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Abstract

Computational tools have greatly expedited the pharma-
ceutical drug design process in recent years. One common
task in this process is the search of a large library for small
molecules that can achieve both a low-energy conformation
and a prescribed pharmacophore. The pharmacophore ex-
presses constraints on the 3D structure of the molecule by
specifying relative atom positions that should be maintained
to increase the likelihood that the molecule will bind with
the receptor site. This paper presents a pharmacophore-
based database screening system that has been designed,
implemented, and tested on a molecular database. The key
ingredient in this system is a simple, randomized conforma-
tional search technique that attempts to simultaneously re-
duce energy and maintain pharmacophore constraints. This
enables efficient identification of molecules in a database
that are likely to dock with a given protein, which can serve
as a powerful aid in the search for better drug candidates.

1 Introduction

The development of a pharmaceutical drug is a long,
incremental process, typically requiring years of research
and experimentation. The goal is to find a relatively small
molecule (ligand), typically comprising a few dozen atoms,
that docks with a receptor cavity in a specific protein; Figure
1 shows an illustration. Protein-ligand docking can stimu-
late or inhibit some biological activity, ultimately leading to
the desired pharmacological effect. The problem of finding
suitable ligands is complicated due to both energy consider-
ations and the flexibility of the ligand. In addition to satis-
fying structural considerations, factors such as synthetic ac-
cessibility, drug pharmacology and toxicology greatly com-
plicate and lengthen the search for the most effective drug
molecules.
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Figure 1: A 3D model of protein-ligand docking.

In their search for a new drug, chemists often construct
a pharmacophore, which serves as a template for the de-
sired ligand. The pharmacophore is expressed as a set of
features that an effective ligand should possess and a set of
spatial constraints among the features. The features can be
specific atoms, centers of benzene rings, positive or nega-
tive charges, hydrophobic or hydrophilic centers, hydrogen
bond donors or acceptors, and others. The spatial arrange-
ment of the features represents the relative 3D placements
of these features in the docked conformation of the ligand.
The pharmacophore encapsulates a prevailing assumption
in drug design that ligand binding is due primarily to the
interaction of some features of the ligand to “complemen-
tary” features of the receptor. The interacting features are
included in the pharmacophore and are key for searching
for new drugs. The rest of the ligand atoms merely provide
a scaffold for holding the pharmacophore features in their
spatial positions. Figure 2 offers an illustration.

The Problem This paper deals with the following problem.
Given a pharmacophore and a database of flexible ligands,
identify those ligands that can achieve a low-energy spatial
conformation that matches some of their features to the fea-
tures of the pharmacophore. We will say that the selected
ligands can ‘satisfy’ the pharmacophore.
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Figure 2: The black dots on the ligand represent the features
of the pharmacophore. They interact with complementary
features of the receptor.

We view the problem primarily as that of obtaining a
constrained conformation of a known kinematic structure
(the ligand). The 3D positions of certain parts of the struc-
ture are predetermined by the pharmacophore model. We
compute the “folding” of the rest of the structure in a way
that it preserves all the pharmacophore matches while re-
specting all structural constraints (i.e., bond lengths), all
kinematic constraints (i.e., torsional degrees of freedom and
their allowed values), and all energy constraints (i.e., the
energy of the ligand should be below a threshold).

We model the kinematics of the ligand using techniques
common in robotics. Although powerful analytical tech-
niques exist for searching the solution spaces of similar struc-
tures in robotics, such techniques are impractical for han-
dling high degrees of freedom. Our ligands have many tor-
sional degrees of freedom; thus, we focus on randomized so-
lutions to the conformational search problem. The need for
efficiency has also motivated randomized search techniques
in robotics [16, 17]. We use our experience with these meth-
ods to develop a randomized conformational search tech-
nique, which simultaneously reduces energy and maintains
the pharmacophore constraints.

