is
much more widely studied than motion planning, the C-space
is considered as adifferentiable manifold, which leads to
considerable technical and notational hurdles. The C-space
used in motion planning requires no calculus; therefore, it
is described as atopological manifold, which is fortunately
much simpler to define and manipulate. The definition of
an n-dimensional (topological) manifoldC is a subset of
R

m for n ≤ m such that everyq ∈ C is contained in
at least one open subset ofC (pick a small one!) that is
homeomorphic1 to R

n. The intuition is that in the local
vicinity of every q, a manifold behaves likeRn. It is a
nicely behaved “surface”. The existence of sharp corners
does not even matter; however, branching or locally changing
dimensions is not allowed. See Figure 3.

We now take a look at C-spaces that commonly arise
in planning. Consider a 2D world. LetA ⊂ R

2 denote a
polygonal robot. It could, for example, be all points insideof
a triangle defined by vertices(−1, 0), (1, 0), and(0, 1). We
could rotate the robot counterclockwise by anyθ ∈ [0, 2π)
and then translate it by anyxt ∈ R in the X-direction and
any xt ∈ R in the Y direction. This allows for any possible
position and orientation, and everyxt, yt, θ combination
leads to a unique robot placement. Letq = (xt, yt, θ) be
called theconfiguration. A point (x, y) ∈ A would then
appear at some(x′, y′) ∈ W (in the world) given by





x′

y′

1



 =





cos θ − sin θ xt

sin θ cos θ yt
0 0 1









x
y
1



 , (1)

which uses the standard 3 by 3homogeneous transformation
matrix. The upper-left, 2-by-2 block is just a rotation matrix.

The set of all configurationsq = (xt, yt, θ) is clearly a
subset ofR3, but to define the C-space we must take into
account thatθ±2π yields equivalent rotations. We write that
C = R

2×S1, in whichS1 denotes a circle in the topological

1Homeomorphic means that for the open set, sayO, there exists a
continuous, bijective functionf : O → R

n, for which the inversef−1

is also continuous.

sense and accounts forθ (the “circle” is obtained by gluing
0 andπ together). The C-spaceC is a 3D manifold, and each
element is nicely described asq = (xt, yt, θ). Remembering
that θ “wraps around” at2π is crucial to motion planning;
otherwise, an artificial barrier or redundant exploration will
be introduced. If the robot is not allowed to rotate, then
we obtain thetranslation-onlycase, andC = R

2 with q =
(xt, yt).

For the 3D world, the concepts mostly extend as you
might expect. Three translation parametersxt, yt, zt appear
and a translation-only robot then has C-spaceC = R

3 with
q = (xt, yt, zt). However, the set of 3D rotations turns out
to be 3D manifold all by itself, and it is not as simple as
a circle or sphere topologically. The best way to “see” its
structure is to use quaternions to represent rotations. Since
this a brief tutorial, only the essence is given here, and
quaternion algebra is avoided here since it is not critical to
motion planning. Every 3D rotation can be expressed as a
rotation by an angleθ ∈ [0, 2π) aboutsomefixed axis that
passes through the origin. Let this axis be described by some
unit vector v = (v1, v2, v3). This already makes it appear
that there is a sphere of possible axes, and then a circle of
possible angles at each place on the sphere. This collectionof
circles glued together around the sphere is called the Hopf
fibration. Now there is another trouble. Just as0 and 2π
were equivalent in the 2D case, for the 3D case we have
that v andθ produce the same rotation as−v and2π− θ. A
convenient way to handle this is to defineh = (a, b, c, d) and
assigna = cos(θ/2), b = v1 sin(θ/2), c = v2 sin(θ/2), and
d = v3 sin(θ/2). Note thata2+b2+c2+d2 = 1, meaning that
h lies on a unit sphere. Furthermore,h and−h are equivalent
rotations. The C-space for the set of all 3D rotations is
therefore nicely “visualized” as a 3-dimensional sphere–a
subset ofR4–in which opposite (calledantipodal) points are
“the same”. This means that to get the set of all rotations,
we can stay in the upper hemisphere (a ≥ 0), but must be
careful ata = 0, because opposite points on this equator
are “the same”. The technical term for the resulting space is
real projective3-space, denotedRP3. For the case of a 3D
robot that can translate or rotation, we obtainC = R

3×RP3,
which is a six-dimensional manifold. We can represent the
configuration as(xt, yt, zt, a, b, c, d), while enforcing that
a2 + b2 + c2 + d2 = 1. The use of quaternions means that
the set of all 3 by 3 rotation matrices is parametrized bya,
b, c, andd:





2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1



 .

