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Abstract

We introduce the problem of computing robot motion
strategies that maintain visibility of a moving target in
a cluttered workspace. Both motion constraints (as con-
sidered in standard motion planning) and visibility con-
straints (as considered in visual tracking) must be satis-
fied. Additional criteria, such as the total distance trav-
eled, can be optimized. The general problem is divided
winto two categories, on the basis of whether the target is
predictable. For the predictable case, an algorithm that
computes optimal, numerical solutions is presented. For
the more challenging case of a partially-predictable tar-
get, two on-line algorithms are presented that each at-
tempt to maintain future visibility with limited predic-
tion. One strategy marimizes the probability that the tar-
get will remain in view in a subsequent time step, and the
other mazimizes the minimum time in which the target
could escape the wvisibility region. We additionally dis-
cuss issues resulting from our implementation and ex-
periments on a mobile robot system.

1 Introduction

Several applications require persistent monitoring of
a moving target by a controllable vision system. In ap-
plications that involve automated processes that need to
be monitored, such as in an assembly workcell, parts or
subassemblies might need to be verified for accuracy or
are determined to be in correct configurations. Visual
monitoring tasks are also suitable for mobile robot ap-
plications [3]. In medical applications, one would like
to move cameras around a surgery site to keep a desig-
nated area of interest (key tissue) in continuous sight,
despite unpredictable motions of potentially obstructing
people and instruments, and display a smooth sequence
of images for the surgeon [12]. In a telepresence or vir-
tual presence application, a vision system can be used
in a remote location to automatically track a variety of
moving objects such as vehicles, people, or other robots.
Visual information can also be used to track robots or
robot features that appear in an image, and be directly
integrated into a servo loop (e.g., [5, 6, 14]).

A motion planning problem 1s considered in this pa-
per in which a robot carries a camera that must main-
tain visibility of a target. The primary distinction be-
tween the problem considered in this paper and stan-
dard tracking problems is the introduction of global, ge-

ometric constraints on both visibility and robot config-
urations. The following conditions are assumed: 1) an
observer must maintain visibility of a moving target; 2)
the workspace contains static obstacles that prohibit cer-
tain configurations of both the observer and target; 3)
the workspace also contains static obstacles that occlude
the target from the observer; 4) a (possibly partial) mo-
tion model is known for the target. The first condition
implies that target tracking is the primary interest, and
visibility can be defined in a variety of ways, depending
on the particular problem. The second condition intro-
duces the geometric constraints that appear in the stan-
dard path planning problem [10]. The third condition
complicates the tracking problem by prohibiting pairs of
observer and target configurations at which the observer
cannot “see” the target. In many cases an obstacle in
the workspace will cause both motion and visibility con-
straints. The fourth condition provides predictive infor-
mation that should be utilized when designing a strategy.
For example, the entire trajectory of the target might be
known, or alternatively, only a velocity bound might be
known. In addition to the previous four conditions, it
might also be important to optimize some criteria such
as the total distance traveled, energy utilized by the ob-
server, or the quality of the visual information.

Section 2 provides a precise formulation of the prob-
lem in terms of configuration space concepts and system
theory concepts. The computation methods presented in
this paper are divided into two sections on the basis of
target predictability. Section 3 presents an off-line algo-
rithm that determines optimal, numerical solutions for
the case in which the target is completely predictable
(i.e., the trajectory is known). The case in which the
target is only partially-predictable is considerably more
difficult, and is covered in Section 4. For this case, two
different algorithms are presented that make on-line de-
cisions that attempt to maintain future visibility. Both
of these algorithms can be used in a real-time applica-
tion using on-line information, and experimental results
using two Nomad 200 robots are presented. Conclusions

=

and discussion appear in Section 5

2 Problem Formulation

Suppose that an observer and a target exist in a
bounded, Euclidean workspace that is cluttered with
static obstacles. In general, the observer and target
can be considered as rigid or articulated bodies, with
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Figure 1. The goal is to maintain visibility of a moving
target that may or may not be predictable.

standard configuration-space parameterizations [10]. Let

C$ree and Cfree denote the free configuration spaces of

the observer and target, respectively. Let X = C¢

ree

C,.. represent the state space. A state surnultaneously

specifies configurations for the observer and target.