Significance of Our Work Major pharmaceutical compa-
nies maintain extensive databases of chemical compounds
that have been synthesized in previous research efforts. If
chemists are able to efficiently screen these databases for
ligands that can satisfy the pharmacophore model, great
amounts of effort and expense can be spared by exploit-
ing the results of past experimental efforts [23]. In several
cases, many properties of the ligands have been systemati-
cally documented in the database. In other cases, the search
may reveal ligands with diverse chemical compositions that
can still satisfy the same pharmacophore. The comparative
analysis and modification of such ligands can lead to better
drug candidates. An overview of a typical drug design cycle
is given in Figure 3.

The identification of a pharmacophore is a challenging
and speculative task and is beyond the scope of this paper.
We will only mention that computational chemists construct
pharmacophores both when the 3D structure of the recep-
tor is known and when it is not. Several Three-Dimensional
Quantitative Structure-Activity Relationships, or 3D QSAR
[21] theories have been developed to capture some of the
underlying chemical activity in a pharmacophore. If the 3D
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Figure 3: An overview of a typical drug design cycle.

structure of the docking site is known, the pharmacophore
is based on the properties of atoms on or close to the sur-
face of the receptor and the ligands that are known to dock
in that site. Often the 3D structure of the receptor can
not be obtained using techniques such as X-ray crystallog-
raphy or NMR. In that case the only information available
to the chemist is a set of molecules that interact with the
specific receptor and hence exhibit the pharmacophore in
their docked conformations. Each of these ligands, however,
has many torsional degrees of freedom making the identi-
fication of the pharmacophore an extremely difficult task.
Computational techniques that automatically construct a
pharmacophore from a set of molecules have been developed
[10, 13, 20, 21]. Both in the case of known and unknown
receptor structure, efficient database screening techniques,
such as the one presented in this paper, are powerful tools
in the drug development process.

Related Work 1t is widely recognized that the simple prob-
lem of matching a single flexible molecule to a pharma-
cophore is a difficult problem which is currently poorly ad-
dressed [26]. Distance geometry, systematic search, random-
ized search, and genetic algorithms have been tried but have
produced slow algorithms [1, 4, 5, 11]. One of the most ef-
ficient existing techniques for flexible matching is the “Di-
rected Tweak Method” [15, 24]. The method minimizes a
pseudo-energy function which combines the energy of the
molecule and the sum of the squares of the deviations of the
distances found in the molecular structure to the distances
expressed in the pharmacophore query. Unfortunately, the
pseudo-energy function contains a large number of local min-
ima, and conformations having high energy are frequently
returned [5]. Our work differs from previous work in the
sense that it rigorously treats the kinematics of the molecule
while guiding the molecule into low energy conformations.

2 Problem Formulation

The Molecule Model A molecule is characterized by a pair
(A,B), in which A represents a collection of atoms, and
B represents a collection of bonds between pairs of atoms.
An underlying graph can be considered for the molecule, in
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Figure 4: The molecule is considered as a tree that is rooted
at the anchor atom. Some of the bonds are considered ro-
tatable. For each rotatable bond, the structure below the
black dot rotates about the bond’s main axis.

which atoms represent vertices and edges represent bonds.
Thus, usual graph-theoretic concepts such as connectedness,
paths, trees, and cycles can be applied to molecules. It will
be convenient to choose one atom, agncn € A, as the anchor
for the molecule (or the root of the corresponding graph).
Figure 4 shows an example. We assume that the underly-
ing graph structure is a tree (i.e., no flexible rings). We
represent rigid rings by considering the entire ring as a spe-
cial “atom” that is attached by a “bond” to the rest of the
molecule. Our assumption about rings remains valid for a
large set of molecules that are of interest in drug design.
Our general approach could be extended to cyclic molecules
by exploiting computational algebra techniques that obtain
kinematic solutions to cyclic chains [8], or by using tech-
niques for large cyclic chains in [25].