(2)
With different possible parametrizations of rotations, for
2D or 3D worlds, it is important to realize that if two
points are “close” under one representation, they might be
“far” under another. Furthermore, if there are singularities
in the parametrization mapping (e.g., yaw-pitch-roll repre-
sentation), the C-space might not even represent the same
manifold as the set of all rotations.

2



qG

qI

Cobs
Cfree

Cobs

Cobs

Fig. 4. In the C-space the problem looks simple: ConnectqI to qG while
remaining inCfree.

Now that different possibilities forC have been presented,
consider the parts ofC that are prohibited due to collision.
Let A(q) ⊂ W denote a closed set of points in the world
occupied by the robotA when it transformed to configuration
q. A configurationq ∈ C places the robot intocollision if and
only if A(q)∩O 6= ∅ (the robot and obstacle are attempting
to occupy at least one common point inW). The set of all
non-colliding configurations is often called thefree space,
and is defined as

Cfree = {q ∈ C | A(q) ∩ O = ∅}. (3)

The complement is called theobstacle region in C-space:
Cobs = C \ Cfree.

The problem statement of Section II seemed somewhat
informal; however, using the C-space, the basic path planning
problem can be precisely defined: Given a robot description
A, an obstacle descriptionO, a C-spaceC, an initial con-
figuration qI ∈ C, and agoal configurationqG, compute
a continuous pathτ : [0, 1] → Cfree with τ(0) = qI and
τ(1) = qG. See Figure 4. A typical way to expressτ is
as a sequence of line segments, which ignores the particular
parameters ∈ [0, 1], but is good enough for motion planning
results. Note the path must be continuous; otherwise, the
robot would appear to “teleport” from one place to another,
which is obviously cheating. Gradual motions throughC
make the robot move gradually throughW.

IV. COMBINATORIAL PLANNING

Although the motion planning problem lives in thecon-
tinuous C-space, computation isdiscrete. Therefore, if we
want an algorithmic solution, we need a way to “dis-
cretize” the problem. This has led to two main schools of
thought: 1) combinatorial planning, which thrived in the
1980s, constructs structures in the C-space that discretely
and completely capture all information needed to perform
planning. 2) sampling-based planning, developed mainly
across the 1990s, uses collision detection algorithms to probe
and incrementally search the C-space for a solution, rather
than completely characterizing all of theCfree structure. The
second approach is most widely used in practice; however,
the first one is far superior in many instances. It is therefore
worth studying both.

To illustrate the philosophy of combinatorial planning,
consider the case in whichW = R

2 and contains apoint
robot (A = {(0, 0)}) that cannot rotate. In this case,C = R

2,
and the task is simply to “connect the dots” in the plane with
a curve that avoids the obstacles; see Figure 5(a).

Here is a simple technique that contains all the essential
ingredients of combinatorial planning. All methods first
compute aroadmap, which is a graph in which each vertex
is a configuration inCfree and each edge is a “simple” path
throughCfree that connects a pair of vertices. Here is one
way to achieve this:

1) DecomposeCfree into trapezoids with vertical side
segments. Figure 5(b) shows the result. From each
polygon vertex, an attempt is made to shoot rays
upward and downward. Each ray may be immediately
blocked, or it may travel until hitting another part of
the obstacle boundary.

2) Place one vertex in the interior of every trapezoid. It
doesn’t really matter where; for simplicity, pick the
centroid.

3) Place one vertex in every vertical segment. The result-
ing vertices are shown in Figure 5(c).

4) Connect each segment vertex to the two vertices that
are in the interior of the neighboring trapezoids. Each
connection forms an edge in the graph and corresponds
to a straight-line path.

The result is a roadmap that appears to capture the structure
of Cfree. How would you implement these steps? For the
first step, we could iterate over each vertex and determine
precisely where each upward and downward ray intersects
other segments. We could then easily identify the first
segment hit by the vertical ray in the above and below
directions. For an example as simple as Figure 5(a), this
is a fine method. However, if there aren polygonal edges in
total andn is large (say,n = 20, 000), then the method is
not efficient because it takes timeO(n2).

