Algorithms for Computing Numerical Optimal
Feedback Motion Strategies*

Steven M. LaValle Prashanth Konkimalla
Dept. of Computer Science Dept. of Computer Science
University of Illinois Iowa State University
Urbana, IL 61801 USA Ames, TA 50011 USA
Abstract

We address the problem of computing a navigation function that serves as a feedback motion strat-
egy for problems that involve generic differential constraints, nonconvex collision constraints, and the
optimization of a specified criterion. The determination of analytical solutions to such problems is well
beyond the state of the art; therefore, we focus on obtaining numerical solutions that are based on dis-
cretization of the state space (although we do not force trajectories to visit discretized points). Our work
improves classical optimal control techniques for our problems of interest. By introducing a simplicial
complex representation, we propose a novel interpolation scheme that reduces a key bottleneck in the
techniques from O(2") running time to O(nlgn), in which n is the state-space dimension. By exploiting
local structure in the differential constraints, we present a progressive series of three improved algorithms
that use dynamic programming constraints to compute an optimal navigation function. Each makes an
assumption that is more restrictive than the previous one, and exploits that assumption to yield greater
efficiency. These improvements yield a practical increase in the applicability of dynamic programming
computations by one or two dimensions over classical techniques. Theoretical convergence to the opti-
mal solution is established for these proposed algorithms. The algorithms have been implemented and

evaluated on a variety of problems. Several computed results are presented.

Keywords: Motion planning, algorithms, nonholonomic planning, mobile robotics, navigation functions,
dynamic programming.

*Earlier forms of this work were presented in [61] and [47].

1 Introduction

A central problem in robotics is the development of a motion strategy that brings a complex geometric body
from an initial state to a goal while satisfying complicated, geometric constraints that model the environment.
A classical approach is to decouple this development into a path planning phase and a path following phase.
Although this approach works well in many cases, decoupling often leads to inefficient motions. Furthermore,
an integrated approach might find solutions to problems that cannot be solved by a decoupled approach.
In this paper, we focus on the problem of computing feedback motion strategies for problems that involve

the following assumptions:
1. A complete geometric model is known for the robot and the static part of its environment.

2. The executed trajectory of the robot might not be predictable due to avoidance maneuvers, random

disturbances, modeling errors, etc.
3. An optimal strategy is requested that brings the robot from an initial state to a goal region.

4. Differential constraints exist for which there are no analytical solutions to the optimal path problem

(e.g., there exist solutions in the case of Reeds-Shepp curves [81]).

A more detailed problem statement appears in Section 3. We allow the strategy to have discontinuous inputs,
and do not necessarily require stabilization to a point. Under the restriction to smooth inputs, Brockett’s
condition implies that time-varying feedback control is needed for point stabilization. A recent overview of
such issues for car-like robots is given in [71].

The first condition above is reasonable for many problems, and forms the basis for the vast majority of
motion planning research (see, for example, [53]). The second condition motivates us to define a navigation
function or potential function that is free of local minima and can be used to define a feedback motion strategy.
Navigation functions have been proposed for this purpose in many robotics works (e.g., [43, 83, 90]). The
continuous Dijkstra paradigm [34, 75] has been developed for the 2D shortest-path problem, using techniques
from computational geometry. Level-set methods have also been proposed to compute navigation functions
for motion planning [44]. Although existing methods apply to a broad class of problems, they do not
directly apply to our problems because of inclusion of both the third and fourth conditions: optimality and
nonholonomy. Many computational techniques exist for computing optimal solutions to holonomic problems,
and many others exist for computing a path for nonholonomic problems. A recent survey of nonholonomic
planning methods appears in [56]. Most of these methods do not produce optimal paths, and in general, these
methods do not attempt to construct a navigation function or feedback strategy. The method presented in
[7] is perhaps most related to ours because it is able to find optimal solutions for very general nonholonomic
problems; however, one key distinction is that the method in [7] does not construct a navigation function.
Additional related research is described in Section 2.

It turns out that classical numerical dynamic programming techniques [8, 9, 11, 51, 52] can be applied
to directly solve the problems of interest in this paper. It is well-known that such methods converge asymp-
totically to the optimal feedback solution as the resolution increases. These tools were applied previously

in [60] to a variety of motion planning problems that involve feedback. The present paper addresses two

drawbacks of these classical methods: 1) the complexity of interpolation is exponential in dimension, 2)
for typical robotics problems, most of the computation time is wasted on cost updates that have no effect.
Section 4 introduces the basic computational goals and reviews a classical numerical dynamic programming
approach to our problem. Section 5 introduces a new interpolation scheme that is based on decomposing
the state space into a simplicial complex. This improves interpolation complexity from O(2") to O(nlgn)
in an n-dimensional state space. Section 6 presents several algorithms that dramatically focus the dynamic
programming computations to obtain much improved performance in the synthesis of an optimal navigation
function. The ideas are conceptually similar to the level set methods of [44, 86]; however, our approach is
capable of handling differential system constraints in addition to global nonconvex constraints on the state
space. Our algorithms are demonstrated in Section 7, and conclusions are presented in Section 8.

Several points are worth keeping in mind regarding this work:

1. We do not claim that the explicit construction of feedback motion strategies is the only appropriate
way to achieve complicated robotics tasks. The classical decoupled approach of planning a path and
then designing a tracking controller is successful in many applications. However, we do argue that a
feedback strategy designed at the outset represents a valuable alternative that could solve problems in

which tracking is not possible, leads to local minima, or is generally inefficient.

2. Our approach is numerical in the sense that the quality of the solution depends on the resolution.
The convergence of our numerical approach to the optimal solution follows from the convergence
established in classical works [8, 9, 11, 51, 52]. One key limitation is determining a sufficient resolution.
Similar problems exist throughout motion planning research, for example in selecting the resolution of
the nonholonomic planner in [7] or determining a sufficient number of milestones in the probabilistic
roadmap planner in [41]. We offer no new techniques for determining the best resolution; we instead

focus on improving computations for a given resolution.

3. We do not claim that our approach will be practical for more than five or six dimensions. Although
the trend in path planning research has been toward high-dimensional problems, it is important to
remember that dimensionality does not represent the only challenge in planning. The requirement of
feedback, satisfaction of differential constraints, and optimality make our problem substantially more
difficult than the classical path planning problem. Randomized planning techniques [4, 6, 32, 35, 41,
49, 64, 74, 95] have been able to solve high-dimensional path planning problems, but it is not known

how to apply such ideas to the problem of interest in this paper.

4. In the same way that path planning algorithms are designed for generic configuration spaces and generic
geometric models, we have designed our techniques for generic state spaces, generic nonlinear systems,
and generic optimality criteria. If simplifying assumptions are made to address specialized problems,
we expect that much more efficient approaches could be designed in some cases. For example, the
philosophy in system theory and control is to exploit the particular structure of a system to design
a better control law. It might be possible to combine particular system structure with our approach;
however, we generally make few assumptions regarding the models. We apply a philosophy that is

common in motion planning because we want to maximize the scope of application of our algorithms.

2 Related Research

Our work is inspired by research from three distinct areas: 1) nonholonomic path planning, 2) the design of

feedback strategies in robotics, and 3) numerical optimal control.

Nonholonomic path planning The nonholonomic path planning problem was introduced in the robotics
literature by Laumond [55]. For a detailed review of the research in nonholonomic motion planning, please
refer to [56, 68]. The problem involves planning a collision-free path from an initial state to a goal state,
while additionally satisfying nonintegrable differential constraints on the state space. Many results from
nonlinear control theory are applicable to nonholonomic path planning by interpreting the problem as the
design of an open loop control law; some of these results were introduced to the robotics literature in [57, 67].

A classic example of a nonholonomic planning problem involves attempting to parallel park a car that has
a limited turning radius. Generally, nonholonomic planning problems have constraints of the form f(z,%) < 0
or f(z,%) = 0 (and are nonintegrable [36]) in which & = % and z denotes the state or configuration. The
differential constraints exist in addition to algebraic constraints that encode stationary obstacles in the
workspace. Although much of the work done so far on nonholonomic motion planning has been for car-like
robots and extensions that involve trailers, there exists other important examples of nonholonomic robots
such as space vehicle/manipulator system [78], dextrous manipulation when the spherical tips of the fingers
of the robot’s hand perform rolling motions in contact with an object [69], robotic manipulator that pushes
objects from one place to another [73], and flying robots actuated by thrusters [72].

The kinodynamic planning problem [25] can be considered as a case of nonholonomic planning in which
both velocity and acceleration constraints are enforced. One of the earliest algorithms is presented in
[85], in which minimum-time trajectories were designed by tesellating the joint space of a manipulator, and
performing a dynamic programming-based search that uses time-scaling ideas to reduce the search dimension.
Algebraic approaches solve for the trajectory exactly, though the only known solutions are for point masses
with velocity and acceleration bounds in one dimension [80] and two dimensions [18]. Approximately-optimal
kinodynamic trajectories are computed in [25] by a dynamic programming-based search on the state space by
systematically applying control inputs. Other papers have extended or modified this technique [24, 23, 33, 82].
A dynamic programming-based approach to kinodynamic planning for all-terrain vehicles was presented in
[19]. In [28], an incremental, variational approach is presented to perform state-space search. An approach
to kinodynamic planning based on Hamiltonian mechanics is presented in [20]. An efficient approach to
kinodynamic planning was developed by adopting as sensor-based philosophy that maintains an emergency
stopping path which accounts for robot inertia [87]. Randomized approaches to kinodynamic planning in
high-dimensional state spaces have been proposed in [64], and later in [45].

In nonholonomic planning literature, the steering problem has received considerable attention. The task
is to compute an open-loop trajectory that brings a nonholonomic system from an initial state to a goal state,
without the presence of obstacles. Given the general difficulty of this problem, most methods apply to purely
kinematic models (i.e., systems without drift or momentum). To illustrate the challenges of nonholonomic
planning, we describe some of the related work on three degree-of-freedom car models that consider only
kinematic constraints due to the rolling of the wheels and a limited steering angle. The problem of finding

the shortest path between any two states in the absence of obstacles was first addressed by Dubins [26] for

a car moving forward with a constant velocity. He proved the existence of shortest paths and provided a
set of six types of curves that contains an optimal path that connects any two states. Reeds and Shepp [81]
extended Dubins’ result to a car that can move both forward and backward. They proved that the shortest
path is always one of 48 types of curves. Each curve is constituted by at most five segments which are either
straight or arcs of a circle with minimal radius. Sussmann and Tang [91] later reduced the set to 46 curves.
All of the work above shows that the shortest path can be limited to a simple family of trajectories. Souéres
and Laumond [88] provided a method to select inside this family an optimal path to link any two states for
path planning. All of these results above meet the optimality conditions, but their applicability is limited to
car-like robots, or a differential drive robot [5]. Moreover they consider a workspace with no obstacles. For
more complicated kinematic models, non-optimal steering techniques have been introduced, which includes a
car pulling trailers [77], and firetrucks [17]. Techniques also exist for general system classes, such as nilpotent
[50], differentially flat [76, 29], and chained form [17, 77, 89]. For systems with drift and/or obstacles, the
steering problem remains a formidable challenge. The series methods introduced in [15] address a broad
class of systems of drift.