Information used for kinematic and energy computations
is associated with each of the atoms and bonds. Each atom
carries standard information, such as its van der Waals ra-
dius. Three pieces of information are associated with each
bond, b; € B: (i) the bond length, l;; (ii) the bond angle,
a;, is the angle between b; and the previous bond, in the
direction toward agncr; (iil) the set of possible torsion an-
gles, 0; C [0, 27), which represents the ability of the bond to
rotate about its own axis. The part of the molecule that is
attached to b in the direction away from the anchor will also
undergo rotation about this axis. If §; must remain con-
stant, the bond is fized; otherwise, it is considered rotatable.
In most molecular studies [1, 26], bond lengths and bond an-
gles are considered fixed, while torsions are allowed to vary.
We follow this assumption in our work. From now on we
represent the conformation of the ligand as m-dimensional
vector of torsion angles €, in which each component of @
corresponds to a rotatable bond.

The Pharmacophore Model A pharmacophore is defined in
terms of a finite set of features. Typically, there are between
three and six features. A feature usually corresponds to an
atom in A; however, there are other possibilities, such as
the center of a rigid ring. Even “dummy atoms” can be de-
fined, which are not strictly part of the molecule, but have
positions that are determined by defining artificial bonds
and atoms. These extensions can be useful in some phar-
macophore models (i.e., for modeling hydrogen bond donors
and acceptors). It will be assumed from this point onward
that every feature is an atom. If other kinds of features are
needed, the molecule can be appropriately extended using

Figure 5: The assignment of o, I/, and 0 parameters along
the kinematic chain.

fictitious atoms and bonds.

The pharmacophore model also includes constraints on
the relative positions between features. Suppose for conve-
nience that one of the features is designated as agnch, which
lies at the origin of a global zyz coordinate system. For each
remaining feature, the corresponding atom is constrained to
lie near a specified position in this new coordinate system.
Any set of torsion angles that is chosen for the molecule must
place each of the feature atoms within a small neighborhood
of its prescribed position. Another coordinate frame is at-
tached to the molecule at agncn. The molecule coordinate
frame and the feature coordinate frame can become mis-
aligned by rotations; this will be handled shortly. For the
purpose of assigning bond angles for bonds that are attached
t0 Ganch, assume that agncr is attached to a fictitious “bond”
that connects (0,0, —1) and (0,0, 0).

The Kinematic Model Molecular kinematics give the po-
sitions of all of the atoms of the ligands in terms of the tor-
sion angles. The bond lengths, bond angles, and torsion an-
gles can be conveniently used as parameters in the Denavit-
Hartenburg representation for spatial kinematic chains [7,
14]. This representation is useful for determining the appro-
priate rigid-body transformation to apply to any link in a
series of attached links. For the molecule, suppose that a
local coordinate frame is attached at the beginning of each
link (or atom center). If a bond b; follows a bond b;—; in
the chain, then the coordinate frame of b; is related to that
of b;—1 by the homogeneous (both rotation and translation
are performed) transformation

ch; —s0; 0 0
T — sb;co;_1 cbica;_1  —sai_1  —lijso;_q
i = . Gvs ) s )
sl;sa;—1 cbisa;—1 ca—q licai—1 1
0 0 0 1 1)

in which 8; represents the torsion angle, cf; is cosf; and s6;
is sinf;. Figure 5 depicts the quantities that appear in (1).
The fictitious bond is used to define . If b; is not rotat-
able, then 6; is a constant; otherwise, 6; is a conformation
parameter, included in 6.

The position of any atom in the molecule can be deter-
mined by chaining matrices of the form (1). For example,
suppose b;,b;—1,...,b1 represents the sequence of bonds in
the path from a particular atom, a € A, to agncn- The zyz



Figure 6: Four features are shown for a hypothetical
molecule. The coordinate frame is attached to one of the
features, which is designated as aqncn- The anchor atom,
Qanch, Must be allowed to rotate to preserve the original
freedom of the molecule.

position of a is given by

=NTs --T;

(2)
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—_= o oo

Before the expression of the kinematics is complete, there
is one additional transformation that must be defined be-
cause we assume, without loss of generality, that agncn is
a feature. The definition of the features requires that the
position of agncn is at the origin, but it does not impose any
constraints on the orientation of agncn. Thus, it is possi-
ble that a coordinate frame attached to the molecule could
be rotated with respect to the global coordinate frame for
the pharmacophore feature positions. It is therefore neces-
sary to allow the frame attached to the molecule at agnch
to achieve any orientation with respect to the global frame.
See Figure 6.

