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This paper proposes a dynamic game-theoretic
framework that is used as an analytical tool and uni-
fying perspective for a wide class of problems in mo-
tion planning. This approach is inspired by the founda-
tion laid by configuration-space concepts for basic path
planning. In the same manner that configuration-space
concepts led to substantial progress in path planning,
game-theoretic concepts provide a more general founda-
tton which can incorporate any of the essential features
of path planning, sensing uncertainty, decision theory,
bounded-uncertainty analysis, stochastic optimal con-
trol, and traditional multiplayer games. By following
this perspective, new modeling, analysis, algorithms,
and computational results have been obtained for a vari-
ety of motion planning problems including those involv-
ing uncertainty in sensing and control, environment
uncertainties, and the coordination of multiple robots.

1 Introduction

It is widely accepted that the configuration-space (C-
space) representation has provided a powerful, uni-
fied foundation for the development and analysis of
motion planning algorithms. In spite of this success,
there has been little attempt to obtain further benefits
by broadening this foundation into a common math-
ematical structure that encompasses many important,
well-studied extensions of the basic planning problem.
This paper proposes such a foundation by combining
decision-theoretic concepts from areas such as dynamic
game theory and stochastic optimal control with C-
space concepts. The intent is not to provide an alter-
native formulation of motion planning, but instead to
present an expanded foundation that is built on previ-
ous geometric concepts, while characterizing and uni-
fying a broader class of problems.

The basic motion planning problem has been to de-
termine a continuous, collision-free path that connects

an initial configuration to a goal configuration. This
problem was created by modularizing robotic tasks to
isolate path planning from lower-level trajectory track-
ing. If the modularization is completely removed, many
robotic tasks can be considered as a nonlinear control
problem for which there are complicated constraints
on the state space (which include the constraints due
to static obstacles). Although basic motion planning
has found many direct applications, there are funda-
mental limitations that have motivated many specific
approaches to handle difficult extensions of the basic
problem. Let general motion planning include compli-
cations such as sensing uncertainties, prediction uncer-
tainties, nonholonomy, dynamics, performance criteria,
and multiple robots with independent goals.

Several benefits arose from the use of the C-space
representation for basic motion planning. The com-
parison of seemingly disparate approaches, such as cell
decomposition methods, roadmap methods, and arti-
ficial potential field methods, was greatly facilitated
through the use of C-space representations [22],[29].
Concepts such as completeness and resolution com-
pleteness were formulated in terms of configuration
space, and hence applied to a wide class of problems
and algorithms. Planning algorithms could also be gen-
eralized by utilizing the common C-space foundation.
For instance, a randomized potential field planner was
applied with only minor adaptations to a variety of
problems ranging from multiple rigid robots to high
degree-of-freedom manipulators [4]. Wide applicability
is obtained because all problems are reduced to C-space
terms.

The same basic philosophy can be preserved for gen-
eral motion planning by using a broader mathemati-
cal foundation that provides the same types of benefits
that configuration-space concepts provided for the ba-
sic planning problem. It is important to note, however,



that this paper emphasizes a mathematical foundation
as opposed to a particular model or computational ap-
proach. Algorithms and computed examples are pre-
sented in this paper for the purpose of demonstrating
the power of this foundation, to encourage its use in
future motion planning research. More details on the
specific algorithms, analysis, and computed examples

appear in [24] and [25]-[28], [37].

2 Mathematical Formulation

Before considering a formulation of general motion
planning, first consider making small extensions to the
basic motion planning problem. The basic problem is
to find a continuous path z : [0,%f] — Cjrc such that
2(0) = ¢ini+ and z(ty) = ¢goar. Recall that Cpp.. im-
plicitly incorporates all of the constraints due to the
robot geometry and static obstacles in the workspace.

Suppose that there are nonholonomic constraints.
To facilitate upcoming concepts, let Cr.. be renamed
as a generic state space, X = Cfr... It is well known
that the nonholonomic constraints can be expressed
as & = f(x(t),u(t)), which constrains the allowable
vector fields on X. Instead of directly choosing z(t),
one is forced to interact with the system using the
input (or action) wu(t).
when manipulating an object through pushing [31]. If
F(z(t),u(t)) = u(t), the original nonholonomic, basic
motion planning problem is obtained since any desired,
collision-free path in the state space can be obtained
by selecting an appropriate input.

This occurs, for example,

Suppose that optimality with respect to some crite-
rion, such as path length or execution time, is impor-
tant. A loss functional can be defined that evaluates
any state trajectory and input:

L((), u() = / "), u()dt + Qatty)). (1)

The integrand [(z(t), u(t)) allows the specification of a
cost that will accumulate during execution and will de-
pend in general on the state trajectory and the input.
The final term @Q(2(ts)) can indicate the importance of
achieving the goal. The basic problem can be consid-
ered as a special form of optimal control [13]. Suppose
l(z(t),u(t)) =0, and Q(z(ty)) = 0if 2(tf) = ¢goar and
Q(z(ty)) = 1 otherwise. This corresponds to the orig-
inal case in which optimality is not important. The
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space of possible inputs to the system in this case is
partitioned into two classes: those that lead to the goal
region, and those that fail.

Next, consider moving to a mathematical structure
for the general motion planning problem, which is
based on concepts from dynamic noncooperative game
theory [1] and stochastic optimal control [20]. This
structure will be formulated in discrete time to ease
the specification of uncertainty aspects; however, con-
tinuous time can alternatively be used with some mi-
nor modifications. Thirteen components are first listed,
and a discussion of each in relation to motion planning
follows.