For a point car that can go only forward (the Dubins car), in the presence of polygonal obstacles, Fortune
and Wilfong [30] proposed a complete algorithm for deciding whether there exists a feasible path between
any two states. Jacobs and Canny [37] proposed an approximate solution of the complete problem. Exact
solutions have been proposed in [3] and [13] if the workspace contains only moderated obstacles, which are
generalized polygons whose boundaries are admissible paths for the Dubins car. However, if the robot is a
polygon (instead of a point) the decision problem is still open.

In [58], a two-phase planner is presented for the Reeds-Shepp car which finds a holonomic path in the first
phase and transforms this path into a feasible free path that satisfies the nonholonomic constraints in the
second phase. A standard, holonomic path planning algorithm can be used for the first phase. For the second
phase, maneuvers as discussed in [55] can be used to transform the path. However, this solution is generally
not optimal. Later, a three-phase planner was developed in [38, 92], which used the above approach and
also the Reeds and Shepp curves [81]. In the first phase, a holonomic path is generated as in the two-phase
planner. In the second phase, the path is recursively decomposed into subpaths until all of the sub-paths can
be replaced by collision-free shortest feasible paths. In the third phase, an attempt to optimize the path is
done by replacing randomly selected feasible subpaths by collision-free shortest feasible paths. This planner
tries to optimize the path, but since the transformations in second and third phases are local, the generated
path might be far from optimal.

Most of the results discussed above are specific to a particular nonholonomic system, and are not appli-
cable to other problems. Barraquand and Latombe [7] proposed a planner that is applicable to a wide range
of problems. In fact, our solution shares many similarities with this planner. This planner uses the dynamic
programming principle to compute the path. The algorithm computes optimal paths and is asymptotically
complete. That is, for any given problem that admits a solution path, the planner is guaranteed to generate a
solution path, provided that the discretization has been set fine enough. A general-purpose planner based on
dynamic programming has also been proposed for kinodynamic planning [25]. These approaches suffer from
the curse of dimensionality; however, this appears to be the price one must pay to obtain optimal solutions

in a very general setting. For example, by sacrificing the requirement of optimality, LaValle and Kuffner

proposed a general planner based on Rapidly-exploring Random Trees (RRTs) [62, 64] for nonholonomic
path planning problems in high dimensional spaces; however, the result is a feasible trajectory that satisfies
the global constraints, but is not optimal. Note that the general-purpose methods in [7, 25, 64] only generate

a path, as opposed to a feedback motion strategy, which is considerably more challenging.

Computing feedback strategies It has been widely recognized throughout the history of control theory
that feedback is essential for reliable control of most systems. Generally, a state-feedback law provides a
control input for each possible state. In traditional path planning approaches, the problem is decomposed
into three parts. First, a collision-free path is planned; then this path is transformed into a trajectory that
satisfies velocity bounds. Finally, a feedback control law is applied that will attempt to follow the trajectory
as closely as possible.

In the context of robotics, the concept of a real-valued potential function or navigation function has
been proposed [42, 83] for encoding feedback motion strategies. The potential field approach solves the
problem as a whole in one step. This approach was first proposed in robotics by Khatib [42] in his Ph.D.
dissertation. Later several approaches were developed to compute the potential function [1, 14, 93]. Most of
these techniques suffer from the presence of undesired local minima. Ideally, a potential function should have
only one local minimum, which is located at the goal. Consequently, several approaches were proposed to
avoid local minima [6, 21, 48]. Rimon and Koditschek introduced potential fields that have only one global
minimum and no local minima for a generalized sphere world for a point-mass robot (a simplest member of a
generalized sphere world family is a space obtained by puncturing a disk by an arbitrary number of smaller
disjoint disks that represent obstacles) [83]. Approaches have appeared recently in which a feedback motion
strategy is constructed by populating the state space with a collection of neighborhoods over which feedback
control laws are defined [16, 94]. Sundar and Shiller developed a potential function with no local minima
for a point robot in a workspace that contains circular obstacles [90]. The potential field approach has also
been applied to problems in which the obstacles are moving [79, 43].

Once a navigation function is given, a control input is determined by selecting an input that locally
reduces the function value. Eventually, the state is driven into the goal region. The particular path executed
could vary from trial to trial due to unpredictable deviations; however, this does not pose a problem because
the navigation function always provides an input that makes progress toward the goal from any state. An

optimal navigation function provides an input that serves as a first step along the optimal path.

Numerical optimal control Since our problem can be characterized in control-theoretic terms, there are
natural connections to numerical algorithms that compute optimal feedback control laws. A recent survey of
numerical optimal control techniques appears in [12]. The majority of modern techniques, such as collocation,
transcription, and multiple shooting are designed for typical optimization problems in control for which
substantial nonlinear dynamical constraints exist. Although these approaches include the ability to consider
algebraic state-space constraints, the constraints considered in practice are usually simpler than collision
constraints that arise in robotics for a complicated robot in a geometrically-complicated environment. The
problems considered in our paper contain a substantial motion planning component, in which complicated

nonconvex constraints form one of the major challenges, in addition to differential constraints.

Our approach is inspired by the classical dynamic programming framework [8, 9, 11, 51, 52], which is
very general, and can be well-adapted to problems with complicated state-space constraints. Several decades
ago, the amount of storage required prohibited their use in most realistic applications; however, with greater
computation power and their great flexibility, this framework appears quite advantageous. The approach
computes a solution in the form of an optimal cost-to-go function, which can be considered in robotics as a
navigation function. Note that in addition to these methods, many classical motion planning techniques rely
on the dynamic programming principle. About a decade ago, successful dynamic programming approaches
to nonholonomic planning were proposed [7, 25] for problems with several degrees of freedom. In contrast to
these methods and classical motion planning tools, such as grid-based search and graph search using Dijkstra’s
algorithm, it is important to note that the methods in [8, 9, 11, 51, 52] are designed to produce control laws
over continuous spaces using interpolation. The techniques yield numerical solutions to differential equations
over continuous state spaces, as opposed to a graph-based solution that typically arises in path planning
research. This difference becomes crucial when both differential constraints and feedback exist in the problem
statement.

The continuous dynamic programming techniques were adapted and applied to a variety of robotics
problems in [60, 63, 65], and their convergence is shown in [11]. In spite of the high level of generality of
these methods, their practical application is limited to problems with only a few dimensions. This motivates

the techniques in this paper, which substantially improve the classical approach.

3 Problem Formulation

The problem is defined over a state space, X, which is compact and X C R™. A state, x € X, could capture
a configuration, or both configuration and velocities, of a robot. A set of global, nonconvex constraints exist,
which can be combined to yield a constraint function of the form D : X — R. The state will be required to
remain in

Xfree ={z € X | D(x) > 0},

which represents the set of all states that satisfy collision constraints and velocity bounds, if relevant. It is
assumed that the interior of Xy,¢. is am n-dimensional manifold.

A state transition equation, Tp+1 = f(xk,ur), models a discrete-time stationary dynamical system, in
which k denotes a stage (or time step) which occurs at time ¢ = (k + 1)At for some small A¢ > 0. The
vector uy denotes an input taken from a state-dependent input space U(xr). The stages go from k£ = 1
to k = K 4+ 1, in which K + 1 is a positive integer that represents the final stage. It is assumed that
f i Xjree X U(zg) = Xjree, which implies that the state remains in Xppe.

A compact goal region, Xgoq is given. A sequence of inputs, u1, us, ..., ux leads to a state trajectory
or path, x1, 3, 3, ..., Tk 1. To evaluate a trajectory, a cost functional is given of the form
K
L(.’L‘l, e TK1, ULy e UK) = Z l(a:k,uk) + lK+1(~’1fK+1), (1)
k=1

in which lxy1(2r41) = 0if 2k 41 € Xgoar, and lxy1(2x41) = 0o otherwise. Furthermore, [is a nonnegative

real-valued function such that [(zy,ur) = 0 if and only if 2 € Xgou (one might also require that wy

represents an input that expends no energy in this case). We assume that once the state reaches Xoq, it
remains there until stage K + 1. In the actual mechanics of a system, it might overshoot the goal; however,
we consider the goal to be achieved once the requested state is reached. If overshoot is a concern, then a
goal region should be chosen which requires the robot to come to rest.

We allow two different models, depending on the number of controls. For the finite input model, U(z) is
finite for all x € X ;... Furthermore, it is assumed that there exist positive constants a; and as, such that
for all z,2" € Xyree, and for all u € U(z) NU(z'),

I1f(z,u) = f(z",u)ll < enllz — 2|

and
i(z,u) = (2", u)|| < aallz — 2.

These represent Lipschitz conditions which are needed to establish convergence to the optimal solution in
the algorithms.

For the compact input model, U(x), is a compact subset of R™ for some m < n. Furthermore,

v= |J U
TEX free
is compact. It is assumed that there exist positive constants a; and as, such that for all z,z' € X, there

exists a positive constant 8 such that
U(z) cU@") +{u| [lull < Bllz — 2||}.
It is also assumed that for all z,2' € Xy, and for all u,u' € U(z),
I1f(2,u) = f(z",)|l < ea(llz — '] + |lu — u'[])

and
l(z,u) = 1(z", u)|| < as(llz — 2| + [Ju — u'[]).

A feedback solution If the task were merely to design an open-loop trajectory, one would only have to
specify the inputs, ui,...,uxk, to yield the resulting solution path. We assume, however, that a feedback
motion strategy will be required because of unpredictability of the state. For our problems of interest, we
generally assume that the feedback strategy is not stage-dependent because our system and constraints are
stationary. Let v : X¢pe — U, which yields an input u;, from any state z;. The remainder of this paper
focuses on the design of an optimal feedback motion strategy by constructing a navigation function. Note

that the task of computing a function of state is more challenging than computing a path.

