Visibility-Based Pursuit-Evasion: The Case of Curved Environments

Steven M. LaValle, John E. Hinrichsen

Abstract— We consider the problem of visually searching
for an unpredictable target that can move arbitrarily fast
in a simply-connected two-dimensional curved environment.
A complete algorithm is presented, and is based on crit-
ical visibility events that occur because of inflections and
bitangents on the environment boundary. By generalizing
the notion of inflections and bitangents to polygonal and
piecewise-smooth environments, the approach is considered
as a step towards developing pursuit-evasion strategies that
have little dependency on the representation of the environ-
ment.

Keywords: Motion planning, visibility, active sensing

I. INTRODUCTION

Imagine entering a cave in complete darkness. You are
given a lantern and asked to search for any people who
might be moving about. Several questions might come to
mind. Does a strategy even exist that guarantees I will
find everyone? If not, then how many other searchers are
needed before this task can be completed? Where should I
move next? Can I keep from exploring the same places mul-
tiple times? This kind of scenario might apply to fireper-
sons engaged in a rescue effort, law enforcement officials
in a hostage situation, or soldiers attempting to secure a
potentially-hostile area. Since it is always preferable to
place robots at risk instead of humans, we might like to
determine whether successful searching strategies can be
computed automatically for a mobile robot. Such strate-
gies can also provide valuable advice to people as they plan
for high-risk operations.

Plenty of applications exist that could benefit from
visibility-based pursuit-evasion strategies. They can be
embedded in surveillance systems that use mobile robotics
with various types of sensors (motion, thermal, cameras,
etc.). Small mobile robots with pursuit-evasion strategies
can be used by special forces in high-risk military opera-
tions to systematically search a building in enemy in terri-
tory before it is declared safe for entry. In scenarios that in-
volve multiple robots that have little or no communication,
a pursuit-evasion strategy could be used to help one robot
locate others. One robot could even try to locate another
that is malfunctioning. For remote presence applications,
it would be valuable if a robot can locate automatically
other robots and people using sensors. Beyond robotics,
software tools can be developed that assist people in many
applications that involve systematically searching or cov-
ering complicated environments. Relevant pursuit-evasion
scenarios can be imagined in law enforcement, search-and-
rescue, toxic cleanup, and in the architectural design of

S. M. LaValle (the corresponding author) is with the Dept. of
Computer Science, Iowa State University, Ames, IA 50011 USA,
lavalleQiastate.edu. +1-515-294-2259

J. E. Hinrichsen is with the Dept. of Mathematical Sci-
ences, Carnegie Mellon University, Pittsburgh, PA 15213 USA,
john4@andrew.cmu.edu

Fig. 1. The pursuer is asked to find any moving evaders in the curved
environment.

secure buildings. One limitation of our current work, how-
ever, is that the application must provide a complete rep-
resentation of the environment.

It is assumed in this paper that there is a single point
pursuer in a curved, planar environment, and the pursuer
is given the task of searching for any moving evaders, who
have unbounded speed. A search strategy is successful if
all evaders will eventually fall within the line of sight of the
pursuer. See Figure 1. In this paper, we propose a com-
plete algorithm that will compute a path that a pursuer
must follow to be guaranteed that all evaders will be seen,
regardless of their paths. The approach developed in this
paper extends previous work by LaValle et al. [15], from
the case of a polygonal environment to an environment
with arbitrary curves. In both cases, critical events are
found in an information space, and a finite, combinatorial
structure is searched that is induced by a special cell de-
composition of the environment. The method in [15] would
tend toward an infinite number of cells if we considered ap-
proximating curved models with arbitrarily-fine polygons.
This problem motivated the current work, which identi-
fies a finite set of critical events for a curved environment,
and ultimately leads to a simplification of the cell decom-
position for polygonal environments. Qur approach is also
motivated by similar combinatorial representations of envi-
ronments for related visibility problems [8], [23], [24], [28].
The extension of the pursuit-evasion problem to curved en-
vironments is significant because it brings us one step closer
to a unified approach to pursuit-evasion problems that is
not sensitive to the particular environment representation.
Completeness of the pursuit-evasion algorithms can gen-
erally be argued in terms of sensor-based representations
of the environment, taken from the perspective of a pur-
suer and its sensors. Several variations of visibility-based
pursuit-evasion in a polygonal environment have also been
considered in [3], [27], [17], [26], [29].