1. An index set, N = {1,2,..., N}, of N decision
makers

2. An index set, K = {1,2,..., K}, that denotes the
stages of the game

3. A set, X, called the state space. The state of the
game, zp, at stage k, belongs to X.

4. A set, Ul defined for each k € K and i € N, which
is called the action set of the i*" decision maker at
stage k. The action, ut, at stage k, belongs to U;.

5. A set, ©f, defined for each k € K, which is called
the control action set for nature at stage k. The
control action for nature, 07, at stage k, belongs
to ©F.

6. A function, fr : X x Ul x ... x UN x 0% — X,
defined for each k£ € K so that

xk+1:fk(mkaullca"':u{cv’gli)’ (2)

is a state transition equation.

7. A set, Y}, defined for each k € K and i € N, and
called the sensor space of the i** decision maker at
stage k, to which the sensed observation yi belongs
at stage k.

8. A set, @Z’i, defined for each i € N and k& € K,
which is called the sensing action set for nature
at stage k. The sensing action for nature, 8", at
stage k, belongs to @Z’i.
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9. A function, hi, defined for each £k € K and 7 € N,
so that

y;;: = hi(l‘k, gi’l)a (3)
which is the observation equation of the i** deci-
sion maker concerning the value of zy.

10. A finite set, 7]};, defined for each ¥ € K and
i € N as a subset of all actions and observations
made by decision makers at any previous stage,

1 N 1 N
{uli"'auk_laylﬁ"'ayk }

11. A set of all possible values for 7]2, denoted by N,
which is called the information space for the it"
decision maker at stage k.

12. A set, Fi, of mappings ’yi : N,i — U,i, which
are the strategies available to the i** decision
maker at stage k. The combined mapping 7¢ =
{74,794, ..., vk} is a strategy for the " decision
maker, and the set I'* of all such mappings 7* is
the strateqy space of the i** decision maker. A
game strateqy, v, represents a simultaneous spec-
ification of the strategy for each decision maker,
and the space of game strategies is denoted by
=T"x...xTN,

13. An (extended) real-valued functional L? : (X x
Ul x . ..oxUNYx (X x Ul x ... x UMy x ... x (X x
Uk x...xUN)x© — R+t defined for each i € N,
and called the loss functional of the i** decision
maker. The Cartesian product of all of nature’s
action spaces is represented here as O.

State transitions and control Ttem 1 defines the
decision makers, which each typically refers to an inde-
pendent, controllable robot. In general, however, any
agent that is capable of making decisions and interfer-
ing with the other decision makers can be considered
as a decision maker.

Item 2 defines stages that correspond to times at
which decisions are made. For standard discrete-time
analysis, decisions are made at each Af time incre-
ment. The limiting case of K = oo can be defined.
In general, decision making at regular intervals is not
required. Suppose for instance that the decisions cor-
respond to very high-level operations, which may have
unpredictable completion times. This case is discussed
in more detail in [37], for modeling the completion
of a fine-motion operation. A continuum of stages

can alternatively be considered, which results in a
continuous-time differential game (e.g., [18]).

The state space is defined in Item 3. At the very
least, the state space can be used to represent the
free configuration space, Cfre.. In the case of multi-
ple robots, it can represent the composite configuration
space that is formed by taking the Cartesian product
of the configuration spaces of the individual robots. In
general, however, the state space could incorporate ad-
ditional information. For instance, dynamics can be
included by expanding the state space to include con-
figuration time derivatives. This corresponds to the
standard use of state space representations in optimal
control theory. The state space can also include any
parameters that can be completely or partially con-
trolled through the operation of the robot(s). In one
application [28] the state space includes environment
modes that characterize varying conditions in the en-
vironment that potentially affect the robot.

Item 4 defines the set of actions that are available to
each decision maker at each stage.

Item 5 is used to model sources of uncertainty. Two
common representations of uncertainty have been ap-
plied to motion planning problems. With a nonde-
terministic (or bounded-set) representation parameter
uncertainties are restricted to lie within a specified set.
A motion plan is then generated that is based on worst-
case analysis (e.g., [6], [12], [23], [30]). With a proba-
bilistic representation the parameter uncertainties are
characterized with a probability density function (pdf).
This often leads to the construction of motion plans
through average-case or expecied-case analysis (e.g., [5],
[15)).

One key aspect of the proposed mathematical foun-
dation is a general capacity to model uncertainties.
This is accomplished by introducing a decision maker
It will be assumed that no one
has complete control over actions that are chosen by

referred to as nature.

nature; however, models can be constructed to par-
tially predict nature’s actions. Nature can introduce
nondeterministic or probabilistic uncertainties into the
game by applying either control actions or sensing ac-
tions. Item 5 defines the set of control actions that are
available to nature, and Item 8 will define the set of
sensing actions that are available to nature.

Item 6 defines how changes in state are effected. The
state x41, at stage k + 1, is obtained as a function of



the previous state zj and the actions chosen by all de-
cision makers, including nature. If nature is omitted
from the state transition equation, then perfect predic-
tion of future states is possible, given the actions of the
decision makers. Under nondeterministic uncertainty,
a set of possible future states can be derived from the
state transition equation as:

Frypr(zp,ul, . ul) =

{f(:z:k,u,lc,..

