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Abstract

Numerical computation with Bayesian posterior densities has recently received much attention both
in the statistics and computer vision communities. This paper explores the computation of marginal
distributions for models that have been widely considered in computer vision. These computations can be
used to assess homogeneity for segmentation, or can be used for model selection. In particular, we discuss
computation methods that apply to a Markov random field formulation, implicit polynomial surface models,
and parametric polynomial surface models, and present some demonstrative experiments.

1 Introduction

One difficulty that is often encountered when applying Bayesian analysis is the expensive computation that is
incurred. In a standard application of Bayes’ rule, an integral (or summation) is required to marginalize one
set of the random variables with respect to another. This can be costly when the dimension of the random
variables is high, as is often the case with statistical image models. In this paper we present numerical
methods for efficiently evaluating the marginalizing integrals for popular statistical image models, discuss
applications, and present some experimental results that directly use the methods.

Numerical computation on the posterior space that results from a Bayesian analysis has been a subject of
active interest in the statistics community. The typical high dimensionality of posteriors in Bayesian analysis
has led to recent computation techniques that have increased its applicability. Gibbs sampling is a Markov
chain-based technique that allows sampling from the joint posterior distribution of an exponential family, and
has proven successful in image processing applications [11]. A recent discussion and comparison of Markov
chain methods that use Monte-Carlo simulation, which includes the Gibbs sampler, appears in [3, 24]. Smith
has provided a more general survey of Bayesian computation methods, including analytic approximations
to the integrals, parametrizations and quadrature rules, and some adaptive sampling techniques [23].

For our general Bayesian analysis, we consider two vectors of random variables, U and Y. The vector
U represents a continuous parameter space, and Y represents the observations. The observations can be
the image data or some statistics of the image data. There is a noise model, p(y|u), which represents the
anticipated observation for a given parameter value, and a prior density on the parameter space, p(u).

We will next describe three important Bayesian contexts in which this expression occurs:
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This expression represents the marginalization of y with respect to u, and the computaiton of its value for
statistical image models is the primary concern of this paper.

Model order selection has been a subject of interest in the computer vision community [4, 19], particularly
for application to segmentation. This addresses the problem of deciding which model, U’ or U, is appropriate



for a given data set, when the models are nested, U’ C U. For example, U’ could represent a linear model,
and U a quadratic model. For two nested parameter spaces, the following ratio of marginals has been used
extensively for model selection in a Bayesian framework [1, 8, 25]:
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As (2) increases, confidence in U’ also increases, favoring the simpler model.
In a Bayesian estimation context, one is interested in selecting the u that maximizes the likelihood,
p(y|u)p(u). This is done since the application of Bayes’ rule,

(2)

p(y[w)p(u)
p(uly) = ; (3)
[ pylw)p(u)du
implies that p(u|y) is maximized. By computing the denominator of (3), one can use the equation directly
to obtain a normalized pdf value for a parameter, given the observations, p(u|y). Using this, comparisons
can be made to the prior pdf values, p(u).

The third application of this marginal computation is for the assessment of region homogeneity for image
segmentation. For two subsets, By and Rj, of an image, it has been shown that the ratio,
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can be used along with Bayes’ rule to obtain the probability that the data in R; and R, were generated
by the same parameter value (for some given parameter space) [15]. The variable uys refers to a combined
parameter space that is associated with both R; and Rs.

The two ratios, (2) and (4), (and similar forms) have appeared recently in work from the statistics
literature, and are termed Bayes factors. Smith and Speigelhalter used this ratio for model selection between
nested linear parametric models [25]. Aitken has developed a Bayes factor for model comparison that
conditions the prior model on the data [1]. Kass and Vaidyanathan present and discuss some asymptotic
approximations and sensitivity to varying priors of the Bayes factor [14]. Petit also discusses priors, but
with concern for robustness with respect to outliers [21]. The Bayes factor has also been carefully studied
for evidence evaluation in a forensic science context [2, 9].

Section 2 discusses some popular statistical image models to which this form of Bayesian analysis applies.
Section 3 describes an integration method that pertains to models in which p(y|u)p(u) is a function of a
quadratic in u, and the region of integration is ®. Section 4 alternatively describes a more general, but less
efficient, Monte Carlo-based integration method. The method of Section 3 applies to parametric polynomial
model (Section 2.1) and a Markov random field model (Section 2.2), and the method of Section 4 applies to
the implicit surface model (Section 2.3). In Section 5 we show some segmentation results that were obtained
using the models in Section 2. Finally, some conclusions are presented in Section 6.

2 Specific Model Applications

We will present the general methods of numerical integration in Section 3 and 4, and in this section we first
describe image models to which these methods apply. For each application, sufficient information is given
to form the integrand of (1), p(y|u)p(u). In each section we refer to a set of image elements as R, which
could be a set of intensities or range coordinates, depending on the image type.