By proceeding carefully, this computation can be reduced
to time O(n lg n) by employing theplane sweep principle
[6], which underlies many decomposition algorithms used for
combinatorial planning. First, sort the polygon vertices from
left to right, requiring timeO(n lnn). During the algorithm
execution, a list of some polygon segments is maintained,
sorted from top to bottom as they are stabbed by a vertical
line. The method proceeds incrementally from vertex to
vertex, traveling from left to right. At each step, the edge
list is updated by simple insertions and deletions, which each
takeO(lg n) time using self-balancing binary search trees. If
the edges incident to the vertex are both to the left, then the
two edges are deleted from the list. If they are both to the
right, they are inserted into the list (in order). Otherwise, the
one to the left is deleted, and the one to the right is inserted.
Thanks to this ordering, we can determine inO(lg n) time
the segments directly above and below the vertex, which are
first stabbed by upward and downward rays. It is furthermore
simple and efficient to incrementally extend the graph as each
vertex is processed. For more details, see Section 6.2.2 of [9]

3



qI

qG

(a)

(b)

(c)

qI

qG

(d)

Fig. 5. A combinatorial planning illustration: a) A 2D polygonal obstacle
region with proposedqI andqG (one possible solution is shown in a dashed
path); b) the trapezoidal decomposition; c) constructing a graph by placing
a vertex in every vertical edge segment and every trapezoid interior; d)
connectingqI andqG to the graph and searching for a solution path.

or Section 6.1 of [6].
The roadmap is constructed without considering the query

pair, qI and qG. Once the investment is made, the same
roadmap can be used for multiple query pairs. In other words,
we can easily solve numerous motion planning problems in
a world that contains the same obstacles and robot. Here is
a simple way to use the computed roadmap from Figure 5:

1) Find the trapezoids that containqI andqG.
2) ConnectqI and qG to the vertices in their respective

trapezoids.
3) Search the graph for a path that connectsqI to qG.

The first step can be performed trivially inO(n) time
by testing whetherqI (or qG) lies in each trapezoid; this
can be shaved down toO(lg n) time by developing clever
hierarchicalpoint location data structures [6]. The second
step takes constant time, and the final step can be performed
in O(n) time using simple graph search algorithms such as
breath-first or depth-first.

For the simple case of a point robot in a polygonal world,
numerous alternative algorithms exist that yield comparable
performance. We could, for example, decomposeCfree into
triangles instead of trapezoids. The general principles are
that each cell should be easy to traverse (convex is ideal),
the decomposition into cells should be easily computable,
and the adjacencies between cells should be straightforward
to determine. Based on these properties, a useful roadmap is
obtained.

Roadmaps need not be obtained by cell decompositions.
For example, ashortest path roadmapyields distance-
optimal paths and is constructed by connecting certain pairs
of vertices that can “see” each other and each have interior
angle greater thanπ. A maximum clearance roadmapcan
also be computed efficiently. In general, a roadmap is ex-
pected to have two properties to be useful for planning: 1)
Accessibility:It is simple to reach a point on the roadmap
from any q ∈ Cfree while trivially avoiding collisions; 2)
Connectivity-preserving:For any pairq1, q2 of points that
is connected to the roadmap, a path exists between them
in the roadmap if and only if there was a path betweenq1
andq2. In other words, ifq2 is generally reachable fromq1,
then traveling between them via the roadmap must also be
possible.

It seems up to this point that combinatorial planning
solutions have beautiful properties. Most importantly, they
construct adiscrete representation of the problem thatex-
actly captures the solution. In other words, there are no
“approximation” or “sampling” errors. These methods are
called complete, meaning that for any input problem, they
correctly determine in finite time whether or not a solution
exists.

Here comes the trouble: Most motion planning problems
involve robots that are not modeled as points and they can
rotate in addition to translating. How many of these nice
combinatorial planning ideas extend? First consider the case
of a polygonal translation-only robot. If the robotA and
obstacleO are convex polygons, thenCobs is a polygon
in which every edge corresponds to a point-to-edge contact

4



O
A

Fig. 6. A triangular robot and a rectangular obstacle.

Cobs O

(a) (b)

Fig. 7. (a) Slide the robot around the obstacle while keepingthem both
in contact. (b) The edges traced out by the origin ofA form Cobs.

betweenA andO. See Figures 6 and 7. Can you see how
to achieve this by “reassembling” the edges ofA and O
into Cobs, with the edges appearing in an ordering having
to do with edge normals? Once this conversion is made, the
trapezoidal decomposition approach is easily applied. IfA
andO are nonconvex, then they first need to be decomposed
into convex pieces, to construct convex pieces ofCobs. A
trapezoidal decomposition algorithm could even be used for
the convex decomposition ofA andO!