Under probabilistic uncertainty, it is assumed that
p(#%), is known. By wusing the state transition
equation, the next state is represented by a pdf,

p($k+1|xk, ullca - ’ué\f)

g 0F) € X167 € O} (4)

A control example As an example of a state transi-
tion equation with uncertainty, consider characterizing
the uncertainty model that is used for motion control in
preimage planning research (e.g., [12], [23], [30]). Sup-
pose there is a single decision maker that is a polygonal
robot translating in the plane amidst polygonal obsta-
cles. The action set defines commanded velocity direc-
tions, which can be specified by an orientation, yielding
U = [0, 2x) (for the case of a single decision maker, the
superscripts will be dropped). The robot will attempt
to move a fixed distance ||v||At (expressed in terms
of a constant velocity modulus, [|v||) in the direction
specified by uy. The action space of nature is a set of
angular displacements 0%, such that —es < 07 < g,
for some maximum angle €. Under nondeterminis-
tic uncertainty, any action 6§ € [—eg,€g] can be cho-
sen by nature. When using probabilistic uncertainty,
p(0%) could be a continuous pdf, which is zero outside
of [—¢g,€q]. If the robot chooses action uy from state
zy, and nature chooses 07, then x4, is given by

cos(uy + 07)

f(@r, u, 07) = o + [|v]|At [ sin(ug + 62)

]. (5)

Sensing uncertainty Items 7 through 11 character-
ize the information that can be used for the basis of
decision making when there is not direct access to the
state. This can be considered as a general form of
the sensing problem in robotics. Each decision maker
at each stage has a sensor space, Yki (or observation
space), which encodes information regarding the state
that is observed during stage k. This type of projec-
tion is used in optimal control theory to define system
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outputs, and has also been considered in robot sens-
ing problems (see, for instance, [8]). In addition to
a projection from the state space to the sensor space,
this information is potentially corrupted by a sensing
action, 6;*, of nature, which is chosen from ©;".

Under nondeterministic uncertainty, the possible
current states from a single sensor observation are

Fi(yh) = {zr € Xy} = hiy(ar,057), 00" € 07}, (6)

Under probabilistic uncertainty the current state, as-
suming only a single observation, is represented by a

pdf, p(z|yr).

The sensing model can be generalized to include
state history, y& = hi(21,..., 25, 07").

A sensing example Consider representing the sens-
ing model used in [5], [12], [23]. Suppose that a single
robot is equipped with a position sensor and a force
sensor. Assume that the position sensor is calibrated
in the configuration space, yielding values in $2. The
force sensor provides values in [0, 27) U {0}, indicating
either the direction of force when the robot is in con-
tact with an obstacle, or no force (represented by 0)
when the robot is in the free space.

Independent portions of the observation equation are
considered: hP for the position sensor and h' for the
force sensor (which together form a three-dimensional
vector-valued function). The sensing action of na-
ture, 0%, are partitioned into subvectors ;" and Hz’f,
which act on the position sensor and force sensor, re-
spectively. The observation for the position sensor is
yh = hP(zp,0,") = xp + 6,7, Under nondeterministic
uncertainty, 6;” could be any value in ©;". If prob-
abilistic uncertainty is used, a pdf is presented, such

as
2

p(0;") = { "

0 otherwise

for [16,7]] < &

IS

(7)

In (7) a radius ¢, is specified, and 6,7 is two-
dimensional.

One of two possibilities is obtained for the force
sensor: (1) a value in [0,27), governed by y£ =
B (21, 057) = aer)+ 057, in which 2 € Ceontact (ie.,
the position lies in the boundary of Cfre.), and the
true normal is given by a(zy), or (2) an empty value,
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(0, when the robot is in Ctree. When the robot config-
uration lies in Contact and probabilistic uncertainty is
in use, then the pdf can be represented as

1
p(0y7) = { 2

0 otherwise

for |92’f| < €f

(8)

for some positive prespecified constant ¢; < %w.

Information spaces Items 10 and 11 characterize
the history that is available for decision making. The
relationship between sensor and action history and de-
cision making has long been considered important in
planning under uncertainty (e.g., [12], [22], [30]). Gen-
erally one would like to optimize the performance of a
robot, while directly taking into account the complica-
tions due to limited sensing. By using the concept of
information state, as considered in stochastic control
and dynamic game theory, a useful characterization of
this relationship is provided. When there is perfect
state information, decisions can be made on the basis of
state. However, with imperfect state information, the
decisions are conditioned on information states. The
information state concept is similar to the definition
of knowledge states, considered in [10], and has also
recently been proposed in [2].

In Item 10, the dimension of the information space
can increase linearly with the number of stages; how-
ever, alternative representations are possible,
preferable in many cases.
ministic uncertainty, the information space can be al-
ternatively represented as an algebra of subsets of X
that are obtained by performing set intersections that
maintain consistency with the history. With proba-
bilistic uncertainty, the information space can be al-
ternatively represented as a pdf on X that is obtained
through the repeated application of Bayes’ rule. Func-
tional approximation can also be considered to pro-
duce a low-dimensional representation of the informa-
tion space [24].

and
In the case of nondeter-

The strategy concept Item 12 defines a strategy
for each decision maker. The computational goal is
to design a strategy that will lead to the accomplish-
ment of some robotic task. At a given stage, each de-
cision maker conditions its actions on its information
state. This represents a deterministic (or pure) strat-
egy; however, a randomized (or mixed) strategy can

alternatively be defined. In this case a pdf of the form
p(ui|ni) is specified as the strategy, and actions are
chosen by sampling.