2.1 Parametric (Explicit) Polynomial Models

The general form of the parametric polynomial model is

N
;i §) = uy + Y upi®™ o, (5)
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in which a,, and b,, are positive integers. The degree of the model is the maximum over m of a,, + b,,. The
parameter space is thus spanned by the coefficients that are usually selected for surface estimation.

The observations, Y, are represented by a vector of point-to-surface displacements of the intensities in R,
given a parameter value u. We denote a single displacement as

6(x[1, 5], w) = z[i, j] = (w52, 5) (6)

in which z[i,j] is the image intensity at the i** row and j** column. The dimension of Y is equal to the
number of pixels in R.

We assume an additive Gaussian iid zero-mean noise model, as considered in [22]. The joint density is
obtained by taking the product of the individual displacement densities:

pylu) = (2n0%) > cap {% > [6(w[i,j],u)]2} . (7)
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We define the prior model by assigning a uniform density to a bounded parameter space. For regions
that we have considered, a rectangular portion of the parameter space can always be identified that encloses
nearly all of the probability mass that contributes to the integrals in (4), and using the integration method of
Section 3, we are actually not required to specify bounds to perform the integration (all of RY is used). The
problem of selecting bounds for a uniform prior has been known to lead to difficulty in Bayesian analysis, and
is referred to as Lindley’s paradox [17]. As the volume over which the uniform density is defined increases,
the ratio (4) decreases.

2.2 A Markov Random Field Model

For our parameter space, we use a special MRF formulation, which is introduced in [13]. This model has
been applied to texture segmentation of intensity images in [10, 22], and has been recently extended to
texture modeling and segmentation of color images [20].

An image element, D[, j] represents a single intensity, X[, j], treated as a random variable. We have an
N-dimensional parameter space, which represents the interaction of a pixel with a local set of neighboring
pixels. The order of an MRF indicates the size of the local neighborhood that is considered. Figure 1 shows
the neighbor set that is used for the MRF orders considered in our experiments.

We use u and will use o2 to represent the mean and variance in R, respectively. For any general order of
MRF interactions, the image element of the [** parameter interaction is denoted by Ti(x). Hence, in general
at some point X[¢,j] = , the model is

N
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We could also consider g and o? as part of the parameter space. This would require the selection of
appropriate prior densities, p(x) and p(c?), and require them to be integrated in (4).

The observation space, Y, is defined as a vector that corresponds to all of the intensity data, z[¢, ], in
some region R. Hence, the dimension of Y is equal to the number of pixels in R.
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Figure 1: The MRF pixel neighborhood with X[i, j]located in the center. For an n*-order MRF, the pixels
in boxes with numbers less than or equal to n comprise the neighborhood.

We assume that the noise process that occurs in the linear prediction (8) is Gaussian. The joint density
that we use over the points in R is not a proper pdf; however, it has been considered as a reasonable
approximation and used in previous segmentation schemes [10, 20, 22].

We obtain the complete noise model by taking the product of the density expressions over each of the
individual pixels:

R — N 2
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For the texture model we also use a uniform prior density on a bounded parameter space.

2.3 Implicit Polynomial Models

For this model each image element represents a point in R, specified by [z1, 23, 23] coordinates, which we
concisely denote by x. An implicit polynomial equation is represented as

N
(- u) = Zu]-w?xgjxgj =0 (10)
=
with
ay =by =cny =0. (11)

The constants aj, b;, and c¢; are positive integers, representing the exponents of each variable. The - used
here indicates that we have an implicit function with x as the variables. We will later refer to ¢(x, u), which
yields a nonzero value unless x is on the surface. The degree of the polynomial model is the maximum over
jOfaj—I—b]'—I—Cj.

With the present formulation, there are redundant representations of the solution sets (i.e., there are
many parameter vectors that describe the same surface in R2). It is profitable to choose some restriction
of the parameter space that facilitates the integrations in (4), but maintains full expressive power. We use
the constraints ||u|| = 1 and u; > 0, to constrain the parameter space to a half-hypersphere, termed the
parameter manifold.

The observation considered here is a function of the signed distances of the points x € R from the surface
determined by u, termed displacements. Define 6(x,¢(-,u)) to be the displacement of the point x to the
surface described by the zero set {x : ¢(x,u) = 0}. The function §(x, ¢(-,u)) takes on negative values on
one side of the surface and positive on the other.



We consider the following observation space definition, and others are mentioned in [15]:

y(R,u)= ) [6(x,¢(-w))]” (12)
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Note that we use y instead of y when the observation is a scalar.