Motion models will next be formulated for the ob-
server and the target. Discrete-time representations will
be used to facilitate the expressions when there is un-
certainty in target prediction; however, continuous-time
representations could alternatively be used. Let the in-
dex k refer to the stage or time step that occurs at time
(k — 1)At, for some fixed, At (which specifies the sam-
pling rate). Let qf and qf, denote specific configurations
at stage k, for the observer and target, respectively.

The observer will be controlled through actions, ug,
chosen from some action space U. The discrete-time tra-
jectory will be given by a transition equation of the form
ag,, = f°(ag, ux), which yields a new configuration of
the observer for a given current configuration and action.
Constraints that include nonholonomy and bounded ve-
locity can be modeled using f°.

The target will be described by a similar transition
equation; however, the actions that control the target
are generally unknown to the observer. Let qZ_H =

ft(at, 0x), in which 6 represents unknown actions, cho-
sen from some space ©. One i1mportant special case,
which is the subject of Section 3, is when the target is
predictable. In this case the transition equation can be
represented as q2+1 = f'(d}).

Together, f° and f! define a state transition equation
of the form 241 = f(zk, uk, Ok).

Recall that each state, xg, represents a pair of config-
urations, qf and q. A binary relation on these config-
uration pairs can be defined that declares whether the
target is visible to the observer. This visibility can be
defined in a number of ways (e.g., omnidirectional field
of view, fixed cone, etc.). Let X, C X represent the visi-
bility subspace, which corresponds to the set of all states
for which the visibility relation holds.

Next consider evaluating a state trajectory. Ab-
stractly, the goal is to control the observer to ensure that
the state remains in X,. The cost of applying a sequence

of control inputs is state trajectory can be expressed as

K

JUK) = Zlk($k7 ur) + Lry1(zx41),

k=1
o o (1)
in which K represents the final time increment for 1s-
suing a action and lg(zg, ux) is a loss that accumulates
in a single time step. The final state, xx 41 can also be
penalized, using Lg 1.
A simple, useful form of I 1s

I (2, ur) = {0 if 2z € X,; 1 otherwise} (2)

L(xl,...

yTK41,UL,y ...

This loss functional measures the amount of time that
the target is not visible. One could also include a cost
for choosing actions that produce motion. This would
allow the robot motions to be optimized in addition to
the time that the target is in view, and is considered in
Section 3.

The loss functional evaluates a given trajectory. In
the case of perfect target predictability, the trajectory
can be inferred once the actions, {u1,...,ux} are spec-
ified. In the case of a partially-predictable target, the
loss functional is used to evaluate a state-feedback strat-
egy using expected-case or worst-case analysis. These
concepts are deferred until Section 4.

3 Predictable Targets

In this section the assumption is made that qf is
known for all £k € {1,...,K + 1}. In this case, the
state transition equation reduces to zgy; = f(zk, ug),
which implies that the state trajectory, {za,..., 2k 41
is known once z1 and inputs {us,...,ug} are given.

For a problem that does not involve optimizing the
robot trajectory, motions for the observer could be de-
termined by recursively computing visibility and reacha-
bility sets from stage K+ 1 down to stage 1. Suppose the
target and observer are both points. Let Vi denote the
subset of the free space from which the target is visible.
Let Ag, denote the set of all locations from which the
observer could move at stage £ — 1 and lie in V} at stage
k. At any given stage, the observer must lie in Vi N Ag.
A feasible trajectory for the observer can be obtained by
backchaining from the final stage, guaranteeing accessi-
bility and wvisibility in each step, until a set of possible
initial states is obtained.

In the remainder of this section, a method that em-
ploys the dynamic programming principle to minimize a
specific loss functional of the form (1) is presented. Al-
though the approach shares some similarities with Dijk-
stra’s algorithm on graphs, the principle is applied in the
present context over a continuous state space and over
discrete time. Its use follows directly from the differ-
ential equations that express the dynamic programming
principle in standard optimal control [9, 11].