Encoding preferences Item 13 defines a loss func-
tional for each of the decision makers, which guides the
selection of strategies. The loss can generally be based
on actions taken by any decision maker at any stage,
and on the state trajectory. In this general form, the
loss functionals can also depend on nature.

One form that is often used in discrete-time optimal
control theory is the stage-additive loss functional (for
a single decision maker):

L(xla co PK41, UL, - 'auK) =
K
Zlk(fbk,uk)+lK+1(ﬂfK+1)7 9)
k=1

in which [l;(zy,ur) represents a cost that can ac-
cumulate (such as time, distance, or energy), and
lk4+1(zK41) 1s a final cost that could, for instance, pe-
nalize a strategy that does not terminate in a goal re-
gion.

The general task is to determine strategies that op-
timize the losses in some appropriate sense. In the case
of a single decision maker without nature, the task is
to select a strategy that minimizes L. In the case of
nondeterministic actions from nature, the task is to se-
lect a strategy that minimizes the worst-case loss. In
the probabilistic case, one natural choice is to minimize
the expected loss. For cases in which there are multi-
ple, independent decision makers, a number of differ-
ent concepts may be appropriate. For instance, in a
cooperative game in which there is a certain amount of
trust, Pareto optimality may be appropriate [34]. In a
noncooperative setting, a Nash equilibrium condition
might be appropriate [1]. This corresponds to a game
strategy that minimizes the loss of each decision maker,
given that the strategies of the other decision makers
cannot be changed.

3 Synthesizing and Extending Motion
Planning Concepts

By following this game-theoretic perspective, model-
ing, analysis, algorithms, and computed examples have
so far been obtained for three classes of problems: (1)



motion planning under uncertainty in sensing and con-
trol [24], [25], [26]; (2) motion planning under environ-
ment uncertainties [24], [28]; and (3) multiple-robot
motion planning [24], [27]. For the first problem class,
a general method for determining feedback strategies is
developed by blending ideas from dynamic game theory
with traditional preimage planning concepts. This gen-
eralizes classical preimages to performance preimages
and preimage plans to motion strategies with infor-
mation feedback. For the second problem class, robot
strategies are analyzed and determined for situations
in which the environment is changing, but not com-
pletely predictable. For the third problem class, dy-
namic game-theoretic concepts are applied to motion
planning for multiple robots that have independent
goals. Several versions of the formulation have been
considered: fixed-path coordination, coordination on
independent configuration-space roadmaps, and cen-
tralized planning.

This section highlights some of the key concepts, to
illustrate the the utility of the mathematical represen-
tation. Section 4 discusses some selected algorithm is-
sues and presents some illustrative, computed exam-
ples.

Modeling sources of uncertainty Several types of
uncertainty will be discussed for the single-robot case.
It is straightforward to extend the discussion to multi-
ple robots. All types are modeled with nature, which
can be assumed to be either nondeterministic or prob-
abilistic.

Suppose that X = Cf.., and let q; denote the
configuration (or state) at stage k. The state tran-
sition equation (2) can be specialized to qr41 =
Jr(ak, ug, fr). This represents a generalization of the
control model that was given in (5), and represents
uncertainty in configuration predictability. Suppose
further that the observation equation is of the form
yr = hi(qg,0;). This represents a generalization of
the sensing model that was given in (8), and represents
uncertainty in configuration sensing.

Other sources of uncertainty can be considered in
addition to configuration uncertainties. Suppose, for
example, that C¢,.. is not exactly known, but is in-
stead known to be one of several possibilities. In this
case there is uncertainty in the robot’s environment.
A set E can be used to index the alternatives, and
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a state space is defined as some subset X C C x FE
[28]. Thus, for every e € FE, a different free con-
figuration space can be obtained. Let [qj e] repre-
sent the state at stage k. A state transition equation
can be defined in two portions. Suppose that the fu-
ture configurations are obtained deterministically from
dr+1 = fi(qe,ur), and future environments are ob-
tained from erpy1 = f/(er,0%). In this case nature
causes uncertainty in environment predictability. More
generally, the future environments can be conditioned
on the robot’s configuration (which occurs, for instance
in a manipulation problem) and the action, to yield
er+1 = fi(zr, 0%), in which 2 = [qi ex].

If the current environment is unknown, then there is
uncertainty in environment sensing, which is a problem
that has been considered from several different perspec-
tives (e.g., [7],[9],[17],[38]). This can be modeled by
defining yr, = hi(zg,03), in which 2, = [qr ex].

In general, sensing and predictability uncertainties
can be defined for any state space, including those that
include dynamics. Also, a set of parameters could char-
acterize variations in the model, and used to form mod-
els of uncertainty in predictability and sensing, in the
same way that F was used.

It has been assumed thus far that each decision
maker knows all game components, including the loss
functionals, of other decision makers. Another sensing
model could be introduced that reflects imperfect in-
formation that each decision maker has about the game
itself. Problems of this type are quite realistic, yet are
very difficult to model [14], [16]. The information of
each decision maker could be represented, for example,
as a pdf over a set of possible games. To make appro-
priate decisions, each decision maker must speculate
about the knowledge that other decision makers have
regarding the game. This type of second-guessing can
progress for an infinite number of layers, which leads
to a formidable modeling task.