4 A Classical Dynamic Programming Approach

Numerical dynamic programming approaches to solve the problem introduced in Section 3 have existed for
several decades. The foundational work of Bellman [8, 9], the numerical computation algorithms of Larson

[61, 52], and the later work of Bertsekas [11] represent some of the seminal works in this area. In this section,

we illustrate how this classical work can be adapted to our problem by interpolation of cost-to-go functions
on a grid. It was shown that this method converges to the optimal solution as the resolution increases
[11]. The particular approach described in this section is adapted from [60, 63, 65]. It is presented here to
introduce the general computational ideas, establish asymptotic convergence to the true optimum, and to

provide motivation for the improved methods proposed in Sections 5 and 6.

4.1 Optimal Navigation Functions

The first step is to define a representation of the feedback strategy, v : Xfree = U, in terms of a navigation
function. In optimal control theory, the cost-to-go function has served this purpose. In our context, this is
defined as L* : Xf,¢. — [0,00]. Each value, L*(x), yields the cost given by the cost functional (1) under the
execution of the optimal trajectory from z until the goal is reached. If termination in the goal cannot be
achieved, then L*(z) = oo.

Note that v maps to an input, and L* maps to a real value (or infinity). The feedback strategy requires
an input for each state. If L* is used to encode the feedback strategy, then for a given x € Xy,.., an input
is chosen that moves locally in the direction that minimizes L* over all possible inputs (note that in general,
this is not necessarily a gradient descent on L*). In practice, this is obtained numerically by computing

(@) = min L*(zp41) = min L7(f(@k, ur)), (2)
under the assumption that L* is given. For our problems of interest, we generally assume that L* is not
stage-dependent because our system and constraints are stationary. For clarity in (2), we indicate how to

use the cost-to-go to move from stage k to stage k + 1.

The principle of optimality Although the cost-to-go will not be stage dependent, it can be computed
as the limit of a finite sequence of stage-dependent cost-to-go functions. It will be assumed that for any
state from which the goal can be reached, it will be reached after a finite number of stages. The approach
is to first consider all zero-stage trajectories, then one-stage trajectories, then two-state trajectories, and
so on until the number of considered stages is larger than the number of stages required to reach the goal
optimally from any reachable initial state.

In the description of the algorithm, a cost-to-go function will be defined for each stage k. The cost-to-go
function L} : Xyfree — [0,00] represents the cost if the optimal trajectory is executed from stage k until
stage K + 1, starting at state zj € Xypee- Note that Ly, = Ik from (1), which implies that the final
stage-dependent cost-to-go function is immediately determined.

The cost-to-go function at stage k is given by

Li(zx) = min {Zl(mi,ui) + lK+1($K+1)} . (3)

wnsenurc |
Equation 3 represents the cost that will be received under the execution of the optimal strategy from stage
k to stage K + 1.

The cost-to-go can be separated to yield

K
Li(zr) = min min {l(mkauk) + >0 Uaiu) + lK+1(37K+1)} : (4)

Uk Uk4+1y:-UK
+1seeey =kl

The second min does not affect the ! term; thus, it can be removed to obtain

K
Ly(zx) = min |(zg, ux) + min { > l(xi,ui)+lK+1($K+1)H- (5)

Uk 414+ UK
+15--0 =kl

The second portion of the min represents the cost-to-go function for stage k + 1, yielding:

Ly (k) = min {Uz, uk) + Ly (@rt1) } - (6)

This final form represents a powerful constraint on the stage-dependent cost-to-go functions. The optimal
input at stage k and state z depends only on the cost-to-go values at stage k + 1. Furthermore, only the
particular cost-to-go values that are reachable from the transition equation xp11 = f(zg,ur) need to be
considered. The dependencies are local; yet, the globally-optimal strategy is characterized.

The approach computes representations of the cost-to-go functions iteratively from stage K + 1 to 1.
In each iteration, L} is computed using the representation of Ly, ,. If K is sufficiently large, then for
reasonably-behaved planning problems there exists an ¢ < K such that L} = L} for all k satisfying k > i.
This will hold for problems in which: 1) all optimal trajectories that reach the goal arrive in a finite amount
of time; 2) infinite cost is obtained for a trajectory that fails to reach the goal; 3) no cost accumulates while

the robot “waits” in the goal region; 4) the environment and motion models are stationary.

4.2 Numerical Computations

The cost-to-go is computed numerically over grid points; however, we can construct smooth trajectories
that do not necessarily visit the grid points (as in the case of previous kinodynamic planning algorithms
[25, 24, 23, 33]). The cost-to-go at any non-grid point is obtained by interpolation of cost-to-go values
at nearby grid points. Note that the resulting trajectories will be continuous because the state transition
equation is used to generate each step. See Figure 1 for a one-dimensional illustration. Interpolation is used
both for computing cost-to-go functions and during execution.

Let P C Xjree denote a set of sample points on which the cost-to-go function L* will be defined.
Ordinarily, the sample points are arranged to form a grid. Let L* denote the approximate cost-to-go, which
is computed by the algorithm. For any state = & P, let I(x) denote the set of sample points which form the
vertices of a cube in the grid that contains z (e.g., in three dimensions, I(x) represents the eight corners of
a cube). The value L*(z) is defined by multilinear interpolation of L over each sample in I(z). Note that in
an n-dimensional state space, interpolation is performed between 2™ grid neighbors [51, 52].

An optimal strategy can be computed by successively building approximate representations of the cost-
to-go functions. The first step is to construct f/}‘{ 41 The final term, lx1(zKt1), of the cost functional is
directly used to assign values of L% +1(Tr41) at the sample points. Note that there is no error: L 41 =
L%, in which L* represents the true cost-to-go.

The dynamic programming equation (6) is applied at each sample point to compute the next cost-to-go
function, E’;(. Each subsequent cost-to-go function is similarly computed. Consider the computation of
ﬂz. For the finite input model, the right side of (6) is an optimization over all inputs u, € U. The values
L 4+1(Tr41) are computed by using interpolation (241 is obtained from xy11 = f (@, us)). For the compact

input model, a set of sample points are defined in U, and the right side of (6) is an optimization over all inputs

10

o)
(§]
©
(0] o |
Q \
g _ ﬁ / \ \\
0) N = \ \
g \ i |
T \ a ,' N
2 Foreach input the cost-to-go @ | N
0 is computed using interpolation. N /
N c /
: K /
=]
o] /
/
X1 X2 // X3 X4 X5 X6
A continuous trajectory is obtained
in the state space.
(a) (b)

Figure 1: The computations are illustrated with a one-dimensional state space. (a) The cost-to-go is obtained
from the next stage by interpolation of the values at the neighboring quantized states. Note that the quantized
states do not have to be exactly reached by the state transition equation. (b) During execution, interpolation
can also be used to obtain a smooth trajectory.

ur € U. When the inputs are tried, the constraints can be directly evaluated each time to determine whether
each 41 lies in Xy, or a bitmap representation of the state space can be used for quick evaluations. An
efficient algorithm for building a bitmap representation of configuration spaces is given in [40].

A numerical technicality exists because of the infinite costs that appear in the cost functional. If I(zg41)
contains a sample point, p, such that L} 4+1(p) = 00, then the interpolation would always yield co. Numeri-
cally, one can test whether I(zyy1) contains such a sample point, and declare the resulting interpolation as
00. Alternatively, a large floating point number can be used to represent numerical infinity, and its value is
interpolated.

Note that L}, represents the cost of the optimal one-stage strategy from each state zx. More generally,
L3 _,; represents the cost of the optimal (i + 1)-stage strategy from each state zx ;. It was assumed that
optimal trajectories require only a finite number of stages before terminating in Xg,4;. For the algorithm
to succeed, the resolution must be set so that I(xx4+1) C Xgoar for sample points near the goal region;
otherwise, interpolation with infinity will be attempted, and the algorithm will fail to progress. For a small,
positive § the dynamic programming iterations are terminated when |L% () — L 41 (Tr41)| < 6 for all sample
points. Note that no original choice of K was necessary because termination occurs when the cost values
have stabilized. The resulting stabilized cost-to-go function, E{, can be considered as a representation of the
optimal feedback strategy, and is simply denoted as L*.

From any state, z, the optimal input in this strategy is obtained by selecting the input, uj, that minimizes

@) = min{l(az,uk) +£*(f(x,uk))}. (7)

Uk

In the compact input case, only the inputs that are sample points in U(x) are considered. Starting from any

11

initial state, 1 € Xfree, a trajectory can be computed by iteratively applying (7) to compute and apply
inputs until termination in X, is achieved. This results in a sequence of inputs, ui,us,...,u;, and a
sequence of states, z1,xs,..., Tk, in which 2 € Xgoa. The cost functional (1) can be used to compute the
cost of this trajectory. Without numerical error, the cost would be L*(x;). Let L*(x;) denote the actual
computed cost by applying L* to guide the state from z; to Xgoal- Section 4.3 establishes that both L*(x)
and L(z) converge to L*(z) for all X € Xtree-

4.3 Convergence to the Optimal Solution

This section establishes that as the sampling resolution increases, the error in both the navigation function
and in the cost of all resulting trajectories converge to zero. This establishes convergence to the true cost-
to-go function over the continuous state space, for a fixed discrete-time representation of a system.

Let d, denote the dispersion of the set, P, of sample points over X ¢, which is defined as:

d. = i — ||
g

Intuitively, the dispersion measures the furthest distance possible in which a state can be placed away from
the nearest sample point. For the compact input model, a dispersion, d,, can similarly be defined for a set
of samples defined over U.

As the number of samples increases, the dispersions become smaller. The converge result is therefore

stated in terms of dispersion:
Proposition 4.1 For the algorithm in Section 4.2, there ezists a positive constant € > 0 such that
I1L*(z) = L*(@)|| < € (dy + du) Yz € Xree

and
IL*(z) — L*(@)]| < € (dy + du) V2 € Xpree

Under the finite input model, the proposition holds true by setting d,, = 0.

The proposition is established by making small modifications to the arguments presented by Bertsekas
in [11] based on differences between the two models and algorithms. Rather than repeat several pages of
lengthy arguments from that work, we briefly provide an intuitive sketch that indicates the key differences.

The first difference is that the formulation in [11] assumes that L* is constant over the neighborhood of
each sample point, and our formulation uses multilinear interpolation. In general, interpolation provides a
closer approximation to L* than using constant values; thus, convergence still holds.

The second difference is that the original formulation is defined for a time-varying system. Recall our as-
sumption that the optimal trajectory from any reachable state that terminates in Xg,4; in a bounded number
of stages. For a given problem, assume that K is chosen large enough so that all optimal trajectories arrive
at Xgoq at or before stage K + 1. Let L* represent the resulting cost-to-go after K dynamic programming
iterations have been performed. Under our formulation L*(z) = Lj(z) for all £ € X fyee, and it follows from

Proposition 2 of [11] that L*(x) satisfies all of the convergence conditions stated in the proposition above.