3.1 Computational Approach

The computational approach can be organized into
four basic steps:

L. Construct a discretized representation of C%,.. x K,

in which K = {1,..., K +1}.



2. For each k, mark all discretized values of qf from
which the target (at known ql) is visible.

3. Within X, for each stage from K + 1 to 1 perform
dynamic programming computations with interpo-
lation.

4. Extract the optimal sequence, {uj,..., u}}, using

cost-to-go representations.

Step 1: Because the target is predictable and param-
eterized through the stage index k, the subspace corre-
sponding to C;ree only needs to be considered as opposed

to the entire state space. The stage index is included be-
cause the problem is time-varying. This is similar to the
use of configuration-time space representations for mo-
tion planning among known moving obstacles [7, 10]. An
array representation of the spaces is constructed, which
ultimately limits the current approach to observers that
have only a few degrees of freedom. In [8], it is shown
that the Fast Fourier Transform can be used to efficiently
obtain a C-space representation from the static obstacles
and robot geometry.

Step 2: Since the primary task is to maintain visi-
bility of the target, the acceptable observer locations are
marked. Using omnidirectional visibility, this can be ac-
complished efficiently by performing scan conversion of
a computed visibility polygon that emanates from the
target. Using a standard sweep algorithm [13], the vis-
ibility polygon can be computed in O(nlgn) time. If a
loss functional is defined that evaluates individual view-
points then one would precompute real-valued costs, as
opposed to binary flags. For example, one might indicate
a preference for a certain distance between the target and
observer that is reflected in the real-valued costs.

Step 3: The dynamic programming computations are
the most significant portion of the computation. For
cach stage k a cost-to-go function, L} : X — R, is com-
puted using the cost-to-go function of stage k& 4+ 1. The
cost-to-go function represents the loss or cost that will
be ultimately accumulated by starting from configura-
tion qf and choosing the optimal action at each stage.
Due to the dependencies between the cost-to-go func-
tions, L}, is computed initially, and a cost-to-go func-
tion is computed for each prior stage until L7 is finished.
Although the domain of the cost-to-go function is X,
computations only need to be performed on Cf%,.. be-

cause the target configuration is fixed for each stage.
The dynamic programming principle defines the rela-
tionship between the cost-to-go functions:

Li(2x) = min {l (zx, ue) + Lk (241)} (3)

in which /i is defined in the loss functional (1), and zx41
is obtained for each choice of uy through the state transi-
tion equation, zx4+1 = f(xg, ug). The difference equation
(3) defines a very local relationship between successive
cost-to-go functions, yet the principle of optimality en-
sures that a globally optimal strategy will result.

One difficulty results from using discretized represen-
tations of the continuous dynamic programming princi-
ple. The next state, zx41, will usually not lie exactly at
a discretized value. Rather than simply looking up Ly,
at the nearest quantized value, the value of L1 can be

computed through linear interpolation of the cost-to-go
values between all neighbors of 2 41. This technique has
been used previously in numerical dynamic programming
computations; related issues are discussed in [9, 11].

Step 4: Suppose the cost-to-go functions have been
computed. If the qf is fixed, then u} can be obtained
by using (3) for the given initial state, z1. If qf is free,
then an optimal initial configuration can be obtained by
selecting the configuration qf minimizes L]. Once uj
has been determined, the next state zs = f(z1,u]) can
be inferred. Equation (3) can be used again to determine
u3. This process iterates until the final, optimal action
uf 1s obtained.

The time complexity of the method is linear in the
number of actions and stages, and exponential in the
dimension of the observer configuration space.

3.2 Computed Examples

The optimal strategies were computed for several
strategies, and the resulting observer trajectories were
simulated. Some of these results are shown in this sec-
tion to demonstrate the method and to illustrate the
global aspects of this motion planning problem. In all of
the examples, the workspace i1s 2-D with dimensions 100
units by 100 units. All obstacles obstruct both visibility
and motion. The target moves at its maximum speed
of 3 units/stage. The observer is controlled through the
simple holonomic model,

AP = aF + upAt[cos(u}) sin(u})]",  (4)

in which u} > 0 represents the speed of the observer,

and u} € [0, 27) represents the direction of motion. No
dynamics are considered in this model.