II. PROBLEM FORMULATION

The pursuer and evader are each points that move in
an open region, R, in the plane. Three types of regions
will be considered: 1) a polygonal environment, in which
the boundary of R is a simple polygon, 2) a smooth envi-
ronment, in which the boundary of R is a simple, closed,
smooth curve, and 3) a piecewise-smooth environment, in
which the boundary of R is a simple, closed, piecewise-
smooth curve with only a finite number of nonsmooth
points. Note that the third case is a generalization of the
first two. The boundary could be expressed either para-
metrically or implicitly.

Let e(t) € R denote the position of the evader at time
t > 0. It is assumed that e : [0,00) — R is a continuous
function, and the evader is capable of moving arbitrarily
fast (i.e., it moves at a finite, unbounded speed). Let 7(¢)
denote the position of the pursuer at time ¢ > 0. The
function v : [0,00) = R is also continuous, and is referred
to as a strategy. For any x € R, let V(z) C R denote the
set of all y € R such that the line segment that joins and
y does not intersect the boundary of R. Let V(z) be called
the wvisibility region.

The task can now be formulated. It is assumed that
the pursuer does not know the starting position, €(0), or
the path, e, of the evader. Initially, an evader could be
anywhere in R that is not visible from ~(0). A strategy,
v, is called a solution strategy if for every continuous e :
[0,00) = R, there exists a time ¢ € [0, 00) such that e(t) €
V(v(t)). In other words, the evader will eventually be seen,
regardless of its path.

Two observations should be made. Because the evader
has unbounded speed, the existence of a solution strategy
does not even depend on the maximum speed of the pur-
suer. The primary concern is the route taken by the pur-
suer. Also, arbitrarily many evaders could be considered
without changing the problem. In other words, guarantee-
ing that one evader will be found is the same as guarantee-
ing that for n evaders, they will all be found.

Note that the set of points not visible, R\ V(z), is a
finite collection of disjoint subsets of R. In the spirit of
[22], any such subset of R that might contain the evader
is referred to as a contaminated region. If it is guaran-
teed not to contain the evader, then it is referred to as
cleared. If a region is contaminated, becomes cleared, and
then becomes contaminated again, it will be referred to as
recontaminated.

III. CrITICAL CHANGES IN INFORMATION

Virtually all motion strategy problems that involve sens-
ing uncertainties can be viewed in terms of an information
space. By analogy to the common use of configuration space
concepts for path planning [18], [12], information space con-
cepts provide a conceptual tool for characterizing problems.
An algorithm may or may not explicitly construct a repre-
sentation of the information space; however, the concepts
can be used to assess the efficiency or completeness of an
algorithm, or the difficulty of a problem, much in the same

way that configuration space concepts have been tradition-
ally used. Information space and related concepts have
appeared in many related planning contexts [1], [5], [6],
7], [13).

For our problem, consider the information available to
the pursuer. At a given time, the pursuer knows its exe-
cuted trajectory, and the collection of all sensor measure-
ments taken along the trajectory. Given some initial in-
formation regarding the evader, the trajectory and sensor
measurement information can be used to determine a set
S C R of all contaminated points in R. Note that many
different trajectories could lead to the same information
state; however, information regarding the particular tra-
jectory appears useless once S is known. Let n = (z,S5)
represent an information state, in which x denotes the pur-
suer position for convenience. The set of all possible infor-
mation states will be referred to as the information space,
7. Initially, every point not visible is contaminated; hence,
n = (z,5) in which S = R\ V(z).

A definition will be given shortly which indicates an in-
formation invariance property that allows the information
space to be partitioned into equivalence classes. As the
pursuer moves in R, the information state changes. Thus,
a path in R leads to a path in Z. When the pursuer moves
from one position, £ € R, to another '’ € R, the cor-
responding information states must be different because
R\V(z) # R\ V(2'). If the pursuer moves in a closed-loop
path, the initial and final information states may or may
not be different.

A connected set C' C R is called a conservative region if
for any initial information state (z,.S) such that z € C, the
following occurs: if the pursuer moves along a closed loop
path that maps into C, then the resulting information state
is (z, S) (i.e., it is unchanged as long as the pursuer does not
leave C). The information states in C' can be considered as
equivalent because no critical change in information occurs
during motions in C. Just as in the case of motions in a
conservative field, the resulting information states within a
conservative region do not depend on the particular path
[15].