12

The proof in [11], however, requires one additional Lipschitz condition, which in our formulation becomes:

there exists a positive constant ag such that for all z,z" € X4y, and for all u,u’ € U(x),
llkt1(z,u) — k(@ u)l| < asllz — 2’|,
for the finite input model and
llx+1(@,u) = k1 (@, W)l < as(llz — 2" + [lu — []),

for the compact input model. This bounds the slope of the final cost-to-go term; however, in Section 3, Ik 41
is defined as lgx41(x) = 0if € Xgoa or lxky1 = 00 otherwise. This violation of the Lipschitz condition is
circumvented by redefining the domain of application for each k (under the time-varying model). Let Xk 1,
Xk, ..., X1 denote a sequence of increasing compact subsets of X, in which Xg 1 = Xgoq;. For each
k, Xy is defined as the set of all states reachable in a single stage from X ;. In the algorithm in Section
4.2, inputs were allowed such that I(zg41) contained sample points with infinite value. In the modified
formulation, these inputs are no longer permitted because interpolation points are required that are beyond
X. Once this adjustment has been made, the Lipschitz condition above is satisfied. Using this condition

and the Lipschitz conditions stated in Section 3, convergence follows as shown in [11].

4.4 Limitations of the method

The general advantages of these computations were noted long ago in [51]: 1) extremely general types of
system equations, performance criteria, and constraints can be handled; 2) particular questions of existence
and uniqueness are avoided; 3) a true feedback solution is directly generated. The primary drawback is that
the application is limited to only a few dimensions. It is important to note, however, that computing optimal
feedback solutions for a problem that involves both differential constraints and complicated geometry is very
challenging. Even though randomization has been useful for tackling high-dimensional problems in motion
planning [4, 6, 32, 35, 41, 49, 64, 74, 95], it is not clear how such ideas could be applied to obtain solutions
to the problem studied in this paper.

Given that the curse of dimensionality represents the primary drawback of the method, we are motivated
to at least make the dynamic programming computations as efficient as possible. This can increase the
applicability of the method by one or two more dimensions in practice. Given the high level of generality
with which the method applies, such improvement is expected to be quite valuable in robotics and other
applications.

The next two sections propose two substantial improvements to the dynamic programming computa-
tions. Linear interpolation is one of the principle bottlenecks in the computations. Section 5 presents an
interpolation scheme that reduces the interpolation computations in n-dimensional space from time O(2")
to O(nlgn). Section 6 presents algorithms that compute L*ina single pass over the state space, as opposed

to iteratively computing stage-dependent cost-to-go functions. This leads to much greater performance.

5 Interpolation Based on Complete Barycentric Subdivision

This section proposes an interpolation scheme that can be used to reduce the complexity of each evaluation

inside the min function in (6) from time O(2") to O(nlgn), in which n is the dimension of X. In addition to

13

theoretical savings, the method is efficient in practice. Even though we expect the dimension to be small, the

dynamic programming computations become several times faster for problems with only a few dimensions.

5.1 Representing the Cost-to-go Function over a Simplicial Complex

Our main goal is to reduce the computational complexity of computing the cost-to-go function at any given
point in X. This is achieved by dividing X into a mesh in which each n-dimensional element is a polytope
with the minimum number, n + 1, of vertices. Each element is called a simplex, which is a convex polytope
that has n + 1 vertices. A simplicial complex K [84] is a collection of simplexes in a Euclidean space such
that: 1) if a simplex s € K, then every face of s also belongs to K; 2) if s,¢ € K are any two simplexes, then
s Nt is either empty or a common face of s and ¢.

While approximating the cost-to-go function over a simplicial complex, we also need to ensure that the
problems of identifying the simplex that contains a given state and computing the interpolation coeflicients

are efficient. The process of computing the cost-to-go at a state = can be divided into three steps:
1. A point location problem, which involves identifying the simplex that contains z.

2. Computation of the interpolation coefficients. In the case of a simplex, the interpolation coefficients are
barycentric coordinates [84], which are non-negative coeflicients 81, 82, . . . , Bnt1 such that E?H Bi=1.
Each state, z, in a simplex can be represented as a linear combination x = Z?H Bi p; in which the p;

are the vertices of the simplex.

3. Computation of the cost-to-go using interpolation. In the case of a simplicial complex, k = n + 1, the

number of vertices in an n-dimensional simplex.

Although the time complexity of the last step is reduced from O(2") to O(n) by replacing a grid representation
with a simplicial complex, the first two steps are considerably more complicated. These steps must also be
efficient to make the simplicial complex approach preferable.

The point location problem would be easy if the simplexes are regular. Representation of the mesh over
X as a collection of regular simplexes is possible for the 2D case (a tiling of equilateral triangles). In this
case, all the three steps can be carried out very efficiently. However, as shown in [22], it is impossible to tile
an n-dimensional space with regular simplexes for n > 2. Hence, for higher-dimensional state spaces, we will
have to handle irregular simplexes, complicating the point location problem. In this case, the complexity
has moved from Step 3 to Step 1. Moreover, the simplexes that we choose should also be applicable (and

extensible) for higher-dimensional state spaces.

5.2 Complete Barycentric Subdivision

Our approach starts with a tiling of the state space by cubes. The set of sample points will be that same
grid points considered in Section 4. However, each cube is subdivided systematically into simplexes using
complete barycentric subdivision, which will be explained shortly.

As shown in [66], an nD cube must be divided into at least 2"(n + 1)~("+1)/2p! simplexes. Thus, a
square can be divided into no less than two triangles. Similarly, a 3D cube can be divided into no less than

five tetrahedra. It might seem that the point location problem would be straightforward if the number of

14

Figure 2: A 3D supercube (which contains 8 cubes) is divided into 48 tetrahedra.

simplexes per nD cube is minimized. However, attempts to reduce the number of simplexes often lead to a
more difficult point location problem. This difficulty leads to the proposed approach, which does not produce

the optimal number of simplexes, but is very efficient for point location and interpolation.

A tiling of supercubes Suppose that the sample points are arranged in a grid configuration. Let a
supercube denote the nD cube formed by taking three consecutive sample points along each axis. Each
supercube contains 2™ smaller cubes, whose vertices are sample points. Suppose that there are 2m + 1
sample points per axis. The state space can be partitioned into m™ non-overlapping supercubes in which
the vertices of each supercube are sample points. Intuitively, the supercubes are formed by cutting the grid

resolution in half along each axis.

Subdividing a supercube The complete barycentric subdivision is shown in Figure 2 for a 3D supercube,
in which 48 tetrahedra are obtained. The construction places a new vertex at the center of each “feature,” in
which a feature is either an edge, a face, or the supercube itself. For each edge, the new vertex is connected
to the endpoints of the edge. For each face, the new vertex is connected to the corners and the new vertices
that came from splitting all of the edges. For the supercube, the new vertex is connected to all existing
vertices. Note that the vertex in the center of the cube is common to all tetrahedra. In n dimensions, the
subdivisions are extended in a straightforward manner. An nD supercube is divided into 2™n! simplexes.
Each nD half-sized cube is divided into n! simplexes, and there are 2™ half-sized cubes within the original
cube. It is important to note that we do not explicitly store simplexes; only the sample points are stored.
The point location problem will simply be a matter of choosing the sample points whose convex hull contains
the state.

Voronoi structure Complete barycentric subdivision yields a useful Voronoi structure that greatly facil-
itates the point location problem. The Voronoi region of a set of features of a polytope, P, is a set of points
interior to P which are closer to that feature than to any feature. If a point, z, lies in the Voronoi region
of the feature f, then f is the closest feature to x. In the present context, the set of features for an nD

supercube will be the collection of its faces, which are (n — 1)D supercubes.

15

2D Voronoi region

e - — N/
/1N

2D supercube

Figure 3: Obtaining a 2D supercube from four 1D supercubes.

AR

3D Voronoi region

2D supercube

3D supercube

Figure 4: Obtaining a 3D supercube from six 2D supercubes.

Consider an extension from four 1D supercubes to a 2D supercube, shown in Figure 3. The center vertex
of the 1D supercube forms a Voronoi boundary that identifies the closest feature (the features are simply
the 0D endpoints). Take the center of each 1D supercube, and “lift” it to the center of the 2D supercube.
The resulting triangular region is the Voronoi region for the 1D supercube. The dividing segment within the
triangular region indicates which vertex of the 1D half-sized cubes is closer. The 2D cube is constructed by
“gluing” together four lifted 1D supercubes.

The extension from 2D to 3D is shown in Figure 4, in which six 2D supercubes are lifted and glued to
obtain a 3D supercube. By similar constructions, the Voronoi structure for an nD supercube can be obtained

by lifting and gluing 2n (n — 1)D supercubes.

Point location problem Suppose a state, z, is given. The first task is to locate the supercube in which
z is contained, which can be performed in constant time. The next step is to use the Voronoi structure

to quickly determine the simplex that contains z. This involves selecting n + 1 sample points of the nD

16

supercube.

Consider the 2D case, and without loss of generality, assume that the 2D supercube that contains x has
its four corners at (—1,-1), (1,-1), (1,1), and (—=1,1). The task is to determine the three vertices that
define the triangle that contains z. The center vertex of the supercube is a vertex of this triangle because
it is common to all triangles in the supercube. Let (z1,z2) denote the coordinates of z. Consider the four
distance quantities {|1 — z1|,|1 + z1|, |1 — 22|, |1 + z2|}. Each represents the distance from z to an edge of
the 2D supercube. Thus, by finding the minimum of these quantities, the 1D supercube nearest to can be
quickly found. The center of this supercube provides the second vertex of the triangle that contains . The
second smallest of the four distance quantities above indicates which endpoint of the 1D supercube is closest
to x; this endpoint is the third vertex of the triangle that contains x.

In general, for an n-dimensional supercube with vertex coordinates of the form (+1,+1), there are 2n
distance quantities:

{1 =z1|, |1 + 21|, |1 — 22|, |1 + 22],- .-, |1 — zp, |1 + zp|}-

The smallest n of these are used to determine the simplex that contains . The smallest identifies the closest
(n—1)D supercube. The second smallest identifies the closest (n —2)D supercube within the closest (n —1)D
supercube. This iteration continues until the closest 0D supercube is obtained, and all n + 1 vertices of the
simplex that contains x are computed. This procedure requires sorting of the 2n distance quantities, which

can be performed in time O(nlgn). Thus, it takes time O(nlgn) to determine the simplex that contains z.