Figure 2 shows a simulation of a trajectory that is ob-
tained from the computed optimal strategy. The actions
u; = 0 (no motion) and u;, = 3 and u} € [0,27) (motion
at a fixed speed in some direction) were allowed. The
loss functional is of the form I (zg, ug) = Iy +1,. The
term [,, is a penalty for motion, and ,, = 0 if u}, = 0,
otherwise l,,, = 1. The term l, is a penalty for losing vis-
ibility, which is much more important, yielding I, = 500.
There are 105 stages for this problem, and the dynamic
programming computations took about 20 seconds on a
SPARC 20 workstation. Note that although the target
trajectory is quite long, the distance traveled by the ob-
server 1s short. An initial position for the observer was
automatically selected from which the target was visible
during the first portion of the trajectory. The observer
moves just barely far enough to the lower left, and then
finishes by remaining in the lower right for the final seg-
ment of the target trajectory.

The example in Figure 3a involves the same geome-
try; however, the loss functional is slightly changed to
yield I, = 0 only if the target is both visible and the
distance between the target and observer lies within 10
and 25 units. Also, the speed, uj, is allowed to vary
between 0 and 3, with a loss, [,,, that is proportional
to the speed. In this case, the observer must travel a
greater total distance, yet an optimized trajectory that
maintains visibility is still obtained.

Figure 3b shows an example in which the maximum
observer speed is 1.5, and the target speed is 3.0. There



Figure 2. A simulation is shown of the optimal state trajec-
tory for a tracking problem. The observer strategy, including
the initial position, is chosen to maintain visibility and min-
imize the total distance traveled. The target positions are
shown as black circles, and the target trajectory starts in
the upper left. The observer positions are shown with white
circles. The line-of-sight is shown between the observer and
target at each stage.

are many visual obstructions, and the observer is able
to maintain visibility of the target in all but two stages.
During this period, the observer moves quickly to the
right to reacquire the target.

4 Partially-Predictable Targets

The problem in Section 3 allowed restricting the state
space to the observer configuration space because of tar-
get predictability. In this section it is assumed that
only weak information, such as a velocity bound, is
known regarding the target. In principle, a dynamic
programming approach can be taken to determine opti-
mal strategies for the partially-predictable case; however,
even for a simple planar problem the state space is four-
dimensional. This increased complexity motivates the
consideration of alternative approaches which can pro-
vide reasonable behavior by making a tradeoff between
computational cost and the quality of the solution. Ex-
periments with an on-line algorithm that is presented in
this section were performed using a mobile robot system
that is described in [2].

4.1 Optimal Strategies

The notions of a strategy and of optimality become
more interesting if there is uncertainty in target pre-
diction. Recall that 6, € © refers to an unknown
action that can be applied to move the target using
Q1 = f(ak,0k). Two alternative interpretations of
the unknown actions are possible. If the unknown ac-
tions are modeled as nondeterministic uncertainty (as re-
ferred to in [4, 11]), then it is only assumed that 6; € ©
for some specified ©. In this case, one would design
a strategy that performs the best given the worst-case
choices for 6. Alternatively, a probabilistic uncertainty
model can be used, in which it is additionally assumed
that p(f) is given, in which p(-) denotes a probability
density function. In this case, one could design a strat-
egy that minimizes the loss in the ezxpected sense.

Figure 3. a) This example differs from the previous one
by additionally requiring that the observer remains within a
specified distance range from the target; b) In this example,
the target can moves at twice the maximum speed of the
observer. In the optimal trajectory of the observer, there are
only two stages in which the target is not visible.

Because the state trajectory cannot be predicted, a
state-feedback strategy is designed, as opposed to di-
rectly specifying the actions (the actions must respond
to on-line changes). This represents a standard notion
used in optimal control, and has been applied to motion
planning problems that involve other forms of prediction
uncertainty in [11]. Let 4; : X — U denote a strategy at
stage k. Let v = {y1,7v2, ...,k } denote a strategy. Let
I' denote the space of possible strategies for the robot.