Forward projections In preimage planning re-
search, the notion of a forward projection has been
useful for characterizing robot execution when there is
uncertainty in configuration predictability and sensing.
This concept can be substantially generalized, and in
Section 4 a computed example of a probabilistic for-
ward projection is shown.

The forward projection in this section will character-
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ize future states under the implementation of a strat-
egy. Without uncertainties, this corresponds to provid-
ing the state trajectory that can be inferred from (2).
Suppose that the strategy, v is fixed for all k, and that
there is perfect current-state information available at
all times. Under nondeterministic uncertainty, a subset
of X in which the system state will lie can be inferred.
Consider the state at stage x4, if 1 1s known. From
(4), it is already known that zp41 € Fr41(2k, ug), and
ur = Yp(2r). The nondeterministic action of nature at
stage k + 1 must next be taken into account to yield

Fryo(ar,y) =
{f(@rt1,ur41,0541) € X|orgr € Frqr(or,v), 4 € ©°}F. (10)

This defines the forward projection at stage k& + 2 in
terms of the projection at stage £ 4+ 1. By induction,
forward projections can be constructed to any future
stage.

Forward projections can be analogously constructed
for probabilistic uncertainty. For instance, the pdf at
stage k + 2 is
p(Trgelrr,y) =

/P(1k+2|1k+1,7k+1(fk+1))10($k+1|-"3k,'Yk(fk))dzk+1~
(11)
These are the forward projections for the cases of
nondeterministic uncertainty and probabilistic uncer-
tainty, with a single robot that has uncertainty only in
predictability (i.e., the current state is known). Other
forward projections, which include sensing uncertainty
and multiple robots, are presented along with addi-
tional computed examples in [24].

Termination conditions The decision to halt the
robot has been given careful attention in manipula-
tion planning research, particularly in cases that in-
volve configuration-sensing uncertainty. A motion plan
might bring the robot into a goal region (reachability),
but the robot may not halt if 1t does not realize that
it is in the goal region (recognizability) [12]. The no-
tion of a termination condition has been quite useful
for formulating robot plans that tell the robot when
to halt, based on its current, partial information [12],
[23], [30]. The same concept can be introduced in a
game-theoretic formulation by defining a binary-valued
mapping (as part of a strategy),

TCy : N, — {true, false}, (12)

and enforcing the constraint that if TCy = true, then
TCry1 = true. The true condition indicates that the
robot should halt, and can be considered as a special
action that can be considered by a decision maker (and
hence incorporated into a strategy that uses informa-
tion feedback). This termination condition, in the de-
termination of an optimal strategy, is equivalent to an
optimal stopping rule, which appears in optimal control

theory [20], [24].

Performance preimages Recall that a classical
preimage yields the set of places in the configuration
space from which a goal will be achieved under the
application of a fixed motion command. This princi-
ple can be significantly generalized within the game-
theoretic framework to yield a performance preimage.

Assume that a strategy encodes a termination condi-
tion in addition to motion control. Suppose that there
is nondeterministic uncertainty, which is standard in
preimage planning research. Consider some subset of
the reals, R C R. The performance preimage on X is
the subset of X that is given by

#5(7,R) = {z1 € X|L(z1,7) € R},  (13)

in which E(ml,'y) represents the worst-case loss that
could be obtained under the implementation of v with
an initial state z;. The set #;(y,R) C X indicates
places in the state space from which if robot begins,
the loss will lie in R.

The state space, X, can be partitioned into ¢sop-
erformance classes by defining an equivalence class
@z (7y,{r}) for each r € [0,00). For a 0-1 loss func-
tional (zero if the goal region is achieved), #;(7y,{0})
yields the classical preimage. With a general loss func-
tional, and R = [0, m) a performance preimage is ob-
tained that indicates all z; € X from which the goal
will be achieved with a loss that is guaranteed to be
less than m. If a termination condition is neglected,
then #(g, {0}) yields a backprojection similar to that in
[12].

Suppose probabilistic uncertainty is considered in-

stead of nondeterministic uncertainty. The perfor-
mance preimage becomes
72(7,R) = {21 € X|L(z1,7) € R}, (14)

in which E(rl,'y) represents the expected loss that is
obtained under the implementation of v from z;. Sup-
pose that R = [0, r] for some r > 0. The performance



preimage yields places in X from which the expected
performance will be less than or equal to r. If R = {r}
for some point r > 0, then places in X are obtained
in which equal expected performance will be obtained.
With a 0-1 loss functional and ignoring the termination
condition, the performance preimages can give isoprob-
ability curves which are equivalent to the probabilistic
backprojections in [5].

Performance preimages can also be defined on the
information space to account for sensing uncertainty,
and for multiple robots [24].

Decoupling multiple robots Consider the prob-
lem of coordinating multiple robots that have inde-
pendent goals. Approaches to multiple-robot motion
planning are often categorized as centralized or de-
coupled. A centralized approach typically constructs
a path in a composite configuration space, which is
formed by combining the configuration spaces of the
individual robots (e.g., [3],[36]). A decoupled approach
typically generates paths for each robot independently,
and then considers the interactions between the robots
(e.g., [11],[19],[33]). The suitability of one approach
over the other is usually determined by the tradeoff
between computational complexity associated with a
given problem and the amount of completeness that is
lost.