To help identify conservative regions in R, consider Fig-
ure 2, which indicates how the environment might appear
to the pursuer in Figure 1. Suppose that the pursuer has
a sensor that performs an angular sweep from 0 to 27 and
measures line-of-sight distance to the nearest wall, which
produces an image as shown in Figure 2.a. There will gen-
erally be a finite set of orientations at which there is a
discontinuity in the depth data. Let d : R> x S' — R
denote a real-valued function, called the depth map, which
corresponds to the ideal distance measurements (here, S*
denotes the topological space that is characterized by the
unit circle). The value d(z,8) gives the distance from z to
the boundary of R along the ray emanating from z at an
angle . We call each data discontinuity a gap in d(x) (d(z)
is considered as a function of 6).

Each gap corresponds to a single connected region of the
environment that might be contaminated. These regions
are the six shaded areas in Figure 1. For each region, all

0/1

0/1

0/1
& 0/1

o/1 0/1

0 = Clear
1 = Contaminated

(a) (b)

Fig. 2. Discontinuities in depth measurements partition the set of
viewing directions. Each discontinuity could hide an evader.

points are either contaminated or all are clear. Therefore,
any information state can be completely characterized by
assigning a binary label to each one of the gaps in the
angular sweep. Suppose that “0” indicates that the region
is clear, and “1” indicates that it is contaminated.

Figure 2.b shows a representation of S* with the gaps in-
dicated. Imagine how these gaps move in S! as the pursuer
moves along a path. A test can be defined that determines
whether the pursuer stays within a conservative region dur-
ing the entire execution of its path. In practice, this could
be implemented by an omnidirectional range scanner, or
omnidirectional camera and edge detector. The test can
be expressed entirely in terms of sensor information that is
available to the pursuer, as opposed to a particular repre-
sentation of the environment.

Let 7 : [0,1] = R be a continuous path for the pursuer.
Suppose that during the execution -y, the following occur
in terms of the depth map, d(z) : S* — R,

1. The location in S! of each gap in d(z) varies continu-
ously during the execution of the path ~.

2. The number of gaps remains constant during the execu-
tion of the path ~.

Note that v can be composed with the first argument of d to
yield a function h : [0,1] x ST — R. If the conditions above
are satisfied, then h is referred to as a piecewise homotopy
(except at the discontinuities, v induces a homotopy on the
set of depth maps [14]).

If h defines a piecewise homotopy, then d(y(t)) : ST — R
and its discontinuities are required to change continuously
as y(t) varies. This implies that topology of the image
of d(y(t)) does not change. Each gap corresponds to a
connected component of R\ V(z) that is not visible to
the pursuer, and has a label “0” or “1”. The connected
components of R\ V(z) remain preserved (although they
will gradually change). This implies that the binary labels
cannot change, and hence the information state is the same:

Observation 1: If h is a piecewise homotopy, then the
image of v in R is contained in a conservative region.

Observation 1 is useful for partitioning an environment,
R, into a finite collection of conservative regions, regardless
of the representation of R. The result is a combinatorial

Disappear

Fig. 3. An inflection causes a gap to appear or disappear, depending
on the direction of the crossing.

Split @ -

Fig. 4. A bitangent causes gaps to split or merge.

representation that can be searched for a solution to the
pursuit-evasion problem. In Section IV it will be applied
to the case of a smooth environment, and in Section VI it
will be applied to polygonal and piecewise-smooth environ-
ments.

IV. AN ALGORITHM FOR SMOOTH ENVIRONMENTS

This section covers the case in which the boundary of the
environment, R, is described by a simple, smooth, closed
curve. Consider the changing depth map as the pursuer
moves in this environment. There are four possible ways in
which the piecewise-homotopy conditions can be violated:
1) a new gap appears; 2) an existing gap disappears; 3) two
or more gaps merge into one; 4) a gap splits into two or
more gaps. Each of these conditions will change the number
of gaps, resulting in a critical change in the information
state. Furthermore, no other possible situations can occur
that would violate the piecewise-homotopy conditions. The
task is to identify these causes of these four situations in a
smooth environment.