The space of 3D rotations can be parameterized using
Euler angles, ~v,¢,%, for which 0 < vy < 7, 0 < ¢ < 2m,
and 0 < 9 < 27 [7]. The parameterized rotation matrix can
be placed into homogeneous form by extending one row and
column to obtain

Tr (77 @, 1/}) =
cosycy —cpeysy — s¢pep  cpsy O
spcye) + cpsp  —speysy + cpep sgpsy 0 (3)
—sycy sYSY ¢y O
0 0 0 1

Taking into account the anchor orientation, the posi-
tion of a particular atom, a € A, at the end of a path,
bi,bi—1,... ,b1, t0 @ancn is given by

=Tr(v, ¢, Y)W T2 --- T; (4)

—Ne s
—o oo

The Kinematic Error Function Using the kinematic ex-
pressions, an error function can be specified to express how
closely the pharmacophore constraints are satisfied. The
transformation (4) is expressed in terms of several constants
and variables. The constants are the bond angles, a;, bond
lengths, I;, and torsion angles for non-rotatable bonds. The
variables are <y, ¢, 1, and the torsion angles for rotatable
bonds which are given in 6.

Suppose that there are N features in the pharmacophore
model. Let G* denote the prescribed position for the k%" fea-
ture, for each k € {0,1,... ,N—1}. Let Go = (0,0, 0) repre-
sent the feature that corresponds to agnen. Let g*(0,7, ¢, 1)
represent the xyz position of the atom that corresponds to
the k" feature. This position is expressed only in terms of
the variables in the kinematic formulation (4).

Given 0, v, ¢, and ¥, the total amount of error between
the prescribed feature positions and the actual feature po-
sitions can be measured as

N-1
d(0,7,6,%) = Y _IIG" —g'(8,7. ), (5)
i=1
in which || - || denotes the Euclidean norm.

The Energy Function In a sense, the energy function mea-
sures the likelihood that the molecule will achieve a con-
formation in nature (lower energy states are more likely to
occur). It is common in molecular modeling [2] to use an em-
pirical energy function; we use the SYBYL system (Tripos
Inc [24]) energy function:

e@)=" 3 \nds 1Ky (R—R')? + Zang 1Ka(a—o')2+

Ztorsions Kd[l + COS(na — 91)] +

Tos o | (2) " ()| -2 ’

In the above, the first sum is taken over all bonds, the second
over all bond angles, the third over all rotatable bonds, and
the last sum of is taken over all pairs of atoms. K, K,,
and K, are force constants, € is the dielectric constant, and
n is a periodicity constant. R, «, and 6 are the measured
values of the bond lengths, bond angles, and torsional angles
in conformation @, while R',o’, and §' are equilibrium (or
preferred) values for these bond lengths, bond angles, and
torsional angles. r;; measures the distance of atom centers
in 8. The parameters o0;;,¢€;; and g; are the Lennard-Jones
radii, well depth, and partial charge for each atom in the
system.

The expression for the energy of a molecule may appear
quite complicated, especially due to interactions between
each pair of atoms; however, the energy depends only on the
conformation, 6, because the anchor orientation parameters
are only used for pharmacophore purposes. Notice also that
the first and the second term of the energy function are
constant with our assumptions.

The General Task The general task is to find conforma-
tions that satisfy both pharmacophore and energy consid-
erations. For a given molecule in the database and a given
pharmacophore, two important questions are asked

e Question 1: Can this molecule achieve a low-energy
conformation that satisfies the given pharmacophore?



e Question 2: What are the distinct low-energy con-
formations that satisfy the pharmacophore?

Question 1 decides whether the molecule is worth consid-
ering as a candidate in the drug design process. Using the
concepts defined in this section, this question can be formu-
lated as determining whether there exist values for 8, 7y, ¢,
and v, such that d(0,+, ¢, ) and e(0) are below some fixed
thresholds.