Now introduce rotation. For the translation-only case,
Cfree has a piecewise linear boundary because translation is
a linear transformation. Unfortunately, rotation is nonlinear
and commonly represented using trigonometric functions.
Various ways to reparametrize rotation matrices lead to
improvements; however, nonlinearity is unavoidable. For
computation, polynomial parametrizations are preferred.The
previous piecewise-linear representations then are replaced
with semi-algebraicrepresentations, meaning each “facet”
of A, O, and Cobs is represented as the roots of implicit
polynomials. ConstructingCobs in terms of polynomial roots
is straightforward, but a combinatorial explosion occurs that
produces far too many facets for practice (the example in
Figure 6 already produces more than70). For 3D problems,
it becomes considerably worse. The next difficulty is to
perform a cell decomposition. The first motion planning
method to accomplish this is the cylindrical decomposition
method of Schwartz and Sharir [13], which produces a
number of cells that is doubly exponential in the dimension
of C. More efficient cell decomposition methods exist, and
there is Canny’s algorithm [3], which directly produces a
roadmap throughCfree in singly expoential time without a
prior decomposition. These methods provide solutions to the
general path planning problem; however, they are rarely even
implemented due to numerical issues and inefficiency from
the combinatorial explosion.

RRT(q0)
1 G.init(q0);
2 repeat
3 qrand → RANDOM CONFIG(C)
4 qnear ← NEAREST(G, qrand);
5 G.addedge(qnear, qrand);

Fig. 8. A simple outline of the RRT algorithm.

V. SAMPLING-BASED PLANNING

Sampling-based approaches are by far the most com-
mon choice for “industrial-grade” problems becauseCobs
is composed of an unwieldy number of facets. They aban-
don the idea of explicitly characterizingCfree and Cobs,
and essentially leave the planning algorithm “in the dark”
when exploringCfree. The only “light” is provided by a
collision detection algorithm, which is a black box that
probesC to determine whether some configuration (or a
small ball around it) lies inCfree. These algorithms often
work by hierarchically representingA andO and attempting
to quickly determine collision at a course resolution [11].
Many collision detection methods areincremental, which
means that they can yield extremely fast performance by
saving information from a previous execution on a nearby
configuration.

Planning algorithms then work by incrementally probing
and searchingCfree for a path, gradually revealing more
and more of it with the collision detector. In this way,
motion planning feels like using a robot with a weak sensor
to explore an unknown environment. This might seem odd
since O and A are given; however, the “environment”
being explored isCfree (or equivalently,Cobs), which is
high-dimensional and prohibitive to explicitly represent.
Sampling-based approaches attempt to find a solution quickly
while cheating their way out of building a full “map” of
Cfree. Don’t compute more than you have to!

To get a feeling for sampling-based planning issues, we
first introduce a frequently used method based onrapidly
exploring random trees (RRTs). Figures 8 and 9 show the
algorithm and its result. The idea is to aggressively probe
and explore the C-space by expanding incrementally from
an initial configurationq0. The explored territory is marked
by a tree rooted atq0. Each iteration extends the tree by
adding a leaf vertex and edge that connects it to the rest
of the tree. Each edge is a collision-free path between two
configurations. The RRT algorithm picks a pointqrand at
random in C (not Cfree), and then tries to connect the tree
to it by extending the nearest point in the tree. This biases
the tree toward aggressively reaching unexplored parts ofC,
but eventually settling on uniform coverage.

Some implementation details are needed to clarify Figure
8. Step 1 initializesG to contain a single vertex, correspond-
ing to q0 and no edges. In Step 3, a random configuration
generator is used to obtainqrand ∈ C. A random translation
could be selected uniformly from a bounded region (often
an axis-aligned rectangle). A random 2D rotation is obtained

5



45 iterations 2345 iterations

Fig. 9. In the early iterations, the RRT quickly reaches the unexplored
parts. However, the RRT is dense in the limit (with probability one), which
means that it gets arbitrarily close to any point in the space.

qn

qrand

q0

Fig. 10. A new edge is added that connects from the random sample qrand

to the nearest point inS, which is the vertexqn.

easily by randomly selecting someθ ∈ [0, 2π). It turns out
that selecting a uniformly random 3D rotation is technically
more challenging. Here is an amazingly simple method.
Choose three pointsu1, u2, u3 ∈ [0, 1] uniformly at random
and then let [14]:

a =
√
1− u1 sin 2πu2 b =

√
1− u1 cos 2πu2

c =
√
u1 sin 2πu3 d =

√
u1 cos 2πu3

(4)

in the rotation matrix (2).
What does uniform random really mean forC? Recall from

Section II that the set of transformations could be expressed
in numerous ways, meaning that the notion of uniform ran-
domness appears to be arbitrary. There is, however, a well-
defined notion of uniformity based onHaar measure, which
is beyond this tutorial; see Section 5.2 of [9]. Intuitively, if
we rotate the coordinate frame on which the rotations are
defined, then uniformity should be preserved. The methods
for rotation above, including (4), achieve this.