Consider extending rays as shown in Figure 3. In Figure
3, a ray is extended outward from an inflection point, and
is terminated when it reaches the boundary of R. If the
pursuer crosses from above this ray to below it, a gap will
appear. If the pursuer crosses the ray in the other direction,
a gap will disappear. Thus, two of the four critical changes
are caused by crossing the ray extended from an inflection
point. In Figure 4, two rays are extended outward from
a pair of bitangent points, and are terminated with they
reach the boundary of R. If the pursuer crosses from above

the left ray to below it, then one gap will split into two.
If the pursuer crosses in the other direction, then two gaps
merge into one. Thus, bitangents account for the other two
cases.

The problem of finding all of the inflections and bitan-
gents reduces to computing roots of polynomial equations.
If the ray extensions are performed for all of these critical
events, and the intersections between rays are computed,
the environment, R, can be partitioned into a finite collec-
tion of cells. Each cell is conservative, and the boundary
of each cell consists of segments of different extension rays,
and possibly parts of the boundary of R. Two cells are ad-
jacent if they share a one-dimensional boundary. From this
adjacency, a finite graph, G, can be derived (i.e., the dual)
in which the vertices represent cells and the edges represent
adjacencies between cells. The resulting cell decomposition
is similar to a visibility complex in computational geome-
try [24] and an aspect graph in computer vision [23]. A
similar representation was also computed for a polygonal
environment in [8], [15], [28]

The graph G corresponds to a finite collection of conser-
vative cells in R, but what is needed is a finite collection
of cells in the information space Z. A directed informa-
tion graph, G, can be derived from G. Let B(C) denote
a binary sequence that corresponds to labelings that are
assigned to gaps using the representation shown in Figure
2. For each possible binary sequence, B(C), a different in-
formation state is obtained, but if the pursuer stays within
C, the binary labels cannot change. This results in a col-
lection of 2™ cells in 7 that each corresponds to a possible
labeling of m gaps when the pursuer is in C. Let the graph
(1 contain one vertex for each combination of cell C' and
its possible labelings B(C). The vertices of G correspond
to a partition of Z into a finite set of equivalence classes.

To complete the definition of G, the set of edges must
be defined. Each vertex of Gy will have a corresponding
vertex in G that corresponds to a cell in R. When an
adjacent cell is entered, the pursuer must cross an inflec-
tion ray or a bitangent ray (assuming general position). In
terms of information states, it must be determined which
information equivalence class is reached when going from
a vertex in Gy that corresponds to C, to another vertex
that corresponds to an adjacent cell, C' in R. This reduces
to finding the appropriate binary labeling B(C"). If an in-
flection ray is crossed, then either a gap appears or a gap
disappears. If the gap disappears, a bit simply disappears
when going from B(C) to B(C"). If a gap appears, then
it always receives a “0” label. If a bitangent is crossed,
then gaps either merge or split. If several gaps merge into
one, then the corresponding bit in B(C") will be the logi-
cal OR of the corresponding bits in B(C'). This is correct
because one contaminated region could spread to other re-
gions. If one gap splits into several, the corresponding bits
in B(C") will receive the label of the corresponding bit in
B(C). Note that G is directed because inflection and bi-
tangent rays have different effects on the information state
when crossed in opposite directions.

The task of finding a solution now reduces to searching

G for a path between any information state with B(C) =
[11 --- 1] to any information state with B(C') =[00 --- 0].
The path in Gy induces a path in G. The path in G cor-
responds to a sequence of cells that must be visited by the
pursuer. A path for the pursuer can be constructed by
choosing a point in each cell and constructing a path be-
tween adjacent cells in the sequence. The cells are generally
not convex; however, it is straightforward to determine a
path that connects points between two adjacent cells with-
out entering other cells or crossing the boundary of R.

The following proposition establishes the completeness
of the algorithm.