A variety of multiple-robot coordination problems
can be formulated by defining appropriate state spaces
[24]. Suppose there are a collection of N robots
that share a common workspace and have free spaces
C}rae, cey C}\;ee. The state space can be defined as the
Cartesian product

X =Chpe X Chrpe % -+ X C}Vree. (15)

The subset of X in which two or more robots collide
is avoided in a successful motion plan. The dimension-
ality of this composite space has previously prompted
many approaches that decouple the problem. Motion
plans are more or less constructed for each robot inde-
pendently, and then combined to coordinate the robots.

In [25], two additional state space definitions are
used. For fixed-path coordination, it is assumed that
a collision-free path 7% : [0,1] — C;}rae is given for each
robot, and the state space is defined as the Cartesian
product [0,1]"V. Instead of a single collision-free path,
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suppose that each robot is given a network of collision-
free paths, referred to as a roadmap. Let R? denote a
space that is formed by combining the domains of the
roadmap paths for the i** robot. A roadmap coordi-
nation space can be defined as

X=R'"xR¥*x---xRN. (16)

In general, many other combinations of constrained
spaces are possible to define the state, leading to a
variety of ways to define decoupled planning problems.

Multiple-robot optimality Little concern has
been given in previous research to optimality for
multiple-robot motion planning problems. For a single
robot, a scalar loss is optimized. Previous multiple-
robot motion planning approaches that consider opti-
mality project the vector of individual losses onto a
scalar loss. As a result, these methods can fail to find
many potentially useful motion plans.

There are many well-studied optimality concepts
from game-theory and multiobjective optimization lit-
erature. An optimality concept will be briefly described
for the multiple-robot planning problem that results in
a small set of alternative strategies that are guaranteed
to be less than or equivalent to (in terms of losses) than
any other possible strategy.

For each robot, assume there are no uncertainties

and define a loss functional of the form

i 1 Ny _
L (Iinitaxgoalau yee, U )—

/0 F(t, (), u' (8)dt+ Y ¢ (2())+4 ((T)), (17)

Ji#i
which maps to the extended reals, and

0 if z(t) € Xyatiq for all ¢
M (x() = (18)

oo  otherwise

if IZ(T) = Ii]oal
otherwise

iy ={ (19)

The variables x;n;; and 4041 Tepresent the initial and
goal configurations for all of the robots.

The integrand I represents a continuous cost func-
tion, which is a standard form that is used in optimal
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control theory. It is additionally required, however,
that

F(t,a (), w' (1) =0 if 2i(t) = 2,y (20)
This implies that no additional cost is received while
the i'? robot “waits” at Igoaz until time 7. The term
(18) penalizes collisions between the robots. The sub-
set Xyqua C X represents the (closed) set of all states
at which no robots or obstacles are in collision. This
has the effect of preventing any robots from consider-
ing game strategies that lead to collision. The term
(19) represents the goal in terms of performance. If a
robot, A?, fails to achieve its goal 2

goal> then it receives
infinite loss.

Suppose that the initial state is given. For each game
strategy, v, a vector of losses will be obtained. A par-
tial ordering, <, can be defined on the space of game
strategies, I'. For a pair of elements v,v" € T let v <
if Li(y) < Li(4") for every i. The minimal game strate-
gies with respect to < are better than or equal to all
other game strategies in T', and it is shown in [24] that
very few minimal game strategies typically exist (ig-
noring those that produce equivalent losses).

These solutions can be generated using algorithms
that are based on the dynamic programming principle.
For the criterion (17) it is shown that minimal solu-
tions are consistent with other well-established forms
of optimality from optimization literature [24]. The
minimal game strategies are equivalent to the nondom-
inated strategies used in multiobjective optimization
and Pareto optimal game strategies used in cooperative
game theory. Furthermore, it can be shown that the
minimal game strategies satisfy the Nash equilibrium
condition from noncooperative game theory, which im-
plies that for a game strategy v* = {y'*...¥V*}, the
following holds for each i and each ~* € I':

).

(21)
Moving obstacles and other nonstationary sys-
tems
the system is not time-varying. From a control perspec-
tive, this corresponds to a stationary problem. Optimal
solutions to problems of this type depend only on state

(or the information state with sensing uncertainty) and
not on time.

It has been assumed so far in this section that

By allowing time-varying models, many interesting
motion planning problems can be defined. Suppose,
for instance, that several moving obstacles exist in the
workspace. For a single-robot problem, this leads to
a time-varying free configuration space Crree(t) [22],
which can be approximated in discrete time as

Creelll= () Crreelt).

te[(k—1)At,kAL)

(22)

In general, many game items from Section 2 can encode
time-dependent models.

4 Algorithms and Computed Examples

This section briefly discusses one of several algorithms
that have been developed using this game-theoretic
foundation. One purpose is to describe an approach
that was inspired by numerical optimal control re-
search, and was straightforward to develop, given the
mathematical framework. This section also presents a
variety of computed examples that were obtained using
various algorithms, to indicate the broad applicability
of the concepts. A more thorough presentation of al-
gorithms and computed examples appears in [24].

An algorithm that handles uncertainty in pre-
diction Suppose that there is one robot with prob-
abilistic uncertainty in predictability, perfect configu-
ration sensing (i.e., the information space reduces to
X), and the models are not time-varying. The task is
to compute a strategy that is optimal in the expected
sense, which is a challenging extension of the basic mo-
tion planning problem. The expected loss obtained by
starting from stage k& and implementing the portion of
the optimal strategy {v;,...,7x} can be represented
as

Li(zr)=E {Zli(%ﬁ(l‘i)) + 1K+1(93K+1)} , (23)

in which F{} denotes expectation taken over the ac-
tions of nature.