Step 4 findsqnear, the closest point inG to qrand; see
Figure 10. What does it mean to be closest? This again
depends on precisely howC is represented and implies that
a distance function has been defined. The distance function
ρ : C × C :→ [0,∞) is formally called ametric and
usually satisfies the following axioms for allp, q, r ∈ C:
1) ρ(p, q) ≥ 0, 2) ρ(p, q) = 0 if and only if p = q, 3)
ρ(p, q) = ρ(q, p), and 4)ρ(p, q) + ρ(q, r) ≥ ρ(p, r). In vir-
tually all sampling-based planning algorithms, performance
depends on the choice of metric. It is sometimes difficult
to set the relative weights between rotational distances and
translational distances; see Figure 11.

Now that “closest” has been established, which points inG
are checked for being nearest toqrand? The simplest is check
the vertices and report the nearest one. But the closest point

(a) (b)

Fig. 11. Rotational vs. translation domination: (a) The taskis to move the
“C” shape to the right. Rotation dominates. Performance should improve
if rotation is weighted heavily in the metric. (b) In this case, translation
dominates, and should therefore be weighted more heavily if this fact is
known in advance.

qn

q0 qrand

Fig. 12. For implementation ease, intermediate vertices can beinserted to
avoid checking for closest points along line segments. The trade-off is that
the number of vertices is increased dramatically.

among all those explored could lie along an edge. Rather
than incur expensive computational cost, a common tradeoff
is to check some intermediate points at regular intervals
along an edge; see Figure 12. This introduces an unfortunate
parameter to tune, but often simplifies implementations (itis
also reasonable to avoid all of this and just use the vertices).

Finally, Step 5 extends the tree. IfCobs were empty, then
an edge can be made fromqnear to qrand. If qnear is a
vertex inG, then the endpoints of the new edge areqnear
and qrand. If qnear is a point along the interior of an edge,
then that edge must first be split, withqnear introduced as
an intermediate vertex. SinceCobs is usually not empty, there
are two issues: 1) A collision detection algorithm makes sure
that we can travel fromqnear towardqrand while staying in
Cfree, and 2) we might not be able to reachqrand without
hitting Cobs. If it is not possible to reachqrand, then the new
vertex is instead placed at the configurationqi that gets as
close as possible, as shown in Figure 13. (If no progress is
possible, then no new edge and vertex are created.)

The RRT algorithm presented in Figure 8 aggressively
exploresCfree; however, if the tree is grown fromqI , there
is no consideration ofqG. Now consider ways to solve the
basic path planning problem using RRTs.

Here is a simple adaptation. Start the RRT withq0 = qI
and at every 100th iteration, forceqrand := qG instead of

qn

q0

Cobs

qs

qrand

Fig. 13. If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

6



qI

qG

qI qG

Filling a well A “bugtrap”

Fig. 14. The C-space obstacles may contain wells that trap planners in
local minima or one-way doors that resemble bug traps.

choosing a random configuration. IfqG is reached, then
a path has been found fromqI to qG, which solves the
problem. This induces a gentle bias toward the goal. At one
extreme, we could pickqG every time, making a beeline for
qG. This would fail miserably when an obstacle is reached.
Figure 14(a) shows an example in which this would occur.
Aggressively attempting to reachqG by settingqrand := qG
in every other iteration would still work, but might waste too
much effort running intoCobs instead of exploring. Therefore,
a light bias, such as every 100th iteration is recommended.

For many problems, though, such a simple strategy is
not enough. Figure 14(b) shows a kind of “bug trap” from
which it is difficult to escape. Due to the existence of such
situations, which commonly occur in practice, abidirectional
search is more effective and popular. The algorithm grows
two RRTs: 1) GI , rooted at qI , and 2) GG, rooted at
qG. Instead of always extending the trees using random
configurations, half of the time is spent trying to extend each
tree toward the newest vertex of the other tree. The following
four iterations are repeated:

1) Generateqrand and use it to extendGI , obtaining a
new leaf vertexqnew.

2) Forceqrand := qnew and use it to extendGG.
3) Generate a newqrand and use it to extendGG,

obtaining a new leaf vertexqnew.
4) Forceqrand := qnew and use it to extendGI .

Steps 1 and 3 are identical to the execution in Figure 8,
but for GI and GG, respectively. Steps 2 and 4 “trick”
the RRT by using the most recent vertex from the other
tree as a replacement forqrand. If either of these two steps
ever succeed in connecting the trees to each other, then the
problem is solved. This method is quite effective for most
practical problems, as aggressive exploration fromqI and
qG is balanced with trying to connect the trees to solve the
problem.