Proposition 1: An algorithm that finds any path to a
goal vertex from an initial vertex in G is complete for the
visibility-based pursuit-evasion problem defined on R.
Proof: The algorithm is complete if the existence of any
solution strategy implies that a path exists in G5 between
initial and goal vertices. Let {Di,...,D,} denote the se-
quence of conservative cells (as we defined them with in-
flection and bitangent rays) that are traversed by any given
solution strategy, v. Each D; corresponds to a vertex in
G, and {D,...,D,} corresponds to a path in G. This in
turn corresponds to a path in Gr. Note that the informa-
tion state does not depend on the path chosen within each
region, D;. From this and the fact that v is a solution
strategy, the vertex obtained at the end of the correspond-
ing path in Gy is a goal vertex. A

Proposition 2: If R is modeled by an implicit polynomial

equation of degree d, then the size of G is O(d®).
Proof: Suppose that the boundary of R is represented by
the set of solutions to an implicit polynomial equation of
the form f(z,y) = 0 (here we use (z,y) to denote a point
in R, instead of z € R). The number of inflections and
bitangents can be related to the degree of f. An inflec-
tion corresponds to a change in sign of the curvature. The
curvature is

fwwfg? - Zfzyfwfy + fyyfgp2
(f2+ F3)3/2 ’

and the inflections are the solutions of f(x,y) = 0 and
foafy — 2fayfofy + fyyfo = 0. If the total degree of f
is d, then the second equation has degree 3d — 3. There
at most 3d(d — 1) inflections by Bezout’s Theorem. The
bitangents occur as solutions to the equations: f(z1,yl) =
0, and (21 —22) fy(22,y2) — (y1 — y2) fo(22,y2) = 0. Once
again, by Bezout’s Theorem, there are no more than d*
bitangents.

The cell decomposition that is produced can be consid-
ered as a variant of the cell decomposition introduced in [8]
for localization in polygonal environments. Once the inflec-
tions and bitangents are known for a smooth environment,
an equivalent polygonal environment can constructed that
produces the same critical visibility events. It was shown
in [8] that although a quadratic number of rays exist in the
worst case, there are no more than O(n?) cells, if n is the
number of edges in the polygon. The key in that argument
is to observe that each ray crosses no more than a linear

(1)

number of other rays. The argument can be adapted to
our case, implying that there are no more than O(d®) cells,
in which d is the total degree of f(z,y) =0. A

Once this has been determined, it is straightforward to
apply the ideas in [15] to incrementally construct the infor-
mation graph, G, by “lifting” each vertex in G for each in-
formation state. Simple graph search algorithms can then
be employed to search G for a path that leads from an
initial information state to the goal information state, in
which the label associated with each gap is “0”.

The graph Gy is exponentially larger than G due to the
2™ possible information states for each cell, in which m is
the number of gaps observed by the pursuer at that cell.
However, this graph does not need to be completely rep-
resented or explored. In an implementation, the nodes of
G only need to be represented when they are encountered
by the search algorithm. Furthermore, at most only one
connected component of Gy needs to be constructed. The
graph G will generally contain large components that are
not reachable from the initial state. For queries that have
a solution, much of the connected component that contains
the initial state does not need to be explicitly constructed
because a solution is often found quickly. This is partly
accounted for by the fact that most examples contain nu-
merous alternative solutions.

In the implementation described in [15], an information
graph for most problems was searched using dynamic pro-
gramming within a couple of seconds on a simple worksta-
tion, and within a few minutes for very complicated ex-
amples (involving over 800 vertices in G). Although that
work presented an approach to pursuit evasion for polygo-
nal environments, one can construct a smooth environment
that contains equivalent critical events. This will be ex-
plained further in Section VI. The information graph, Gy,
described in this paper is considerably smaller than the in-
formation graph generated in [15] for an equivalent polyg-
onal problem. Therefore, we believe that the algorithm
presented in this paper is considered at least as efficient,
and often more efficient, than the one in [15] for polygonal
environments. It remains an open problem to determine if
G can be searched in polynomial time, even for a polyg-
onal environment. The equivalent version of this problem
for polygonal environments has been open for many years
[27].

V. AN IMPLEMENTATION WITH EXAMPLES

The cell decomposition algorithm was implemented for
the case of a smooth environment using Linux, GNU C++
and the Library of Efficient Data Types and Algorithms
(LEDA). Instead of representing the boundary of R im-
plicitly, we decided that it would be easier to work directly
with a parametric representation. In either case, the bitan-
gent and inflection rays can be found as the solutions to
polynomial equations. We chose to find the critical events
numerically, without giving major consideration to stabil-
ity issues. The purpose of our implementation is to gain
some further insights to the problem through computed
examples. The implementation generates the conservative

(c)

Fig. 5. (a) The input; (b) the set of inflection rays; (c) the set of
bitangent rays; (d) the conservative cell decomposition and the
sequence of cells visited in the solution.

cell decomposition and G.