Computation of the barycentric coordinates Once we find the simplex that contains the point, we
need to find the barycentric coordinates of the point in its simplex to perform the linear interpolation.
Intuitively, each coordinate reflects how close z is to the vertex of the simplex. It turns out that the distance
quantities can be used once again.

Assume once again that the nD supercube that contains z has vertices with coordinates of the form
(£1,£1). Let p1, p2, P3, ---, Pny1 be the vertices of the simplex that contains z. Let £, B2, B3, and
B4 be the respective barycentric coordinates. Let di, ds, ..., d, be the n smallest distance quantities,
sorted in increasing order, as discussed for the point location problem. The point x must be expressed
using barycentric coordinates as x = Z::ll Bip;- Simple algebraic manipulations reveal that ; = 1 — dy,
Bo=di—da, ..., By =dn—1—dn, Bny1 = dn. Thus, once the distance quantities are sorted, the barycentric
coordinate computation requires time O(n). Ordinarily, computing the barycentric coordinates takes time

O(n?) because a linear system is solved; however, our choice of sample points simplifies the problem to O(n).
Computation of cost-to-go Once point location and barycentric coordinate computation have been
performed, the cost-to-go, is computed in time O(n). Thus, the following proposition is obtained:

Proposition 5.1 The method of complete barycentric subdivision solves the point location and interpolation

problems in time O(nlgn), in which n is the dimension of Xfree.

Hence, the computation of cost-to-go at any point in space takes O(nlgn) time, as opposed to O(2") time
using the grid approach. The improvement is also significant in practice. Even though n is not too large,

the scaling constant in the analysis is small.

17

Active Unreached
Unreached Acive

Finalized Finalized

After the first iteration An intermediate iteration After the final iteration

Goal
(Finalized)

Figure 5: The classical algorithm lowers the cost-to-go values in the active set until the finalized set spans
all of the reachable portion of the state space.

6 Algorithms for Computing Optimal Navigation Functions

In this section, improved algorithms for computing the optimal cost-to-go function are given. The concepts
are independent of those in Section 5. The algorithms can utilize the original interpolation scheme from
Section 4.2 or the improved scheme from Section 5. For this reason, we describe the algorithms in terms of
a set, P, of sample points, without regard to particular interpolation issues. Let p denote a state that is a
sample point.

To motivate the concepts that follow, recall the classical algorithm from Section 4.2. For a sample point,
p, consider the values f/,’; 4+1(p) and ﬂ;(p), which are the cost-to-go values at p from iteration k+1 to iteration
k (recall that the dynamic programming travels backwards through time). Several observations can be made.
First, note that for any k € {2,...,K + 1} and any p € P, the cost-to-go is monotonically nonincreasing,
Li(p) < L - If Li(p) = L +1(p), then there are two possible interpretations: 1) L3 (p) is infinite,* which
implies that no trajectories exist which can reach X, from p in stages k to K + 1; 2) Ly (p) is finite, which
implies that the cost-to-go has been correctly computed for p, and it will not decrease further in subsequent
iterations. For each of these two cases, the costly evaluation of (6) performs no useful work. Furthermore,
if p belongs to the second case, it never needs to be considered in future iterations. Let Py be called the
finalized set, which is the set of all sample points for which the second condition is satisfied. Let P, denote
the unreached set, which is the set of all sample points for which the first condition is satisfied. One more
situation remains. If L (p) < L 4+1(p), then in iteration k the evaluation of (6) is useful because it reduces
the estimate of the true cost-to-go at p. Let P, denote the active set, which denotes these remaining sample
points. Note that P¢, P,, and P, define a partition of P. These sets in the classical algorithm are illustrated
in Figure 5.

Sections 6.1 to 6.3 present a series of algorithms that exploit these observations. Each algorithm makes
stronger assumptions than the one before, but is able to be more efficient due to the assumptions. The main

idea is to focus the computation around P,.

*In practice, a large positive floating point number represents this cost. In this case, the cost-to-go actually increases in
each iteration. This does not pose a problem, however, because this is the only case in which an increase can occur, and it is
correctly interpreted

18

6.1 An Algorithm Based on Active Sets

In this section, it is assumed that P, is small relative to P in each iteration. This arises in applications in
which the state transition equation causes small changes in state. In other words, ||zx4+1 — 2|| < € for some
small € > 0 over all states, x; € X and possible inputs uy € U. For typical robotics problems, € is small
relative to the dimensions of X, which leads to a small active set in the classical dynamic programming
computations. If P, is sufficiently small for every dynamic programming iteration, then it is worthwhile to

avoid scanning the entire grid each time. Instead the computation can be focused on the active sets.

Using a single cost-to-go function To focus the computation, it would be helpful if the dynamic
programming algorithm maintains a single copy of the cost-to-go function. The algorithm in Section 4
defines a cost-to-go function for each k. In practice, however, the cost-to-go iz 41 can be discarded after
iteration k is completed because the dynamic programming computation, (6), is local in time. This implies
that only two copies of the cost-to-go are needed at any iteration. Suppose, however, that only a single
copy of the cost-to-go function is used. Denote this copy by L* (without a k subscript). At iteration k, the

computation for sample point p is
L*(p) = min {U(p, ue) + L (/ (o, ue)) } (8)

Preimage concepts The next concept is used to avoid most of the useless computations from the original
algorithm. For a state z, let I(z) C P denote the set of sample points that are used to compute the cost-to-
go for z by interpolation. Using the classical interpolation scheme in an n-dimensional space, there are 2"
sample points in I(z). Using the method from Section 5, there are only n + 1 points. For a set of sample
points, P, let R(P;) C X ¢re. denote the set of all states, z, such that I(z) C P;. In other words, R identifies
a region over which a cost-to-go could be computed through interpolation of sample points in P;.

For any subset C C Xy e, let Pre(C) denote a preimage, which is the set of all 441 € Xjpee such
that there exists some uy € U with zy1 = f(zg,ur) and z € C. In other words, Pre(C) gives the set of
states from which the set C' is reachable in a single stage. A planning framework based on preimages was
introduced in [70], and was also applied in [27, 54, 63].

Algorithm details Figure 6 shows an algorithm based on preimages that avoids most of the wasted
computations of the classical algorithm. There is some computational overhead involved in maintaining P,;
thus, the algorithm will become more preferable as the size of P, is smaller. Step 1 initializes P, and P;.
The finalized set, Py, can be computed by performing a scan conversion of the goal region. Steps 2 to 4
perform a cost-to-go computation for every sample point outside of Py that can reach the finalized region
in one stage. Step 3 computes and stores the cost-to-go for a sample point, computed using interpolation
and (8); this value is referred to as lub(p), which indicates that it represents lowest upper bound on the
cost-to-go. Over time, the value is repeatedly updated until lub(p) = L*(p), the optimal cost-to-go. Step 4
inserts these sample points into the active set, P,.

Steps 5-12 generate a loop that terminates when P, is empty. Within each iteration, an updated lub(p)
is computed for each p € P,. If the dynamic programming computation does not change, then one of two

possibilities exists: p is finalized or p is unreached. In either case, it should not belong to P,, and is therefore

19

P, + {}; Pr <+ PN Xyon
for each p € Pre(R(Py)) \ Py
Compute lub(p)
INSERT(p, P,)
while P, # 0 do
for each p € P,
Recompute lub(p)
if lub(p) is unchanged
9 DELETE(p, P,)
10 if lub(p) is unchanged and finite
11 INSERT(p, Py)
12 P, = Pre(R(P,)) \ Py

00 ~J O Ut i LN

Figure 6: This algorithm computes the optimal navigation function while avoiding most of the wasted
computations of the classical algorithm.

deleted. If p is truly in the preimage, then the second case will not be possible; however, in practice it can
occur often. Exact preimage computations can be rather complicated, but generating an overapproximation
is usually simpler. For example, a spherical region containing the true preimage of each sample point could
be used. While the computations can be expedited, the tradeoff is that some sample points might not
actually be reachable. Step 9 will also handle this case by deleting them from P,. Steps 10 and 11 add
the sample point to P because the optimal cost-to-go has been computed. If the distance traveled by the
state transition equation is small relative to the sample point spacing, the lub(p) value might reduce in each
iteration, but not converge in a finite number of iterations. In this case, one can set a small numerical
threshold, such as 1071°, and declare lub(p) to be unchanged when the change is less than the threshold. In
Step 12, new sample points are added to P, as long as they do not belong to P;. The algorithm terminates
when P, is empty. This should occur when all reachable sample points have been finalized and added to Py.

The algorithm only stores L* for all sample points in P;. The cost-to-go at any state in R(Py) can be
obtained by linear interpolation, which results in a navigation function that can be used to drive the state

into the goal.

Proposition 6.1 For the algorithm in Figure 6, both L*(x) and L*(x) converge to L*(z) for all z € Xjree

as d, and d,, approach zero.

Proof: The first step is to establish that a single cost-to-go function, L*, that can be used for the dynamic
programming computations, as opposed to maintaining a copy for each k. The cost-to-go obtained using
(8) is never greater than the cost-to-go from the algorithm in Section 4. Some sample points in P have
cost-to-go values that reflect iteration k, while others will reflect iteration k + 1. In the original algorithm,
all sample points have cost-to-go values that reflect iteration k. Thus, the value of L* at each sample point
is less than or equal to the value of L} 41

Furthermore, the value L*(p) obtained in the current algorithm is never less than than L*(p) as computed
by the original algorithm. Since L*(z) < L}(z), the cost-to-go at each sample point, p, is bounded from
above by L¥ +1(p) and from below by L*(p). Proposition 4.1 in combination with the upper and lower bounds

imply that the dynamic programming computations converge if a single cost-to-go function is maintained.

20

Q<+« {}; Pr < PNXyou
for each p € Pre(R(Py)) \ Py
Compute lub(p)
INSERT(p, Q)
while Q # () do
Pmin <POP(Q)
for each p in Q N (Pre(R(Ps U pmin) \ R(Pf)))
Recompute lub(p)
9 INSERT (Prnin , Pr)
10 for each p € Pre(R(Py)) \ Q
11 Compute lub(p)
12 INSERT(p, Q)

0 ~J O Ut ix LN

Figure 7: This algorithm computes the optimal navigation function in a single pass over the state space.