The principle of optimality [20] states that Ly (zy)
can be obtained from LZ_I_l(a:k_H) by the following re-
currence:

Li(zr) =

min
Yk €Tk

{lk(rk,w)-l-/LZ+1($k+1)P(Ik+1|M,uk)d1k+1}~
(24)



Note that the integral is taken over states that can be
reached using the state transition equation.

An optimal strategy is determined by successively
building approximate representations of Ez. Each dy-
namic programming iteration can be considered as the
construction of an approximate representation of EZ A
discretized representation is used to construct a good
approximation of the continuous function EZ over the
entire state space. The value for L} () is obtained by
computing the right side of (24) for various values of
uy, and using linear interpolation. Other schemes, such
as quadratic interpolation, can be used to improve nu-
merical accuracy [21].

Note that E}( represents the cost of the optimal one-
stage strategy from each state zx. More generally,
L%, represents the cost of the optimal (i 4+ 1)-stage
strategy from each state zx_;. For a motion planning
problem, one is typically concerned only with strate-
gies that require a finite number of stages before ter-
minating in the goal region. For a positive § & 0 the
dynamic programming iterations are terminated when
|L;(zr) — L1 (xr41)] < 6 for all values in the state
space. The resulting strategy is formed from the opti-
mal actions and termination conditions in the final it-
eration. Note that no choice of K 1s necessary. Also, at
each iteration of the dynamic programming algorithm,
only the representation of EZ_H is retained while con-
structing L}; earlier representations can be discarded.

To execute a strategy, the robot uses the final cost-
to-go representation (which is called L}) in a way sim-
ilar to the use of a navigation function [4], [35]. The
optimal action can be obtained from any real-valued lo-
cation z € X though the use of (24) (or the appropriate
dynamic programming equation), interpolation, and
the approximate representation of L}. A real-valued
initial state is given. Thus, the robot is not confined to
move along the quantization grid that is used for de-
termining the cost-to-go functions. The application of
the optimal action will yield a new real-valued config-
uration for the robot. This form of iteration continues
until the termination condition is met.

Let @ denote the number of cells per dimension in
the representation of Ctr... Let n denote the dimen-
sion of the state space. Let |U]| denote the number of
actions that are considered. Let |O| denote the num-
ber of actions that are considered by nature. The space
complexity of the algorithm is O(Q™). For each itera-
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tion of the dynamic programming, the time complexity
is O(Q"|U] |©]), and the number of iterations is pro-
portional to the number of stages required for sample
paths to reach the goal. The complexity is exponential
in dimension, but efficient for fixed dimension. Exe-
cution times vary dramatically depending on the res-
olutions, but computation times typically range from
a minute or two for a basic 2D problem up to several
hours for a challenging 3D problem, on a typical work-
station with little regard to code optimization. It is
important to note, however, that this algorithm is not
competing with known algorithms that solve the basic
problem, since the algorithm described in this paper
overcomes uncertainty in prediction and yields an op-
timal strategy.

Several variations of this algorithm, and other algo-
rithms that apply to problems that were discussed in
Section 3, are presented in [24].

Computed examples To indicate the broad appli-
cability of the game-theoretic concepts, a variety of
computed examples are presented. The scope of the
mathematical framework is not limited to problems
shown in this section; however, the examples were com-
puted using algorithms that were developed by utilizing
the game-theoretic framework [24].

Figures 1 and 2 show some computed results for
problems that involve uncertainty in control (cases
that additionally involve uncertainty in sensing are pre-
sented in [24]). The state transition equation and sens-
ing models are the same as the examples given in Sec-
tion 2.

Figures 1(a)-(c) show computed preimages for a clas-
sic peg-in-hole task with a fixed, downward motion
command (i.e., up represents a fixed angle in (5) ).
Figure 1(a) shows a performance preimage (using a
variation of the previously discussed computation tech-
nique) under nondeterministic uncertainty and a loss
functional that returns 0 when the goal is achieved,
and 1 otherwise. The curve shown in Figure 1(a) cor-
responds closely to the classical preimage that has been
determined for this problem in previous manipulation
planning research (e.g., [12], [22]). Figure 1(b) assumes
probabilistic uncertainty, and shows probabilistic back-
projections that are quite similar to those that appear
in [5]. Figure 1(c) shows performance preimages for
a case in which a Gaussian error model is used to
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Figure 1: Several computed performance preimages for the
classic peg-in-hole problem: (a) a classical preimage; (b) a
single-stage probabilistic preimage for a uniform state tran-
sition pdf; (c) a single-stage probabilistic preimage for a
truncated Gaussian state transition pdf; and a computed op-
timal strategy for a different problem: (d) the state-feedback
solution; (e) performance preimages; (f) simulated execu-

tions of the optimal strategy.
represent the uncertainty in control, as opposed to a
bounded uniform pdf as in Figure 1(b) and in [5].

Figure 1 shows a computed optimal strategy for a
problem that involves probabilistic uncertainty in con-

trol and a loss functional that measures the time to
achieve the goal. The goal is at the lower central part of
the workspace. Figure 1(d) depicts the optimal strat-
egy by showing the direction of the motion command
ur = v;(zx) at different locations in the state space.
Figure 1(e) shows performance preimages under the
implementation of the optimal strategy. Figure 1(f)
shows 30 superimposed, simulated executions of the
computed optimal strategy.