Figure 5 shows the computed cell decomposition for the
example shown in Figure 1. Integers from 1 to 22 show the
sequence of cells that are visited in the solution path. Fig-
ure 5.d shows the cell decomposition, which is an overlay
of boundaries shown in Figures 5.b and 5.c. There are 66
cells in this example. Figure 6 shows four more computed
examples. In Figures 6.a and 6.b there are 13 and 26 cells,
respectively. In Figure 6.c, the spiral tunnel produces ex-
actly what we would intuitively expect: the pursuer needs
to search from end to end. There are only three cells. Fig-
ure 6.d shows an example that produced 244 cells.

VI. POLYGONAL AND PIECEWISE-SMOOTH
ENVIRONMENTS

This section presents pursuit-evasion algorithms for the
cases of polygonal and piecewise-smooth environments.
Both cases are handled in the same way as the smooth case,
and the task is simply to find a collection of rays that vio-
late the piecewise homotopy condition when crossed. Once
these rays are identified, a cell decomposition of R can be
computed, and the corresponding graphs G and G can
be searched for a solution. For the polygonal case, this
leads to a variant of the algorithm presented in [15]; how-
ever, the approach proposed here leads to far fewer ver-
tices in G in practice. The piecewise-smooth case can be
considered as a generalization of the smooth and polygonal
cases, and it has not been considered previously in the con-
text of pursuit-evasion. It is hoped that by showing these
additional cases, a greater understanding of commonalities
between pursuit-evasion problems under different represen-
tations can be obtained.

Polygonal environments. Suppose the boundary of R is de-
scribed by a simple polygon. Figure 7.a shows how sensor

(©)

Fig. 6. Each of the figures shows the computed cell decomposition.
The line segements crossing through the interior of the environ-
ment represent both the inflections and the bitangents. Each
black disc indicates a place at which an inflection or bitangent
ray is incident to the boundary of R.

data would appear (ideally) to a pursuer in a polygonal en-
vironment. As in the smooth-environment case, each gap
corresponds to a region where the evader might be hiding,
which is shown in Figures 7.b and 7.c. Figure 7.d shows
the gap locations in S'. By using this sensor-based view,
the connection between the polygonal and smooth cases be-
comes clear. The task is to find the situations that violate
the piecewise homotopy. Figure 8.a shows the case, called
a polygonal inflection, that is analogous to an inflection in
a smooth environment. A gap appears or disappears in this
case. Polygonal inflections occur when traversing the edges
of a polygon in order and either: 1) a right turn is followed
by a left turn, or 2) a left turn is followed by a right turn.
Figure 8.b shows a polygonal bitangent, which corresponds
to the splitting or merging of gaps. Each occurs if, for a
line drawn through two or more vertices, the following are
satisfied for each vertex: 1) the two edges incident to the
line lie on the same side of the line, 2) successive vertices
along the line are mutually visible to each other. Figure
8.c shows a degenerate case of a polygonal bitangent, which
must also be considered; an entire edge can contribute to
the polygonal bitangent if the edge coincides with the line,
and both adjacent edges lie on the same side of the line.
By identifying the criticalities as inflections and bitangents,
the number of cells is reduced considerably compared to
the algorithm in [15]. In that algorithm, a critical event
was based on whether or not the edges in a visibility poly-
gon change; however, this condition is too strong for the
pursuit-evasion problem. Many changes in the visibility

I_ Wall
—_— |- d wall
()
0/1
0/1
0/1 o o
(c) (d)

Fig. 7. (a) Distance measurements in a polygonal environment; (b)
interpreting the data; (c) a possible environment that is consis-
tent with the data; (d) the sensor-based representation can be
applied to this case.

N

Fig. 8. These criticalities for polygonal environments correspond di-
rectly to the inflections and bitangents for smooth environments.

polygon to not lead to a fundamental change in the in-
formation state. The polygonal inflection and polygonal
bitangent identify precisely the critical changes.