Next, consider the restriction of the dynamic programming computations to the active sets. The first
preimage includes all sample points that could possibly lower their value. Sample points in the goal will
keep their zero value, and all other sample points will retain their infinite values. The dynamic programming
computations over P, will therefore yield the same result as iterating over all of P. In the next iteration, the
preimage again includes all sample points that could possibly lower their value. Thus, in each iteration, the
algorithm uses preimages to ensure that the same result will be obtained if all of P were considered instead
of focusing the computation on P,. The convergence as stated in Proposition 4.1 is maintained because
the restriction of the dynamic programming computations from P to P, does not change the computed

cost-to-go values. |

6.2 A Continuous Dijkstra-like Algorithm with Interpolation

In many cases, the algorithm in Figure 6 can be improved. In addition to the assumption that P, is small,
suppose that that distance from one state, xj to another z;,; obtained by the state transition equation
is more than the grid spacing. For example, all inputs might produce motions that place the new state in
a different simplex or grid cell than that of the original state. This is a reasonable assumption for many
problems. A similar condition was used in the nonholonomic planning algorithm presented in [7]. In this
case, the algorithm in Figure 6 can be improved to obtain an approach that is similar to Dijkstra’s algorithm
for finding optimal paths from a single vertex in a graph.

The modified algorithm is shown in Figure 7. The first five steps are the same as in Figure 6, except
that P, is replaced by a priority queue, (). The priority function for each sample point p € @ is lub(p), and
the POP operation removes the point from () with the smallest value. In this algorithm, the point, p,,;n € @
with the smallest value can enter the finalized region in a single stage. In this case, pp, is immediately
finalized.

Steps 5 to 11 are iterated until () is empty. After each iteration, L* becomes known for a new sample
point. In Step 6, ppin is removed from @ (the sample point for which lub(p) is the smallest). It is known
that lub(pmin) = L* (Pmin) because a single-stage trajectory exists that brings ppin into R(Py) with less cost

than from any other sample point in . Once L* is known for a new sample point, Py must be appropriately

21

expanded, which adds new sample points from which L* can be obtained through interpolation.

To maintain optimality in the next iteration, it is required that the sample point in) with the smallest
cost correctly takes into account all previously finalized sample points. Thus, improved upper bounds are
computed in Step 8 for sample points in @ that can reach a region in a single stage that uses p,,;, in the
interpolation.

After the costs of these sample points are updated, the next part is to add new elements to @, which is
performed in Steps 9-11. The priority queue, @), is empty when there are no new sample points that can

reach R(Py) in a single stage.

Proposition 6.2 For the algorithm in Figure 7, both L*(x) and L*(x) converge to L*(x) for all z € Xfyee

as d, and d,, approach zero.

Proof: We first argue that in each iteration, py,in, is correctly added to Py. Consider the cost-to-go values
at Txr1 € f(Pmin,u) for each u € U(zky1) for the finite input model or each sample point in U for the
compact input model. For some of these inputs, xx+1 € R(Ryf). Let u* denote the input that minimizes
L*(2p41) over the inputs such that zp, € R(P;). At least one such input exists because pmin belongs
to the preimage. The cost-to-go values obtained by applying inputs that result in xx1 ¢ R(Pf) must be
greater than or equal to the cost-to-go obtained by applying u* because all sample points in P, have higher
cost-to-go than those in Py. This is similar to the condition that allows Dijkstra’s algorithm to obtain
shortest paths by selecting the vertex with the smallest cost-to-come at each iteration. Thus, the cost-to-go
value computed for pp,;, by using the input u* must be optimal. This implies that py,;, can be added to Pf
because its value cannot be decreased in future iterations. The addition of pmin to Py extends R(Py), and
consequently Pre(R(Py)) is extended. Thus, new control points are added to @ if they are able to reach
R(Py). This ensures that the correct preimages are maintained.

After each iteration of the algorithm, it must be ensured that the sample point in) with the lowest
cost-to-go has a true L* value that is less than or equal to the other other sample points in . Otherwise,
the argument above will not hold, and it might not be possible to add ppin to Py because there are other
sample points in @ that could eventually have a lower cost-to-go value than p,,;,. Steps 7 and 8 prevent this
problem by recomputing the cost-to-go estimate for all sample points from which an input can take them to
a state, Tgy1, in which I(zgy1) contains p,. This is similar to a step in Dijkstra’s algorithm in which the
costs or neighboring node are updated after the optimal cost is known for a node.

At each iteration, the correct preimages are maintained and the cost-to-go computed for p,,;;, is the
cost-t0-go L* (pmin) which would have been computed by the algorithm in Figure 6. Therefore, convergence

of the algorithm in Figure 7 follows from the convergence established in Proposition 6.1. |

6.3 A Wavefront Algorithm for Time Optimal Solutions

For the special case in which time-optimal solutions are sought, a more efficient variation of the algorithm
in Figure 7 can be obtained. In the case of time optimality, [(zk,ur) = At if 2 & Xgoar and I(zg, ur) = 0
otherwise. This measures the number of stages that transpire until the trajectory arrives at the goal. Suppose

this cost functional is applied in the algorithm in Figure 7. In this case, it is possible to finalize many sample

22

Pf «~— PN Xgoal
W + P’I’G(Pf) \Pf
while W # () do
for each p e W do
Compute lub(p)
if lub(p) is finite
INSERT(p, Py)
W « P’I‘G(Pf) \Pf

00 ~J O Ut i LN

Figure 8: This algorithm computes a time-optimal navigation function in successive waves.

points in the same iteration. This motivates the construction of a “wavefront” of sample points that are
added to the finalized region simultaneously, instead of removing each individually from the priority queue.
The resulting algorithm is shown in Figure 8.

Step 1 initializes the finalized set, P¢, to the sample points in the goal region. The set W represents the
wavefront, which is initialized in Step 2 to the set of all states that can reach Py in a single stage. Steps 3
to 8 repeat until there are no wavefronts remaining, and Py spans the reachable portion of the state space.
Steps 4-7 process the wavefront. For each p € W, the optimal cost-to-go can be computed immediately. As
stated in Section 6.2, the preimage might be an overapproximation in practice for efficiency reasons. For
this reason, Step 6 checks to determine whether lub(p) is finite. If it is finite, then lub(p) = L*(p), which is
the optimal cost-to-go, and p is added to Py. Otherwise, if lub(p) = oo, then p was not in the true preimage.
After all of the sample points W have been processed, a new wavefront is generated in Step 8 based on the

new finalized set P;.

Proposition 6.3 For the algorithm in Figure 8, both L*(z) and L*(z) converge to L*(z) for all x € Xfree

as d; and d,, approach zero.

Proof: The arguments for convergence are similar to those of Proposition 6.2. Due to the time-optimality
criterion, multiple sample points may be finalized simultaneously. For each p € W, the finalized region
R(Py) can be reached in a single stage. The optimal input must yield the final cost-to-go L*(p) because
if the trajectory first visits R(W U P,), more time will be required in terms of stages before the finalized
region is reached. This would fail to optimize the criterion. Thus, for each wavefront computation, the
values L*(p) are correctly computed for each p € W. This implies that the same results are obtained as
for the algorithm in Figure 6, and the method algorithm in Figure 8 converges to the optimal solution by

application of Proposition 6.1. |

7 Implementation and Experiments

To illustrate the concepts in this paper, we apply them to the computation of time-optimal paths for a
variety of problems. Our implementation uses GNU C++ and LEDA under Red Hat Linux on a Pentium
ITI 500 Mhz PC (note that current PCs are roughly 3 to 4 times faster). To obtain the results in this section,
we implemented the algorithm in Figure 8 using the interpolation scheme introduced in Section 5. Some

results obtained from the algorithm in Figure 7 are presented [61]. More experimental results appear in [46].

23

Table 1: Computational performance from a GNU C++ implementation on a 500Mhz Pentium III PC
running Linux. The columns denote: P = problem number, Res = resolutions, Precomp = precomputation
time, DP = dynamic programming computation time.

P Res Precomp DP
(sec) (sec)
1 70 x 70 x 30 16.37 9.12
1 100 x 100 x 30 33.40 15.77
1 200 x 200 x 30 122.91 72.15
2 70 x 70 x 30 13.51 9.63
2 100 x 100 x 30 27.11 14.35
2 200x200x30 109.18 56.77
3 200x200x30 120.66 68.97
4 200x200x30 115.69 53.08
5 200 x 200 x 30 112.46 110.06

Once the optimal cost-to-go, i*, is computed for the finalized set of sample points, it is used to produce a
trajectory from an initial state. For the dynamic programming computations, preimages were computed by
selecting all sample points that could be reached in one stage by applying a simple velocity bound to the
state. This represents a simple, overapproximation to the true preimage.

Our approach has been implemented and evaluated on five different types of problems: 1) planning for
an ideal car-like robot, 2) planning for a box-pushing robot, 3) planning for a car-like robot with prediction
uncertainties, 4) planning for a car-like robot with sensing errors, and 5) a kinodynamic planning problem
for a car-like robot. Some of the results are presented in the remainder of this section; more results appear
in [46, 61].

Car-like robots For Problems 1 to 5, a polygonal car-like robot is defined in a 2D world that contains
polygonal obstacles. The state space is simply the 3D configuration space, X = R? x S'. Nonholonomic
constraints arise due to the rolling contact of the wheels with the ground and also from a limited steering
angle.

The algorithm is implemented for the Reeds-Shepp car [81] (forward and backward) for three different
workspaces. We have also implemented the algorithm for the Dubins car [26] (forward only). A maximum
turning angle of 30 degrees is used for all examples. Navigation functions for four problems that involve the
Reeds-Shepp car were computed. The results are shown in Figure 9.a-9.e. Figure 9.f shows the trajectories
of the optimal navigation function for the Dubins car (forward only).

The computation times are shown for various resolutions in Figure 1. The column labeled “Precomp”
refers to the time taken for initialization of a bitmap that is used for rapid collision detection; there exist much
faster methods for this computation [39]. These results and the results presented in [46, 61] indicate that the
new algorithm is an order of magnitude or two faster in practice than the classical dynamic programming
approach applied to similar problems [60, 52].

Figure 10 shows the level set contours of L* for a Dubins car in an environment without obstacles. The
orientation is 0, and = and y are variables. This result illustrates that the computed cost-to-go can be

considered as a numerical approximation to the nonholonomic metric determined in [59, 88].

24

K

Soeeeioe

]

KEEEEE

(a) Problem 1 (b) Problem 1

(c) Problem 2

(e) Problem 4 (f) Problem 5

25
Figure 9: Several computed examples for car-like robots. (a) to (e) involve Reeds-Shepp cars. (a) and (b)
show two different paths for the same navigation function. (c) and (d) show several different paths obtained
by applying the computed navigation function to different initial states. (e) shows an example in which the
goal region is disjoint. (f) involves a Dubins car.

7 ?\
QA

Figure 10: The level sets of the cost-to-go function for a particular orientation of a Dubins car.