For the case of nondeterministic uncertainty, a strat-
egy, v* € I, can be selected that yields the smallest
worst-case loss:

L(x1,7%) = inf L(x1,7) = inf sup L(z1,7,7") (5)
~yeT WEF,YeEpe

for all z; € X, and 4 represents a choice of 6 for ev-
ery stage. This indicates that from any initial state,
the strategy will guarantee the least possible loss given
the worst-case actions of nature. This concept has been
used previously to design controllers based on worst-case
analysis [1].

With probabilistic uncertainty, a strategy, v* € ', can
be chosen that minimizes the expected loss:

Elery") = nf Eo,9) = inf [ L(a1,,00p(0)d0 ()

for all z; € X. This corresponds to selecting a strategy
that minimizes the loss in the expected sense, as consid-
ered in stochastic optimal control theory.

These expressions capture the general design problem:;
however, for most practical problems, 1t may be prefer-
able to consider simplified strategies. Sections 4.2 and
4.3 describe two on-line approaches that attempt to op-
timize local criteria that are related to the global task.

4.2 Maximizing the Probability of Future
Visibility
For any given state, zg, we could compute the se-

quence of future actions that will maximize the proba-
bility that the target will remain in view over the next m



states. The computational cost, however, increases dra-
matically with large choices of m. A strategy that has
worked in practice is to limit the scope at m = 1, and
select the action ug that will maximize the probability
that the target will remain in view at stage k + 1.

This approach assumes that a probabilistic uncer-
tainty model can be obtained in order to predict the
target’s motion. Hence, it is assumed that p(f) is given
(where 6 represents the unknown actions of the target),
from which a density p(q2+1|azk) can be obtained using
the motion model for the target. Formally, uj € U is
selected to maximize

Pldj 41 EV(QZ+1)]=/ pry1|ee, ug)degyr,  (7)

o

in which V (q°) represents the set of target configurations
at which the target is visible when the observer is at q°.
This defines a state-feedback strategy v(z) = uy.

Our first implementation of this approach assumes a
planar workspace for both the target and the observer,
and that the obsever has omnidirectional visual sens-
ing. This is justified in practice if an independent servo
exists that keeps the camera orientation aimed at the
target. We also assume that little is known about the
target other than its maximum speed, ||v*|], so we model
p(q};_i_1 |z) as a disk of uniform probability density with

radius ||v*]|, centered at qf,. Geometric constraints are
incorporated by setting zero probability mass in the re-
gions within the disk that correspond to configuration-
space obstacles.

Because the approach involves a significant tradeoff
from optimality, experimental studies were performed to
assess its utility. We have performed numerous experi-
ments using two Nomad 200 mobile robots, one of which
is equipped with a vision system (see Figure 4). Visi-
bility is assumed to be omnidirectional, but the range is
bounded below and above to reflect physical limitations
in the vision system.

In our experimental setup, the planner is integrated
into a larger system composed of several components en-
gaged in landmark-based localization, motion and cam-
era control, and image feature tracking. The current
implementation of the system consists of eight modules:
a visual target tracker, a landmark detector, the motion
planner, a graphic interface, a calibration module, the
control module, and a low-level control driver. For more
specific details see [2].

We have also studied the observer behavior in a va-
riety of simulated environments. A sequence of frames
from one such simulation is shown in Figure 5.

Performance can generally be improved by incorpo-
rating additional information into the prediction. For
example, the current heading of the target can be uti-
lized to provide more realistic expressions of p(qj, 1 |zx).
A dynamic model of the target could be utilized to im-
prove prediction for on-line strategies.

For nonreactive targets the motion prediction prob-
lem is completely independent from the motion planning
one. The target future position distribution may be com-
puted numerically and in some cases analytically. We
have studied both approaches for the case of a Carte-
sian target, in which independent actuators drive the

Figure 4. Two Nomad 200 robots are used for the experi-
ments. One is equipped with a rotary camera.