Piecewise-smooth environments. For the most general case,
suppose that R is bounded by a continuous, piecewise-
smooth curve. Let I denote a connected, open set of points
along the boundary of R. The set I identifies a general-
ized inflection if there exists a line, L, such that I can be
partitioned into three connected sets, I1, Iz, and I3, in the
following order: 1) I; is an open set that does not intersect
L, 2) I, is a closed set that is a subset of L, and 3) I5 is an
open set that does not intersect L, and lies on the opposite
side of L from I. Furthermore, if I, is a single point, then
its right derivative (taken in the limit over intervals in I3)
must equal the slope of L. The ray is extended from I in
the direction of L, towards I.

Let I and J denote two disjoint, connected open sets of
points along the boundary of R. The sets I and J identify
a generalized bitangent if there exists a line L such that
both I and J can be each partitioned into three connected
sets, I, I, and I3, which will be described for I only (the

case of J is identical): 1) I; is an open set that does not
intersect L, 2) I» is a closed set that is a subset of L, and
3) I3 is an open set that does not intersect L, and lies on
the same side of L from I;. Note the only difference in
comparison to a generalized inflection is that I; and I3 are
on the same side of L, as opposed to opposite sides. Also,
J1 and J; must be on the same side of L (although, they
both may be on a different side with respect to I; and I3).
Furthermore, at least one point of I, must be visible from
at least one point of Jy. If all of these conditions are met,
then rays can be extended outward from I, and J; in the
direction of L.

The generalized inflections and generalized bitangents
account for all of the ways in which piecewise homotopy
can be violated. Note that the generalized inflection in-
cludes both the original inflection from Figure 3.a and the
polygonal inflection from Figure 8.a. The generalized bi-
tangent includes both the original bitangent from Figure
3.b and the polygonal bitangents from Figures 8.b and 8.c.

VII. CONCLUSIONS

In this paper, we have considered the visibility-based
pursuit-evasion problem in curved environment. By view-
ing the sensing information in terms of moving discontinu-
ities in depth measurements, we were able to find critical
events by identifying inflections and bitangents in smooth
environments. Furthermore, it appears that inflections
and bitangents are fundamental to visibility-based pursuit-
evasion problems, and were easily generalized to the case
of polygonal and piecewise-smooth environments. It is
hoped that by establishing the connections between these
representations, pursuit-evasion algorithms can be easily
adapted from one representation to another. Several strong
assumptions have been made in this paper: the sensor is
omnidirectional, the robot is in a 2D environment, and the
environment is simply connected. It is hoped that some of
the ideas contained in this paper can be extended to other
models. For example, the bitangent and inflection insights
can be used to adapt the algorithm presented in [16] for
pursuit-evasion using a single flashlight in a polygonal en-
vironment to the case of smooth environments.

One interesting direction for future research is to de-
velop an on-line pursuit-evasion algorithm. The basic idea
is to search for the evader while relying only on sensor
data. This general approach has been successful for sev-
eral planning, search, and exploration problems [2], [4], [5],
[9], [10], [11], [20], [19], [21], [25]. We believe the represen-
tation shown in Figure 7.d is the first step toward solving
the pursuit-evasion problem without building a complete
map. The correct information state can be computed for
any pursuer trajectory using only the gap information. No
maps or localization are required. The next step will be to
develop and express a motion strategy in purely in terms
of the sensor-based representation. This would lead to an
approach that has minimal sensing requirements, greatly
facilitating the development of an actual robotic system
that performs pursuit-evasion.

ACKNOWLEDGMENTS

We thank Leo Guibas, Jean-Claude Latombe, David Lin,
and Rajeev Motwani, Boris Simov, Giora Slutzki. Many of
the ideas contained herein were inspired after interactions
with them. Finally, we thank Jean Ponce for his sugges-
tions on bounding the number of critical events.

REFERENCES

[1] J. Barraquand and P. Ferbach. Motion planning with uncer-
tainty: The information space approach. In IEEE Int. Conf.
Robot. & Autom., pages 1341-1348, 1995.

[2] H. Choset and J. Burdick. Sensor based planning, part I: The
generalized Voronoi graph. In IEEE Int. Conf. Robot. & Autom.,
pages 1649-1655, 1995.

[3] D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile
intruder in a corridor — the open edge variant of the polygon
search problem. Int. J. Comput. Geom. €& Appl., 5(4):397-412,
1995.