An example that was solved in 2002 by the bidirectional
RRT is the famousAlpha 1.0 puzzle, introduced by Nancy
Amato and Boris Yamrom. The task is to pull apart the
twisted nails, leading to an extremely narrow corridor in
Cfree through which the solution path must travel. The
solution is illustrated in Figure 15. Most problems are not
this challenging, and solutions are often found in a fraction

3 54

2

1

Fig. 15. The bidirectional RRT solves the Alpha 1.0 puzzle ina few
minutes.

of a second. Nevertheless, there are limitations to the method
as well as any sampling-based method. It is not hard to
construct pathological examples that cause the algorithm
to converge too slowly. In some cases, problem-specific
heuristics can then be developed to recover performance.

The RRT-based methods fall into a larger family of meth-
ods calledincremental sampling and searching, in which
a graph is incrementally constructed inside ofCfree. Each
method has avertex selection method, which determines
where to expand next from among vertices in the graph.
After that, alocal planning methodconstructs an edge from
the selected vertex, thereby extending the tree. In the case
of an RRT, the vertex selection method picks the vertex
closest toqrand. The local planning method attempts to
connect the vertex toqrand. As an example of an alternative
incremental sampling and searching method, the Expansive
Space Planner (ESP) [7] selects a vertex with probability
that is inversely proportional to the number of other vertices
within a ball of predetermined size. The local planning
method then connects to a random configuration within the
ball, but only with a probability that is inversely proportional
to the number of vertices that lie within a ball centered on
the random configuration. Another example that falls into this
family is the randomized potential field planner [2], which
implements gradient descent inCfree and uses random walks
to escape local minima.

A common nuisance with sampling-based planning meth-
ods is that the produced paths are jagged as they traverse
Cfree. This makes the solution animation jumpy; causing
robots to follow such awkward paths is a comically bad
idea. Therefore,path smoothingis usually performed to
clean up solution paths. Fortunately, it is straightforward
to produce a cleaner path once a jagged solution is given.
A simple method is to iteratively pick a pair of points at
random along the path and attempt to replace the path portion
between them with a “straight line” inCfree. If this survives
the collision-detection verification step, then use the linear

7



Cobs

Cobs

Fig. 16. The probabilistic roadmap method attempt to achieve roadmap
accessibility and connectivity preservation via random sampling and con-
necting to nearby samples.

segment and discard the original part portion. After several
dozen iterations, the path is usually much improved.

The discussion so far has focused only onsingle-query
algorithms, meaning that only oneqI , qG pair will be given
so that there are no advantages of extensive precomputation.
Recall from Section IV that planning problems can be
quickly solved once a nice roadmap has been computed that
offers the accessibility and connectivity-preserving proper-
ties. This motivates amultiple-queryapproach to sampling-
based planning known as aprobabilistic roadmap[8]. In this
case, a bunch (e.g.,1000) of random configurations are cho-
sen up front and declared to be roadmap vertices. Roadmap
edges are formed by attempting to connect each configuration
to all vertices within some specified radius; see Figure 16. If
a roadmap can be constructed that satisfies accessibility and
connectivity preservation with high probability, then it can
be used to efficiently search for solutions to multiple initial-
goal query pairs. One difficulty is that the roadmap may have
as many edges and vertices as a high-dimensional grid [10],
which provides motivation for pruning strategies that attempt
to keep the good roadmap properties while reducing its size
substantially. See, for example, the visibility roadmap variant
[15].

To conclude, we should emphasize that a tradeoff has
been made by going to sampling-based methods. Recall from
Section IV that combinatorial planning leads to complete
algorithms: They always find a solution if it exists; otherwise,
they report failure. Since sampling-based methods solve
problems without fully characterizingCobs, completeness is
reduced to weaker forms. The goal is to ensure that the
sampling eventually covers “all” ofC. This can be expressed
in terms of dispersion, which is the radius of the largest
empty (unsampled) ball inC. Sampling-based approaches
usually achieveresolution completeness, meaning that they
will find a solution if one exists, but may run forever if
one does not, orprobabilistic completeness, meaning that
the probability tends to one that a solution is found if one
exists (otherwise, it may still run forever). For example,
the RRT approaches described above lead to probabilistic
completeness, partly because the dispersion is reduced to
zero with probability one. Resolution completeness can be

Fig. 17. Consider rearranging many rectangles, with no rotations, inside
of a rectangular box inR2. Without a limit on the number of rectangles,
the problem is NP-hard.

obtained by replacing the random configuration generator by
a deterministic point sequence that leads to zero dispersion
in C in the limit (for example, consider a multiresolution grid
that refines forever).

The best way to learn more about sampling-based motion
planning is to experiment with implementations. You could
download and install a free library, such as the Open Motion
Planning Library (OMPL) from Rice University, the Motion
Strategy Library (MSL) from the University of Illinois, or the
Motion Planning Kit (MPK) from Stanford. If you instead
want to start from the basics, then at least downloading a
collision detection package, such as PQP from the University
of North Carolina, is recommended.