Figure 5. A sample execution is shown of the on-line plan-

ner. The black disk is the observer.

target along different orthogonal motions. We assume
that the target decides a new acceleration action every
time 7, which will be the target’s sampling rate (not to
be confused with At, the planner’s scope). The values of
acceleration will be selected from a set A, which is the
acceleration possibility set. We presuppose that the ac-
celeration values at each step are 1.1.d. random variables.

Typically the planner scope At is larger than the tar-
get sampling rate 7, hence we are interested in predicting
the probable target locations after n = At/7 steps given
a measurement of the target configuration at stage k.
The prediction is then used to compute the observer lo-
cation that maximizes the probability of observation at
stage k 4+ 1. If n is small and A is a finite and countable
set then the distribution may be computed numerically
by evaluating the possible sequences of actions, comput-
ing the resultant final configurations, and storing the
associated probabilities in a data structure.

If the size of A is p (the number of alternatives) then
after n steps there are p™ possible target configurations,
so the search space is exponential. However, the dis-
cretized equations of motion can be formulated in such
way that most of the operations can be precomputed.
Execution can also be improved by detecting equivalent
sequences of actions in order to transform the search tree
into a lattice.

For n large enough (3> 30) the resultant distribution
can be proved to be Gaussian. If the possible accel-
erations are i.i.d. with mean g and variance o2, then
the location of the Cartesian target after n steps given



an initial position and velocity zg and vg 1s described
by z, = zg + ntvg + Sy + Sg, with S, being a Gaus-
sian distribution of mean $A#(At — 7)u and variance
éAtT(At —7)(2At —7)0?, and S, a Gaussian with mean

%Atrlu and variance iAtTSOJ. Currently our efforts con-
cerning target modeling are aimed toward the study of
the effect of how obstacles distort the probability distri-

bution of the target motions under this model.

4.3 Maximizing the Time to Escape

This section describes an alternative on-line approach
that uses nondeterministic uncertainty and worst-case
analysis as opposed to probabilistic analysis. Assume
that the target has a maximum speed, ||v*|]. Let d(zg),
denote the distance from q’ to the nearest boundary of
V(q°). The minimum time to escape, t.s., represents the
smallest interval of time within which the target could
escape if the observer remains at q°. Clearly, .5, <
1ot [d(e). | |

ssume that V(q°) is a truncated cone, as in Sec-
tion 4.2. The on-line strategy is to select an action
up = Yk (zg) that maximizes t.5.. This corresponds to
preparing for the worst-case motions of the target. Typ-
ically, At < t.5., which implies that the strategy ef-
fectively considers target actions that are several stages
into the future. This strategy appears to be an improve-
ment over maximizing the probability of future visibility;
however, 1t is still not a globally optimal solution.

This approach is particularly attractive because by
maximizing the ¢.,. we also reduce the observer’s suscep-
tibility to uncertain and spurious sensor readings from
its cameras. Since this strategy is a worst-case scenario
analysis, the system will be robust to uncertainties in
the target location. We are currently in the process of
experimenting with this strategy to evaluate its perfor-
mance.

5 Discussion

A research problem that involves maintaining visibil-
ity of a moving target has been identified and formally
characterized. Workspace geometry introduces standard
motion planning difficulties into the visual tracking prob-
lem. For the case of predictable targets, an algorithm
was presented that provides numerical, optimal solutions
for problems that have a low-dimensional observer con-
figuration space. For the case of partially-predictable
targets, optimal strategies were characterized, and two
on-line strategies were presented. The strategy that
maximizes the probability of future visibility has been
tested in experimentation and simulation, and the strat-
egy that maximizes the minimum time to escape is cur-
rently being evaluated.

Several interesting extensions and variations can be
considered in future investigations. In future investiga-
tions it may become useful to consider approximation al-
gorithms that can provide a solution that is within some
bound of the optimal in order to establish definite limits
on a system performance. Many interesting possibilities
exist for coordinating multiple observers and/or multi-
ple targets. For example, several observers may be able
to track a faster-moving target by making decisions to

“cover” disparate regions of the cluttered environment.
Another interesting extension is tracking a reactive tar-
get that attempts to avoid being observed. Finally, the
intentions of the target could be speculated by the ob-
server 1n order to narrow the number of possible target
routes.
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