[4] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case. Available from
”http://www.cs.berkeley.edu/~christos/”, 1997.

[5] B. R. Donald. On information invariants in robotics.
Intell., 72:217-304, 1995.

[6] M. Erdmann. Randomization for robot tasks: Using dynamic
programming in the space of knowledge states. Algorithmica,
10:248-291, 1993.

[7] K. Y. Goldberg. Orienting polygonal parts without sensors. Al-
gorithmica, 10:201-225, 1993.

[8] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localiza-
tion problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and
R. Wilson, editors, Proc. 1st Workshop on Algorithmic Foun-
dations of Robotics, pages 269—282. A.K. Peters, Wellesley, MA,
1995.

[9] I. Kamon and E. Rivlin. Sensory-based motion planning with

global proofs. IEEE Trans. Robot. & Autom., 13(6):814-822,

December 1997.

I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based naviga-

tion in three dimensions. In IEEE Int. Conf. Robot. €& Autom.,

1999.

K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provable

strategies for vision-guided exploration in three dimensions. In

IEEFE Int. Conf. Robot. & Autom., pages 1365-1371, 1994.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub-

lishers, Boston, MA, 1991.

S. M. LaValle. A Game-Theoretic Framework for Robot Motion

Planning. PhD thesis, University of Illinois, Urbana, IL, July

1995.

S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-

evasion: An extension to curved environments. In Proc. IEEE

Int’l Conf. on Robotics and Automation, pages 1677-1682, 1999.

S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Mot-

wani. Finding an unpredictable target in a workspace with ob-

stacles. In Proc. IEEE Int’l Conf. on Robotics and Automation,

pages 737-742, 1997.

S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for search-

ing a polygonal region with a flashlight. In Proc. ACM Annual

Symposium on Computational Geometry, 2000.

Jae-Ha Lee, Sung Yong Shin, and Kyung-Yong Chwa. Visibility-

based pursuit-evasions in a polygonal room with a door. In ACM

Symp. on Comp. Geom., 1999.

T. Lozano-Pérez. Spatial planning: A configuration space ap-

proach. IEEE Trans. on Comput., C-32(2):108-120, 1983.

V. Lumelsky and S. Tiwari. An algorithm for maze searching

with azimuth input. In IEEE Int. Conf. Robot. €& Autom., pages

111-116, 1994.

V. J. Lumelsky and A. A. Stepanov. Path planning strategies

for a point mobile automaton moving amidst unknown obstacles

of arbitrary shape. Algorithmica, 2:403-430, 1987.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competi-

tive algorithms for on-line problems. In Proc. 20th Annu. ACM

Sympos. Theory Comput., pages 322-333, 1988.

T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R.

Lick, editors, Theory and Application of Graphs, pages 426-441.

Springer-Verlag, Berlin, 1976.

Artif.

(10]

(11]

(12]

(13]

(16]

(17]

18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

28]

[29]

S. Petitjean, D. Kriegman, and J. Ponce. Computing exact as-
pect graphs of curved objects: algebraic surfaces. Int. J. Com-
put. Vis., 9:231-255, Dec 1992.

M. Pocchiola and G. Vegter. The visibility complex. Int. J.
Comput. Geom. € Appl., 6(3):279-308, 1996.

E. Rimon and J. Canny. Construction of C-space roadmaps using
local sensory data — what should the sensors look for? In IEEE
Int. Conf. Robot. & Autom., pages 117-124, 1994.

B. Simov, G. Slutzki, and S. M. LaValle. Pursuit-evasion using
beam detection. In Proc. IEEE Int’l Conf. on Robotics and
Automation, 2000.

I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM J. Computing, 21(5):863-888, October
1992.

R. Talluri and J. K. Aggarwal. Mobile robot self-location us-
ing model-image feature correspondence. IEEE Trans. Robot. &
Autom., 12(1):63-77, February 1996.

M. Yamashita, H. Unemoto, I. Suzuki, and T. Kameda. Search-
ing for mobile intruders in a polygonal region by a group of mo-
bile searchers. Technical Report TR-96-07-01, Dept. of Electri-
cal Engineering and Computer Science, University of Wisconsin
- Milwaukee, July 1996.