Push planning Problems 6 and 7 are based on the push-planning problem introduced in [73]; a similar
problem was considered in [2]. A robot must manipulate a polygonal object by pushing it along a flat surface.
It is assumed that the robot and the object make contact at a single edge. Instead of grasping the object,
the robot must rely on friction forces to prevent the object from sliding against the contact edge between
the robot and the object. For a given orientation of the object, a friction model, and a particular edge from
which to push, the robot velocities are constrained because the object must not slip. We assume a maximum
pushing angle and choose one of two object edges for pushing. We also assume that the robot can switch
the pushing edge without hitting the obstacles. The state space is R2 x S', which is the configuration space
of the object.

Computed results are shown in Figures 11 and 12. As defined in Section 3, the cost functional (1) can
depend on the input ug. In the push planning problem, the number of times the robot switches the pushing
edge can be optimized (minimized) by associating more cost to inputs that require a change of the pushing
edge. Figure 11.a shows the trajectory of the object when time taken by the robot to push the object to
the goal is minimized. Figure 11.b shows the trajectory of the object when the number of times the robot
switches the pushing edge is minimized. In Figure 11.a, the robot completes the task in 111 time stages,
switching edges once. In Figure 11.b the robot takes 120 stages, but does not change the contact edge.
Figure 11.c shows the multiple trajectories of the object along with the pushing edge from different initial

states for another workspace. Figure 2 shows the computation times for Problems 6 and 7.

26

\\|/| [/

7 I/’
I\

I\

B\

EENERRARRN
ANRARRRRRAR
|

—_—

\

//llll//m

S\

-
/

Y
[\\

(a) Minimal time (b) Minimal reversals

Figure 11: Problem 6 involves a push planning problem under two different criteria.

Table 2: Computational performance from a GNU C++ implementation on a 500Mhz Pentium IIT PC
running Linux. The columns denote: P = problem number, Res = resolutions, Precmp = precomputation

time, DP = dynamic programming computation time.

P Res Precmp DP
(sec) (sec)
6 200 x 200 x 30 23.028 34.12
7 200 x 200 x 30 22.36 37.71
8 50x50x30x24 4.95 883.51

27

CIERERRRN

Wi |=n\:>'>’77/////////////~>

Figure 12: Problem 7 involves a time-optimal push planning problem in which the computed navigation
function is applied from different initial states. This results in different trajectories that reach the triangular
goal region in the center.

Kinodynamic planning Problem 8 illustrates an optimal navigation function that produces an optimal
trajectory with the consideration of a simple dynamical model. This can be considered as a feedback variation
of the kinodynamic planning problem as presented in [18, 19, 20, 25, 24, 23, 31, 82]. We assume a maximum
speed, a maximum turning speed, and also a maximum speed while backing, for the car. With speed as the
fourth state variable, the state space has four dimensions.

We consider a simple four degree-of-freedom model. This model is very simplistic, and is chosen only for
illustration purposes. Let fy,4. be the maximum centrifugal force that the car can withstand before laterally
slipping or toppling. Let ¢4z be the maximum steering angle (based on mechanical limits), and let s;q4
be the maximum speed the car can go with steering angle ¢,,q,. Let m be the mass of the car and £, the
distance between the front and rear axles of the car. Thus,

2
t
fmaw = MEmag ean ¢maz - (9)

28

T T T T T T T T T T T T T T
0111213141516 17 181920 21 2 23
time

(a) (b)

,__4
o
-
-~
o
P
-
o
o

T T
12345678 9101112131415161718192021 223
time

() (f)
29

Figure 13: Problem 8 involves designing time-optimal trajectories for a car with bounded acceleration and
velocity-dependent steering limits.

If the car is going at a speed s, then the limit on the steering angle, ¢, is
ms2ltan ¢ < fmas- (10)

Using (9),
¢ < arctan(s2,,, tan ¢maz/s°). (11)

Figure 13 shows a computed example. Figures 13 (a), (c), and (e) show the trajectories of the car from
different initial states. Figures 13 (b), (d), and (f) show the graphs of the speed of the car as a function of
time for the respective trajectories. For the above results, a maximum speed of 4.5 units/sec, a maximum
turning speed (Smqz) of 3.5 units/sec, a maximum speed while backing of 3.0 units/sec, a maximum steering
angle (@maz) of 45 degrees, and an acceleration (or deceleration) of 1.5 units/sec? have been used. Table 2
shows the computation times.

Given the computation time, we believe that the algorithm could also solve five-dimensional kinodynamic
problems if one can tolerate a few hours of computation. In this case, the realistic 5-DOF model from
[10] could be used, for example, to yield very accurate dynamical simulations of the vehicle. Although
several hours might seem costly, there presently exist no general-purpose algorithms which can compute

such solutions in the presence of obstacles (other than the classical algorithm from Section 4).

8 Conclusions

We have presented several algorithmic ideas that improve dynamic programming computations in the con-
struction of optimal feedback motion strategies. The two key ideas were to: 1) devise a simplicial complex
representation that reduces the complexity of interpolation from O(2") to O(nlgn) for an n-dimensional
state space, and 2) focus the dynamic programming computations on the active sample points in the state
space. Our approach is for general system equations and environments; however, we expect that their appli-
cation in practice will be limited to no more than five or six dimensions. Note that it is, however, unfair to
compare our approach with recent randomized approaches to path planning that can handle high-dimensional
problems. In contrast to the classical path planning problem, in this paper we seek solutions that include: 1)
optimality, 2) differential constraints, and 3) feedback. Presently, there exist no general planning algorithms
that can meet all of these requirements for high-dimensional state spaces. The algorithmic concepts pre-
sented in this paper can at least increase the maximum state space dimension handled in practice by one or
two over the maximum state space dimension for the classical dynamic programming approach in Section 4.
We successfully demonstrated the techniques through extensive implementation and experimentation. More
experiments are presented in [46, 61]. The approach was observed to be much faster than existing dynamic

programming techniques that determine an optimal cost-to-go function.

Handling uncertainties The ideas of Sections 5 and 6 can be extended to problems that involve prob-
abilistic uncertainty models. In [46], extensions to the algorithms in this paper are presented for problems
that involve either uncertainty in predictability, uncertainty in sensing, or both. For the problems of un-
certainty in predictability, the model in [65] was used to derive feedback strategies that are optimal in the

expected sense. For problems of both uncertainty in sensing and predictability, the model in [63] was used

30

to derive feedback strategies that are based on information states. In each of these contexts, we have ob-
served dramatic performance improvement over the approaches in [63, 65]. The convergence proofs of [11]
were originally developed for problems that involve probabilistic uncertainty in prediction. Our convergence
proofs are derived from this work, and they can be extended to the case of computing the optimal expected

cost-to-go in the case of probabilistic uncertainty.

Topics for future work One point that should be given more careful attention in future work is the
computation of the preimages. In the present implementation, the computed preimage typically contains
many more sample points than necessary. Since the set of all of the sample points in the actual preimage
is a subset of the computed preimage, the correctness of the solution is not affected. However, it certainly
increases the computation time as some points are considered several times until the stage when they belong
to the true preimage arrives. Hence, more accurate preimage computation for particular nonholonomic

systems could improve the computation times.

Acknowledgments

We are grateful for the funding provided in part by NSF CAREER Award IRI-9875304 (LaValle). The
majority of this work was conducted while both authors were at Iowa State University. We thank the

anonymous reviewers for their helpful suggestions in earlier versions of this work.

References

[1] M. D. Adams, H. Hu, and P. J. Roberts. Towards a real-time architecture for obstacle avoidance and
path planning in mobile robots. In IEEE Int. Conf. Robot. & Autom., pages 584-589, May 1990.

[2] P. K. Agarwal, J.-C. Latombe, R. Motwani, and P. Raghavan. Nonholonomic path planning for pushing
a disk among obstacles. In IEEFE Int. Conf. Robot. & Autom., 1997.

[3] P. K. Agarwal, P. Raghavan, and H.Tamaki. Motion planning for a steering constrained robot through
moderate obstacles. In Proc. ACM Symposium on Computational Geometry, 1995.

[4] N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In
IEEE Int. Conf. Robot. & Autom., pages 113-120, 1996.

[5] D. Balkcom and M. Mason. Geometric construction of time optimal trajectories for differential drive
robots. In Preprints of the 4th Workshop on Algorithmic Foundations of Robotics, Dartmouth College,
Hanover, NH, 2000.

[6] J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning with many degrees of
freedom. In IEEFE Int. Conf. Robot. & Autom., pages 1712-1717, 1990.

[7] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Controllability and motion
planning in the presence of obstacles. Algorithmica, 10:121-155, 1993.

[8] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[9] R.E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University Press, Princeton,
NJ, 1962.

[10] J. Bernard, J. Shannan, and M. Vanderploeg. Vehicle rollover on smooth surfaces. In Proc. SAFE
Passenger Car Meeting and Exposition, Dearborn, Michigan, 1989.

[11] D. P. Bertsekas. Convergence in discretization procedures in dynamic programming. IEEE Trans.
Autom. Control, 20(3):415-419, June 1975.

31

[12]

[13]

i
[15]
16
i
18]
19
20
21

[22]
[23]

[24]
[25]
[26]
[27]
28]
[29]

[30]
[31]

[32]

[33]

[34]

J. T. Betts. Survey of numerical methods for trajectory optimization. J. of Guidance, Control, and
Dynamics, 21(2):193-207, March-April 1998.

J. D. Boissonnat and S. Lazard. A polynomial-time algorithm for computing a shortest path of bounded

curvature amidst moderate obstacles. In Proc. ACM Symposium on Computational Geometry, pages
242-251, 1996.

J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst.,
Man, Cybern., 19(5):1179-1187, 1989.

F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J. Control and
Optimization, 40(1):166-190, 2001.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential composition of dynamically dexterous
robot behaviors. Int. J. Robot. Res., 18(6):534-555, 1999.

L. G. Bushnell, D. M. Tilbury, and S. S. Sastry. Steering three-input nonholonomic systems: the fire
truck example. Int. J. Robot. Res., 14(4):366-381, 1995.

J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane. Discrete
and Computational Geometry, 6:461-484, 1991.

M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In IEEE Int. Conf. Robot. &
Autom., 1999.

C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for kinodynamic planning. In Proc.
of the IEEE International Conf. on Robotics and Automation (ICRA’95), Nagoya, Japan, 1995.

C. L. Connolly, J. B. Burns, and R. Weiss. Path planning using laplace’s equation. In IEEE Int. Conf.
Robot. & Autom., pages 2102-2106, May 1990.