The answer to Question 2 provides additional informa-
tion for chemists. There might be several low-energy con-
formations that satisfy the pharmacophore, but each could
place the other non-feature atoms in very different locations.
These distinct conformations may be used to refine a phar-
macophore model. A new, hypothesized feature might only
be satisfied in some of these conformations. By looking at
multiple conformations for several molecules, it might be
possible to select a single conformation from each molecule
that also satisfies the new feature. The main difficulty in
providing a set of distinct conformations is that the notion
of “distinct” is not well-defined. The difference between two
conformations can be compared by defining a metric, such as
the RMS distance of the atomic displacements between the
two configurations. In Section 4, a clustering technique is
described that ensures that the reported clusters sufficiently
differ according to this metric.

3 Randomized Conformational Search with
Constraints

The Approach In this section we focus our attention on
Question 1 above. In Section 4 we show how to integrate the
approach with a database screening system that can answer
both Questions 1 and 2. Figure 7 indicates the three main
steps involved in the computation. The first step generates a
random conformation, 8, and anchor orientation, given by ~,
¢, and Y. The second step attempts to reduce the kinematic
error (5) by performing a randomized gradient descent. If
the second step is successful, the third step is reached; oth-
erwise, the first step is repeated. The third step attempts to
reduce the energy while keeping the kinematic error within
an acceptable range. If the energy falls below a prescribed
threshold, then the method reports success. Otherwise, the
first step is repeated. In practice, a limit is set of the maxi-
mum number of allowable failures before the algorithm ter-
minates. It is important to note that if the algorithm termi-
nates after any number of failures, it cannot be concluded
with certainty that the molecule does not admit a low-energy
conformation that satisfies a given pharmacophore. This is
the tradeoff that is typically made for an efficient, random-
ized algorithm, as opposed to a costly, systematic approach
that carefully considers all possibilities. Randomized tech-
niques are popular for conformational search problems that
do not involve pharmacophore constraints; see for example
3, 4,9, 12, 22].

An alternative way to approach the constrained search
problem would be to obtain an explicit characterization of
the set of conformations that satisfy the pharmacophore.
This generally involves characterizing the solutions to the
inverse kinematics problem. The equations of the form (4)
that express the pharmacophore can be converted to a poly-
nomial system. Each trigonometric function can be replaced
by a ratio of polynomials by using stereographic projection,
and the problem conformations that satisfy the equations lie
in an algebraic variety [6]. Efficient elimination techniques
from computational algebraic geometry have been developed

Samplé
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Decrease Kinematic
Error

Success Failure

Decrease Energy
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Constraints

Success

Failure
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Figure 7: An overview of constrained conformational search.

for numerating the solution set for problem in which there
are a finite number of solutions [8, 19]. For the problem
discussed in this paper, the system of equations is gener-
ally underconstrained, which leads to a complicated, multi-
dimensional solution set. Although it is straightforward to
obtain a parametric representation of some algebraic vari-
eties (such as a sphere or a torus), it not generally possible
to employ elimination techniques to find a parameterization
of any algebraic variety [6]. This consideration, and the need
for efficiency, led to the choice of a numerical, randomized
technique, as opposed to performing symbolic computations
with polynomial systems.

Distance Minimization The algorithms for reducing the
kinematic error and for decreasing the energy are shown
in Figures 8 and 9, respectively. The first algorithm, DE-
CREASE KINEMATIC_ERROR, resembles the minimiza-
tion technique used in the UNITY-3D package (which is
included in SYBYL, from Tripos Inc. [24]). The algorithm
accepts an initial conformation and anchor orientation pa-
rameters, and iteratively adjusts these until the total kine-
matic error falls below some acceptable limit, d;o;. Our dis-
cussion in Section 2 shows how to compute the kinematic
error d. In each iteration, the RANDOM NEIGH function
slightly perturbs each of the conformation and orientation
parameters. The size of this neighborhood was determined
experimentally in advance. There are two ways in which
this algorithm can fail: (i) the counter k reaches its max-
imum value, Kmqz, which means that too many iterations
have been executed, or (ii) the counter f reaches its max-
imum value fyqz, which means that too many failures to
reduce the error have occurred. This second failure essen-
tially detects that the minimization is trapped in a local
minimum. Rather than try to escape this minimum, a new
conformation is sampled.