VI. DIRECT EXTENSIONS

Now that the core motion planning ideas have been
explained for the case of rigid 2D or 3D robots among fixed
obstacles, several straightforward extensions can be covered
for which the planning methods are virtually the same.

The formulation of Section II allowed only one moving
rigid body. This limited the C-space to having no more than
dimension three forW = R

2 and six forW = R
3. If we

allow multiple moving bodies, then there is no limit on the
degrees of freedom, and hence, the dimension ofC. Consider,
for example, Figure 17, in which a bunch of rectangles need
to be rearranged by translation only. Each contributes two
dimensions toC. Interestingly, this problem is already NP-
hard (and PSPACE-hard) if there is no maximum limit on
the number of rectangles. (If the dimension ofC is bounded
in advance, then the path planning problem is solvable in
time polynomial in the representation of the robot and world
obstacles.)

Planning a collision-free path for multiple rigid bodies is
no different conceptually to planning for a single body, once
we think in terms ofC andCfree. The configuration vector
q ∈ C includes coordinates to place each body. For example,
for two translation-only rectangles,q = (x1, y1, x2, y2)
represents their position andC = R

4. The initial qI and
goal qG configurations now express the placement ofevery

8



Fig. 18. The classic Puma 560 arm is a chain of three rotatable bodies
(excluding the end effector) attached to a rigid base. This yields a three-
dimensional C-space, which is handled by the standard planning algorithms.
(Photo courtesy of the Technical University of Berlin.)

body. Suppose there aren bodiesA1, A2, . . ., An, with
configuration parametersq1, . . . , qn. If Ai is transformed into
configurationqi, it occupiesAi(qi) ⊂ W in the world. Let
q = (q1, . . . , qn) represent the simultaneous configuration of
all bodies. A configuration is collision-free,q ∈ Cfree, if
and only if Ai(qi) ∩ O = ∅ for every i from 1 to n, and
Ai(qi) ∩ Aj(qj) = ∅ for every i 6= j. In other words, for
q ∈ Cfree there must be no body-obstacle collisions and no
body-body collisions.

Once C, qI , qG, and Cfree are defined in this way, the
methods of Sections IV and V directly apply. The only
difficulty is that the dimension ofC is large, which limits
applicability of combinatorial methods and some sampling-
based methods. This has motivated the development of
various decoupledapproaches, which avoid considering all
bodies at once. For example, paths may be planned for
each body individually, and then their motions along paths
can be nicely times so that collisions are avoided. Such
methods are not complete, but are practical in many settings.
Alternatively, dimensionality reduction techniques, such as
those based on the Johnson-Lindenstrauss Lemma, may hold
promise for adapting sampling-based planning methods to
directly account for all bodies simultaneously.

If bodies are allowed to contact each other, several other
motion planning variants are obtained. Two will be consid-
ered here: 1) Articulated bodies, and 2) manipulation. For
articulated bodies, they are attached together by joints that
enable some freedom of motion between them, as shown
in Figures 18 and 19. The attachment of bodies removes
some of their collective degrees of freedom. Configuration
coordinates express how each body is situated with respect to
bodies to which it is connected. Expressions for transforming
such bodies are just standard robot kinematics, covered
in numerous textbooks [5], [16]. Somewhat different from

A3

A5

A6

A7

A4

A1

A2

Fig. 19. Seven links are attached via rotatable joints. If each is allowed a
full range of motion from0 to 2π, thenC is a seven-dimensional torus.

Fig. 20. Two or more arms manipulating the same object causes a closed
kinematic chain.

standard kinematics, we are once again interested in the
set ofall possible transformations, resulting in the C-space.
Once this has been defined, a manifold C-spaceC is usually
obtained, on whichqI , qG, andCfree are straightforward to
define. Here,Cfree includes some configurations in which
there are body-body collisions, but only if these they are
attached by a joint. Once defined, the methods of Sections
IV and V once again apply, with the usual warning about
the dimension ofC.

A more serious complication is when a collection of
articulated bodies forms a loop, as shown in Figure 20. The
result is called aclosed kinematic chain, which occurs in
parallel robots and if multiple robots contact the same body
for manipulation. In most cases, it is difficult to explicitly
characterize the set of configurations that satisfy the loop
closure constraint. This makes it difficult to even parametrize
paths throughC. Sampling-based planning approaches have
nevertheless been developed to step through this difficult
space by ensuring that loop closure is maintained while
incrementally searching for a solution path.