H. S. M. Coxeter. Regular Polytopes. Dover Publications, New York, NY, 1973.

B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning
for cartesian robots and open chain manipulators. Algorithmica, 14(6):480-530, 1995.

B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning:
Robots with decoupled dynamics bounds. Algorithmica, 14(6):443-479, 1995.

B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning. Journal of the ACM,
40:1048-66, November 1993.

L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 79:497-516, 1957.

M. A. Erdmann. On motion planning with uncertainty. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, August 1984.

P. Ferbach. A method of progressive constraints for nonholonomic motion planning. In IEEE Int. Conf.
Robot. & Autom., pages 2949-2955, 1996.

M. Fliess, J. Levine, P. Martin, and P. Rouchon. Flatness and defect of nonlinear systems. International
Journal of Control, 61(6):1327-1361, 1993.

S. Fortune and G. Wilfong. Planning constrained motion. In STOCS, pages 445-459, 1988.

T. Fraichard. Dynamic trajectory planning with dynamic constraints: A ’state-time space’ approach.
In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages 1393-1400, 1993.

E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid control for autonomous vehicles motion plan-
ning. Technical Report LIDS-P-2468, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, 1999.

G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajectories for a robotic manipulator:
A provably good approximation algorithm. In IEEE Int. Conf. Robot. & Autom., pages 150-155,
Cincinnati, OH, 1990.

J. Hershberger and S. Suri. Efficient computation of Euclidean shortest paths in the plane. In Proc.
34th Annual IEEE Sympos. Found. Comput. Sci., pages 508-517, 1995.

32

[35]

[36]
[37]

[38]
[39]
[40]
[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]
[52]

[53]
[54]

[55]

[56]

[57]

D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J.
Comput. Geom. € Appl., 4:495-512, 1999.

A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 1989.

P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In IEEE Int. Conf. Robot. € Autom.,
pages 2-7, 1989.

P. Jacobs, J. P. Laumond, and M. Taix. Efficient motion planners for nonholonomic mobile robots. In
IEEE/RSJ Int. Conf. on Intelligent Robots €& Systems, pages 1229-1235, 1991.

L. E. Kavraki. Random Networks in Configuration Space for Fast Path Planning. PhD thesis, Stanford
University, 1994.

L. E. Kavraki. Computation of configuration-space obstacles using the Fast Fourier Transform. IEEFE
Trans. Robot. & Autom., 11(3):408-413, 1995.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom., 12(4):566-580, June 1996.

0. Khatib. Commande dynamique dans l’espace opérational des robots manipulateurs en présence
d’obstacles. PhD thesis, Ecole Nationale de la Statistique et de I’Administration Economique, France,
1980.

0. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res.,
5(1):90-98, 1986.

R. Kimmel, N. Kiryati, and A. M. Bruckstein. Multivalued distance maps for motion planning on
surfaces with moving obstacles. IEEE Trans. Robot. & Autom., 14(3):427-435, June 1998.

R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles.
In IEEFE Int. Conf. Robot. & Autom., 2000.

P. Konkimalla. Efficient computation of optimal navigation functions for nonholonomic planning. Mas-
ter’s thesis, Towa State University, Ames, TA, 1999.

P. Konkimalla and S. M. LaValle. Efficient computation of optimal navigation functions for nonholo-
nomic planning. In Proc. First IEEE Int’l Workshop on Robot Motion and Control, pages 187-192,
1999.

B. H. Krogh. A generalized potential field approach to obstacle avoidance control. In Proceedings of
SME Conference on Robotics Research, August 1984.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In
Proc. IEEFE Int’l Conf. on Robotics and Automation, pages 995-1001, 2000.

G. Laffierriere and H. J. Sussman. Motion planning for controllable systems without drift. In IEEE Int.
Conf. Robot. & Autom., 1991.

R. E. Larson. A survey of dynamic programming computational procedures. IEEE Trans. Autom.
Control, 12(6):767-774, December 1967.

R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II. Dekker, New York, NY,
1982.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncertainty in control and
sensing. Artif. Intell., 52:1-47, 1991.

J. P. Laumond. Trajectories for mobile robots with kinematic and environment constraints. In Proc. of
International Conference on Intelligent Autonomous Systems, pages 346-354, 1986.

J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic motion planning for mobile
robots. In J.-P. Laumond, editor, Robot Motion Plannning and Control, pages 1-53. Springer-Verlag,
Berlin, 1998.

J. P. Laumond and T. Siméon. Motion planning for a two degrees of freedom mobile robot with towing.
Technical Report 89-148, Laboratoire d’Analyse et d’Architecture des Systemes / Centre National de
la, Recherche Scientifique, Toulouse, France, 1989.

33

[58]
[59]
[60]

[61]

[62]
[63]
[64]
[65]

[66]
[67]

[68]
[69]
[70]
[71]
[72]
[73]
[74]

[75]
[76]

[77]
[78]
[79]

[80]
[81]

J. P. Laumond, T. Siméon, R. Chatila, and G. Giralt. Trajectory planning and motion control of mobile
robots. In Proceedings of IUTAM/IFAC Symposium, pages 351-366, 1988.

J. P. Laumond and P. Souéres. Metric induced by the shortest paths for a car-like robot. In IEEE/RSJ
Int. Conf. on Intelligent Robots € Systems, pages 1299-1303, 1993.

S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD thesis, University of
Illinois, Urbana, IL, July 1995.

S. M. LaValle. Numerical computation of optimal navigation functions on a simplicial complex. In
P. Agarwal, L. Kavraki, and M. Mason, editors, Robotics: The Algorithmic Perspective. A K Peters,
Wellesley, MA, 1998.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer
Science Dept., Iowa State University, Oct. 1998.

S. M. LaValle and S. A. Hutchinson. An objective-based framework for motion planning under sensing
and control uncertainties. International Journal of Robotics Research, 17(1):19-42, January 1998.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on
Robotics and Automation, pages 473-479, 1999.

S. M. LaValle and R. Sharma. On motion planning in changing, partially-predictable environments.
International Journal of Robotics Research, 16(6):775-805, December 1997.

C. W. Lee. Subdivisions and Triangulations of Polytopes. CRC Press, 1997.

Z. Li and J. F. Canny. Robot motion planning with nonholonomic constraints. Technical report,
Electronics Research Laboratory, University of California, February 1989.

Z. Li and J. F. Canny. Nonholonomic Motion Planning. Kluwer Academic Publishers, Boston, MA,
1993.

Z.Li, J. F. Canny, and S. S. Sastry. On motion planning for dextrous manipulation, part i: The problem
formulation. In IEEFE Int. Conf. Robot. & Autom., pages 775-780, 1989.

T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic systhesis of fine-motion strategies for
robots. Int. J. Robot. Res., 3(1):3-24, 1984.

A. De Luca, G. Oriolo, and C. Samson. Feedback control of a nonholonomic car-like robot. In J.-P.
Laumond, editor, Robot Motion Plannning and Control, pages 171-253. Springer-Verlag, Berlin, 1998.

K. M. Lynch. Controllability of a planar body with unilateral thrusters. IEEE Trans. on Automatic
Control, 44(6):1206-1211, 1999.

K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. Int. J. Robot.
Res., 15(6):533-556, 1996.

E. Mazer, J. M. Ahuactzin, and P. Bessiere. The Ariadne’s clew algorithm. J. Artificial Intell. Res.,
9:295-316, November 1998.

J. S. B. Mitchell. Planning Shortest Paths. PhD thesis, Stanford University, 1986.

R. M. Murray, M. Rathinam, and W. M. Sluis. Differential flatness of mechanical control systems. In
Proc. ASME International Congress and Exposition, 1995.

R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using sinusoids. Trans. Automatic
Control, 38(5):700-716, 1993.

Y. Nakamura and R. Mukherjee. Nonholonomic path planning of space robots. In IEEE Int. Conf.
Robot. & Autom., pages 1050-1055, 1989.

W. S. Newman and N. Hogan. High speed robot control and obstacle avoidance using dynamic potential
functions. In IEEE Int. Conf. Robot. & Autom., pages 1424, 1987.

C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica, 2(4):431-475, 1987.

J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pacific
J. Math., 145(2):367-393, 1990.

34

[82]

[83]

[84]
[85]

[86]
[87]
[88]
[89]
[90]

[91]

[92]
[93]
[94]

[95]

J. Reif and H. Wang. Non-uniform discretization approximations for kinodynamic motion planning.
In J.-P. Laumond and M. Overmars, editors, Algorithms for Robotic Motion and Manipulation, pages
97-112. A K Peters, Wellesley, MA, 1997.

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential fields. IEEE Trans.
Robot. € Autom., 8(5):501-518, October 1992.

J. J. Rotman. Introduction to Algebraic Topology. Springer-Verlag, Berlin, 1988.

G. Sahar and J. M. Hollerbach. Planning minimum-time trajectories for robot arms. Int. J. Robot.
Res., 5(3):97-140, 1986.

J. A. Sethian. Level set methods : Evolving interfaces in geometry, fluid mechanics, computer vision,
and materials science. Cambridge University Press, 1996.

A. M. Shkel and V. J. Lumelsky. Incorporating body dynamics into sensor-based motion planning: The
maximum turn strategy. IEEE Trans. Robot. & Autom., 13(6):873-880, December 1997.

P. Souéres and J. P. Laumond. Shortest paths synthesis for a car-like robot. In IEEE Transactions on
Automatic Control, pages 672—688, 1996.

H. K. Struemper. Motion Control for Nonholonomic Systems on Matrix Lie Groups. PhD thesis,
University of Maryland, College Park, MD, 1997.

S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation.
IEEE Trans. Robot. & Autom., 13(2):305-310, April 1997.

H. Sussman and G. Tang. Shortest paths for the Reeds-Shepp car: A worked out example of the
use of geometric techniques in nonlinear optimal control. Technical Report SYNCON 91-10, Dept. of
Mathematics, Rutgers University, 1991.

M. Taix. Planification de Mouvement pour Robot Mobile Non-Holonome. PhD thesis, Laboratoire
d’Analyse et d’Architecture des Systemes, Toulouse, France, January 1991.

R. B. Tilove. Local obstacle avoidance for mobile robots based on the method of artificial potentials.
In IEEE Int. Conf. Robot. €& Autom., pages 566-571, May 1990.

L. Yang and S. M. LaValle. A framework for planning feedback motion strategies based on a random
neighborhood graph. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 544-549, 2000.

Y. Yu and K. Gupta. On sensor-based roadmap: A framework for motion planning for a manipulator

arm in unknown environments. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages 1919—
1924, 1998.

35