DECREASE_KINEMATIC_ERROR(6, v, ¢, 1))

2 while k < kmar and f < fiaz and dpyin > dior do
3 (0,,7I’¢”¢’) FRANDOMNEIGH(O, ’y’ ¢’ ,lp);
4 ifd(@,v,¢,9') < dmin then

5 f(_oﬂ dml'ﬂ <_d(9’:’)/7¢,7¢’)5

6 (0,7,0,%) « (0,7, ¢",¢");

7 else

8 f<f+1

9 k+—k+1,

10  if dpmin < dio; then

11 Return (6,7, ¢,v)

12 else

13 Return FAILURE

Figure 8: This algorithm iteratively attempts to reduce the
kinematic error.

DECREASE_ENERGY (8, v, ¢, 9)

1 k<« 0; f<0;, g« 0; dpin < 00} emin < 00;
while (k < kmar and f < frmao

and g < gmae and epmin > €tp,) do
3 (¢,7/,¢',4') «RANDOM NEIGH(8, 7, ¢, 1);
4 ifd(@',7,¢',v') < di then
5 f < 0; emin < 00;
6 if 6(0’:’)/: ¢'a¢’) < emin then
7
8
9

N

g 0; emin < e(0',7,¢',9');
(07 77¢7/¢)) (_ (0,77,7¢”1/)’);

else
10 g—g+1
11 else
12 f<r+1
13 k+—k+1;
14  if emin < egpr then
15 Return (0,7, ¢, 1)
16 else
17 Return FAILURE

Figure 9: This algorithm iteratively attempts to reduce the
energy while keeping the kinematic error within tolerance
limits.

Energy Minimization If the kinematic error is successfully
reduced, the resulting conformation and base orientation are
passed to DECREASE_ENERGY. This algorithm proceeds
in the same manner as the previous one, except that two
different criteria must be monitored. It attempts to reduce
the energy, while ensuring that the kinematic error distance,
d, does not increase beyond d:,;. For this algorithm there
are three counters, each of which can halt the algorithm if
its limit is reached. The counter k records the total number
of iterations, f records the number of consecutive failures to
maintain the pharmacophore without reducing energy, and
g records the number of consecutive failures to reduce the
energy. e, is the desired energy threshold.

This algorithm exploits that fact that some tolerance is
allowed for matching the pharmacophore. Figure 10(a) il-
lustrates that a perturbation of the conformation and an-
chor orientation parameters only slightly moves the feature
atoms. If each of the feature atoms remains within accept-
able tolerance, then the new parameters are evaluated based
on energy. The speed of the algorithm is directly related

~—~

Tolerance Region

(a)

(b)

Figure 10: a) After perturbing the molecule, it must be de-
termined whether the feature atoms remain within accept-
able tolerance from their prescribed positions; b) the search
technique can be considered as a randomized traversal inside
of a thick surface.

to the feature tolerance. If the tolerance is larger, then
larger variations can be considered in RANDOM_NEIGH.
This causes the molecule to move more quickly toward an
energy minimum. As shown in Figure 10(b), the “thick-
ness” of the set of acceptable parameters greatly facilitates
a randomized traversal. In the current implementation the
neighborhood size in RANDOM _NEIGH is an empirically-
chosen constant.

Note that the choice of anchor atom prohibits the specifi-
cation of a tolerance for the feature at the origin. This can be
overcome by defining three positional offset variables for the
anchor (in addition to the rotation parameters); however,
this would cause some loss of computational performance.

4 An Integrated Database Screening Sys-
tem

A database screening system has been implemented and
tested on a small molecular database. The principle mod-
ule in this system is the constrained conformational search
technique described in Section 3.