Figure 2 shows several stages of a computed forward
projection under probabilistic uncertainty for a peg-in-
hole problem and a fixed motion command. Initially,
there is little uncertainty in configuration; however, as
time progresses, the pdf on the state space becomes dif-
fuse. Due to uncertainty reduction through compliance
(which has been used in preimage planning research
[32]), the pdf becomes flattened in the final stages. This
type of simulation can provide useful information for
experimenting with different uncertainty models and
computed strategies.

k=49

k=17

Figure 2: The forward projection at several stages, with

probabilistic uncertainty.

Figures 3 and 4 show computed examples for prob-
lems that involve an environment that changes over
time and is not completely predictable (more details
appear in [28]). Figure 3(a) shows a problem for which
there is a single rigid robot that can rotate in place
or translate along its major axis. There are two doors
that can become open or closed at various points in
the future, and the behavior of the doors is modeled



with a Markov process. The state space for this prob-
lem is the Cartesian product of the configuration space
of the robot and a set of four possible combinations
of open and closed doors. Figures 3(b) and (c) show
two simulated executions under the implementation of
a computed strategy that minimizes the expected time
to reach the goal. Different trajectories are taken in
different executions because the openings and closings
of doors vary; however, both behaviors are obtained
from the same strategy. Figure 3(d) shows a problem
in which there is a nonholonomic car robot that is ca-
pable of only moving in a forward direction and has a
limited turning radius. There are two regions in the
workspace that are designated as service areas. In this
case, the robot interacts with the environment by pro-
cessing service requests that can occur at various points
in the future (again modeled with a Markov process).
Figures 3(e) and (f) show two simulated executions un-
der the implementation of the strategy that minimizes
the expected time to reach the goal region while there
are no outstanding requests. Figure 4 shows a prob-
lem that involves a three degree-of-freedom manipu-
lator that delivers one of two possible parts from one
of two sources to one of two destinations. The exe-
cution of a strategy that minimizes the expected time
that parts wait to be processed is depicted, assuming
Markov models for resuests of parts, sources, and des-
tinations. Other problems of this type are studied in
[37].

Figures 5 and 6 show computed examples for prob-
lems that involve multiple robots. Each robot is con-
strained to move with bounded velocity along an inde-
pendent roadmap, and a minimal strategy is depicted.
These strategies were computed by applying the princi-
ple of optimality to a partially ordered space of strate-
gies [24].

5 Conclusion

A dynamic game-theoretic framework has been pro-
posed in this paper to serve as a mathematical founda-
tion for a broad class of motion planning problems. Re-
sults obtained by following this perspective were sum-
marized with the intent of indicating the general utility
of this foundation. By no means is it intended to pro-
vide a general solution to a broad class of problems,
but instead it provides a useful characterization upon
which motion planning algorithms can be developed.
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Figure 3: Two ezamples thatl illustrate planning in a

changing, partially-predictable environment.

In this way, it can serve the same purpose that config-
uration space concepts served for basic path planning
problems.

This foundation can provide several key advantages
for future research: (1) A common, unified structure
facilitates the comparison of techniques. Just as con-
figuration space concepts provided a precise, ideal for-
mulation of basic path planning, the dynamic game-
theoretic concepts provide a formulation of the ideal
(or optimal) strategies that can be achieved. For many
difficult problems, tradeoffs are inevitably made to im-



Robot Motion Planning: A Game-Theoretic Foundation

i 0 e O

l Source 1
IDestination 1 %

Link 3 .
End Effector

=

Destination 2

Source 2

(a)

Figure 4: A three degree-of-freedom manipulator with a
constrained, rotating end-effector is in a workspace in which
there are two parts, two sources, and two destinations that
are modeled with a Markov process. The optimal strategy is

shown.

prove computational performance. As approximate or
incomplete methods are proposed, it is useful for the
purposes of analysis to have precise, ideal formulations.
(2) Clear directions are provided along which the con-
cepts and methods can be generalized. For example,
the preimage and forward projection concepts have
been shown to apply in very general settings by gen-

roadmap-

Two strategies for a two-robot,

Figure 5:

coordination problem.

eralizing their definitions within the framework. This
has provided a clear relationship between nondetermin-
istic and probabilistic uncertainty models, and numer-
ical navigation functions and preimages. (3) A variety
of different models can be incrementally tested. One
of the greatest difficulties in motion planning under
uncertainties is determining appropriate models of un-
certainty, while previous algorithms have often applied
to very specific uncertainty models. The framework al-
lows the substitutions of a variety of different models
while many of the principles remain unchanged. This is
particularly true of the numerical computation method
briefly discussed in Section 4, which makes few restric-
tions on the models.

Although the framework has only been applied so
far to three classes of motion planning problems, one
important direction for future research will be to char-
acterize and analyze additional problems. For exam-
ple, problems that involve dynamics, sensing from a
vision system, or complex manipulations, have yet to
be considered. For many problems, specialized rep-
resentations will undoubtedly be useful for developing
algorithms. In many cases, useful concepts from the ex-
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Figure 6: A minimal solution strategy for three rotating

robots on independent roadmaps.

isting literature can be combined with the mathemat-
ical structure, such as in the case of using preimage
planning research to develop the performance preim-
age. Such constructions are useful for developing al-
gorithms, and are compatible with the dynamic game-
theoretic concepts.
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