Manipulation problems more generally require robots to
determine which bodies to grasp and how to carry them
to solve a problem. For example, the task might be to use
a manipulator arm to stack several boxes. The degrees of
freedom of boxes in addition to the robot are all included

9



Cfree(t1) Cfree(t2) Cfree(t3)

t3t2t1

xt

yt

qG

t

Fig. 21. A time-varying example with piecewise-linear obstacle motion.
Planning through the state-time space occurs.

when definingC. The task is expressed by specifying a
configuration in which the boxes are stacked. This problem
appears conceptually more challenging. Standard algorithms
are often adapted to solve it by forming a hybrid C-space
that includes discrete variables in addition to configuration
variables. The discrete variables record modes of interaction.
For example, there is atransit mode, when the manipulator
is not carrying a body, and atransfer mode, when it carries
a body. Heuristics are then used to determine when modes
should be switched, in addition to solving the planning
problem that arises in each mode.

Another variant of the basic path planning problem is
to allow the obstacles to move. LetT = [0, tf ] be an
interval of time, in which tf is some final time. In this
case, a “snapshot” of the world can be imagined at every
time t ∈ T . The obstacle regionO becomesO(t). Now
consider computing a collision-free path from timet = 0
to time t = tf . This is conceptually straightforward if we
construct theconfiguration-time space, Z = C × T . Figure
21 shows an example of how this appears. To solve the
problem, path problem algorithms work in the usual way,
with one exception: The path must always make forward
progress through time. Combinatorial roadmap methods and
incremental sampling and searching methods can be adapted
without much difficulty to enforce this. It becomes consider-
ably more challenging, however, if the robot has a maximum
speed bound. This yields a constraint on the path slope
throughZ, which is more difficult to enforce. Finally, it is
even more difficult, and practical, when there is uncertainty
in predicting the future motions of the obstacles. This falls
under the topic of uncertainty, which is covered in the next
tutorial part.

VII. CONCLUSION

After reading this, you should hopefully have extracted
the following main points. Motion planning lives in the C-

space, which is the set of all transformations. Combinatorial
planning solves simpler problems in a clean, elegant way, but
the running time is too high for industrial-grade problems.
Sampling-based planning provides practical solutions for
real-world problems, but offers weaker guarantees. Perfor-
mance degrades for problems in which narrow doorways in
Cfree are hard to find. Several extensions to the standard
path planning problem expand the C-space definition and
require only minor adaptations to the usual approaches. The
key issue is that the C-space dimension increases, which
generally raises computational complexity.

So we have seen powerful methods that generate a
collision-free path automatically. Not bad. This is usefulin
many settings, extending well beyond robotics. But what if
a robot is not able to follow the path due to differential
constraints arising from kinematics and dynamics? What
if we cannot predict precisely where the robot will go?
What if the obstacle locations are uncertain and possibly
changing? These concerns, with which every roboticist is
familiar, motivate the topics in the second part of this tutorial.

REFERENCES

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics, 2nd Ed.
Springer-Verlag, Berlin, 1989.

[2] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential
field techniques for robot path planning.IEEE Transactions on
Systems, Man, & Cybernetics, 22(2):224–241, 1992.

[3] J. F. Canny.The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun.Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[5] J. J. Craig.Introduction to Robotics. Addison-Wesley, Reading, MA,
1989.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications, 2nd Ed.Springer-
Verlag, Berlin, 2000.

[7] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces.International Journal Computational Geometry
& Applications, 4:495–512, 1999.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces.IEEE Transactions on Robotics & Automation, 12(4):566–580,
June 1996.

[9] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[10] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relation-
ship between classical grid search and probabilistic roadmaps. Inter-
national Journal of Robotics Research, 23(7/8):673–692, July/August
2004.

[11] M. C. Lin and D. Manocha. Collision and proximity queries. In
J. E. Goodman and J. O’Rourke, editors,Handbook of Discrete and
Computational Geometry, 2nd Ed., pages 787–807. Chapman and
Hall/CRC Press, New York, 2004.

[12] T. Lozano-Ṕerez. Spatial planning: A configuration space approach.
IEEE Transactions on Computing, C-32(2):108–120, 1983.

[13] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: III.
Coordinating the motion of several independent bodies.International
Journal of Robotics Research, 2(3):97–140, 1983.

[14] K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics
Gems III, pages 124–132. Academic, New York, 1992.

[15] T. Siméon, J.-P. Laumond., and C. Nissoux. Visibility based proba-
bilistic roadmaps for motion planning.Advanced Robotics Journal,
14(6), 2000.

[16] M. W. Spong, S. Hutchinson, and M. Vidyasagar.Robot Modeling
and Control. Wiley, New York, 2005.

[17] S. Udupa.Collision Detection and Avoidance in Computer Controlled
Manipulators. PhD thesis, Dept. of Electrical Engineering, California
Institute of Technology, 1977.

10