Iterative Sweeping Across the Database Suppose that one
would like to use the approach described in Figure 7 to
search a database for molecules that have a low-energy con-
formation that satisfies a given pharmacophore. Initially,
non-geometric constraints can be used to quickly discard
any molecules that do not contain all of the feature atoms.
Our work pertains to the remaining set of molecules. The
primary question to answer is how many iterations of our
approach should be applied to each molecule? For a sin-
gle molecule, each time a new sample conformation and an-
chor orientation is chosen and fails to lead to success, the
likelihood that the molecule will ever succeed is decreased.
However, after any number of iterations, it is impossible to
conclude that the molecule will never succeed.

One sensible way to use this method is to sweep across
the database, using only one iteration of the approach in
Figure 7 for each molecule. Once the last molecule has been



Themolysin Inhibitors Ace Inhibitors
Molecule || Atoms | Rot. Bonds Atoms | Rot. Bonds
moll 69 10 48 8
mol2 66 11 50 8
mol3 22 3 31 7
mol4 42 8 47 8
mol5 64 13 45 6
mol6 63 12 30 3

Figure 11: The thermolysin and ace inhibitors used in our
experiments.

processed, a second sweep can be made across the database.
The sweeps across the database can be repeated until some
predetermined criteria are met (for example, a certain num-
ber of successes have been found or the maximum number
of sweeps has been reached). Each iteration of this method
is completely independent; therefore, there is no difficulty in
switching frequently between molecules. Furthermore, the
whole process can be easily parallelized. Because the likeli-
hood that a molecule will succeed decreases with each itera-
tion, it makes sense to avoid focusing multiple iterations on
a single molecule before continuing.

The result is an “any-time” algorithm in the sense that
the solutions gradually improve over time, and there is no
natural termination point. Typically, the first sweep might
turn up a small number of successful molecules. These re-
sults could be analyzed while the program continues to iden-
tify other successful molecules over time. If the goal is only
to identify successful molecules, then a successful molecule
is removed from the search set before the next sweep. The
computation will gradually focus in this case on the more
difficult molecules.

Conformation Clustering The goal might alternatively be
to characterize the set of possible solutions for each of the
successful molecules. (This is Question 2 from Section 2.)
In this case, clustering can be performed incrementally for
each solution that is generated [18]. A metric m(61,02)
can be defined that quantifies the difference between two
conformations. In the database screening system, m (61, 02)
is defined as the RMS of the displacements of the atoms
between the two conformations. A threshold, m:n,, is set as
the maximum distance allow for two different conformations
to be considered as part of the same cluster.

The incremental clustering approach proceeds are fol-
lows. The “Report Success” step in Figure 7 is replaced by
an operation that updates the cluster record using the new
conformation (the anchor rotation is also retained). Each
cluster is represented by a single conformation that has the
lowest energy compared with any other known conforma-
tion within distance mmqz- If the cluster record is empty,
then the first update generates a single cluster for the given
conformation. Suppose the cluster record contains several
conformations when an update is requested for a new con-
formation. If there are any other conformations that are
within a distance mmaq, that have lower energy, then the
new conformation is discarded (a better, similar conforma-
tion already exists). Otherwise, the new conformation is
added to the cluster record. Any existing clusters that are
within a distance mmq, and have higher energy are deleted.
This has the effect of making the “representative” of each
cluster the conformation that has the least energy.

Experiments The database screening system was imple-
mented in Gnu C on an SGI Indy and on a Pentium Pro
200Mhz PC running Linux. A database of molecules was
provided from Pfizer Limited. This database includes 6 dif-
ferent inhibitors of thermolysin and 6 different inhibitors of
ace. The table in Figure 11 reports the number of atoms and
the number of rotatable bonds for each of these molecules.
All molecules are very flexible as they contain 3 to 13 tor-
sional degrees of freedom. The inhibitors of thermolysin are
shown in Figure 12, and the inhibitors of ace are shown in
Figure 13. Each molecule appears in a random configura-
tion in our database. For both sets of molecules, the docked
conformations are known by previous pharmacophore iden-
tification studies. We use subsets of the true pharmacophore
as queries in our database for testing purposes.

For the thermolysin inhibitors we tried a query with 4
features of the known pharmacophore and for the ace in-
hibitors we run a query with 3 features of the pharma-
cophore. In both cases we let our program complete 20
iterations and set the cluster distance mma, to 1.5 A. The
maximum feature tolerance was set to 0.5 A. It was gener-
ally found that a single iteration of the method in Figure
7 could be performed in about 5-10 seconds. A sufficient
clustering record for a single molecule required about 5-20
minutes. Our results are shown in Table 14 for the ther-
molysin inhibitors and in Table 15 for the ace inhibitors.
Column 1 of these tables shows our molecules. We report in
columns 2 and 3 the number of clusters found and the min-
imum energy conformation in all of these clusters as a proof
of the fact that the conformations that we find are indeed
of low energy. In general, the energies of the conformations
found are within 2-7 Kcals/Mol of the energy of the known
docked conformation.

Our clustering scheme ensures that we record conforma-
tions that are significantly different from each other. In Fig-
ure 16 we show the representatives of the clusters that are
generated for mol5 of the thermolysin inhibitors. The phar-
macophore features are circled in white. Notice how well
these are matched in contrast with the rest of the atoms
in the molecule. Clusters for mol5 of the ace inhibitors are
shown in Figure 17. A similar observation holds here.

Our implementation allows us to answer the two ques-
tions posed at the end of Section 2. Question 1 is answered
efficiently by our randomized constrained minimization tech-
nique. Question 2 is answered by iterating our constrained
minimization and by clustering the results. In each iteration
of the algorithm a new random conformation of the molecule
is generated and subsequently minimized. As discussed at
the end of Section 2, the position of non-feature atoms may
help the chemist select among possible ligands or modify
existing ligand in search for a better drug.

Our previous work with randomized techniques has shown
[10, 16] that if we continue iterating our algorithm we in-
crease our chances of covering the conformational space of
the molecule and hence our chances of providing exhaus-
tive information about the constrained conformations of the
molecule. As a proof of concept, in the examples used in
this section we obtained conformations that are fairly close
to the known docked conformations. For the 5 thermolysin
inhibitors, we obtained conformations whose RMS distances
from the corresponding docked conformation were 0.50, 2.96,
0.59, 0.81, 2.40, 2.56 A correspondingly. In the ace case,
we obtained conformations whose RMS distances from the
corresponding docked conformation were 1.26, 1.79, 0.94,
2.03, 1.87, 1.98 A. Notice that the more features we use,
the closer we can get to the docked conformation (4 features
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Figure 12: The inhibitors of theormolysin used. Each
molecule is at a random conformation.

for the thermolysin inhibitors versus 3 features for the ace
inhibitors). In certain cases, we get very close to the docked
configuration (certain thermolysin inhibitors), which is an
indication of good conformational space coverage. Without
doubt, more extensive experiments are needed to fully evalu-
ate the system, but our preliminary results are encouraging.

5 Discussion

A database screening system has been presented that can
help expedite the drug design process. The system identifies
molecules that are able to satisfy a given pharmacophore,
and are therefore reasonable candidates for further investiga-
tion. The key to this screening system is a randomized con-
formational search approach that considers both the kine-
matic error imposed by the pharmacophore constraints and
the energy. The simplicity and efficiency of the approach
should enable straightforward extensions to other classes of
molecules, such as those with flexible rings.

A difficulty with the current approach is the selection
of the step size for the random neighborhoods in the kine-
matic error descent and the energy descent. Although the

moll mol2
mol3 mol4
mol5 mol6

Figure 13: The inhibitors of ace used. Each molecule is at
a random conformation.

same value was used over a wide variety of molecules, it
seems that performance can be greatly improved by giv-
ing more careful attention to this selection. For example,
larger step sizes might be appropriate if the conformation
is near a kinematic singularity. This could compensate for
the fact that large displacements near a singularity lead to
small displacements of the feature atom. A quaternion pa-
rameterization of the anchor orientation, instead of a Euler
angle parameterization, might also improve performance for
similar reasons. Performance improvement might also be
obtained by constraining random neighborhood samples to
lie in the tangent space to the constraints.
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