Although we have defined the observation space in terms of the displacements, a closed-form expression
for the displacement of a point to a polynomial surface does not exist in general. We use a displacement
estimate presented in [26]:

b(x, (-, 1)) = Hvé(:b(( u))” (13)

To define the noise model, we express the density corresponding to the displacement of an observed point
from a given surface. We use a probability model for range-scanning error used and justified in [6]. The
model asserts that the density, p(6|u), of the displacement of an observed point from the surface, ¢(x, u), is
a Gaussian random variable with zero mean and some known variance, o2.

Since taking the sum of squares of Gaussian densities yields the chi-square density, the density using (12)
is

1
.2 _ mf2-1_-y/2
u) = = e . 14
p(ylu) = x5.(y) 2T (m2)” (14)
Here y is the sum-of-squares for a given region, R, and parameter value u, given by (12). Also, I'(-) is the
standard gamma function and m = |R| (the number of elements in R).
We assign p(u) to be a uniform prior on the parameter manifold.

3 Integration of an N-variate Function of a Quadratic

In this section, we consider an integral of the form

[ rtgtu)du, (15)

in which U = ®V and g is a scalar, real-valued quadratic function:
w=g(u)=ul Mu+bu+ec, (16)

and f is a positive continuous function.

We will transform the N-variate integral above into a single integral by decomposing U into subsets on
which f(g(u)) is approximately constant. This is accomplished by considering fixed values, w, for g(u),
and the quadaric surfaces in U that result from using (16). Hence we consider transforming the domain of
integration from u to w, yielding

[ fwydg™ (w), (17)

thus collapsing the N-dimensional integral into one dimension.
Now we consider the set of all points in the parameter space that map between w;_; and w; (see Figure
2):
A ={u:w;i1 < g(u) < w;}. (18)

In a summation, the differential dg~!(w) is represented by the Lebesgue measure (or area) of A;. Hence
we can write

/ flodg™ ()= |t 5 Sl 4) (19)
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Figure 2: Decomposing the parameter space into concentric ellipsoids.

in which p(A;) represents the measure of A;.

Since g is quadratic, A; is a bounded set iff g(u) = w; is the equation of an ellipsoid. If A; is unbounded,
then it can be seen in (19) that the integral in (15) is infinite; therefore, we are only concerned with cases
in which g(u) = w; represents an ellipsoid.

The measure of A; is found by taking the set difference of two concentric ellipsoids that are rotated and
translated away from the origin, as depicted in Figure 2. Recall that the volume of an ellipse is proportional
to its axis lengths. To compute pu(A;), we center the ellipsoids at the origin with their axes aligned with the
coordinate axes.

By using an affine transformation on g(u) = w;), described in [5], we obtain the quadratic form v M =
1, in which M’ is diagonal. The resulting standardized ellipse equation is

(=42 =1 (20)
in which
= (21)
a; = Y
and ( /)2
b'.
_ il
k= z]: Y ¢+ w. (22)

The vector b’ is computed by the inner product, R-b, in which R is the corresponding matrix of eigenvectors
of the matrix M. Also, A; represents the ¢-th eigenvalue of the matrix M. The ellipse volume is

N
Cn H aj; (23)
j=1
in which
9r(N/2) .
m 1 1S even
On = F(N-1)/2 (24)
2(N+1)/2 if N is odd .
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The coefficient C'y can be determined by performing an elliptical coordinate transformation, which is a
generalization of standard spherical coordinates [15].
In practice we compute the integral (15) by considering a finite approximation of the sum in (19):

k
[ rotanan= [ ey~ w) ~ 3 flwuai). (25)

In general numerical quadrature formulas can also be applied; however, we have obtained satisfactory per-
formance by directly using the sum.
We select starting and ending points, wg and wy in (25) by making the assumption that

| rwidgw) ~ 0 (26)

and _Oo
/Wk F(w)dg™ (w) ~ 0. (27)

Hence the performance of this method is affected by the rate at which f approaches the origin.

4 Monte Carlo-based integration

In this section we describe a more general method for high dimensional integration, which does not require
a particular form for the integrand; however, the integrations are less efficient. We first briefly describe
the general Monte Carlo integration method. In Section we discuss a specialized technique that obtains
significant improvement in computational performance for the model introduced in Section 2.3.

The Monte-Carlo integration method iteratively approximates a definite integral by uniformly sampling
from the domain of integration, and averaging the function values at the samples. The integrand is treated as
a random variable. A sampling/averaging scheme yields a parameter estimate of the mean, or expected value
of the random variable. We use the most basic Monte Carlo method. More elaborate schemes with faster
convergence rates are discussed in [27]; however, improvement in the convergence rate for these methods
is possible only for low-dimensional cases (N < 3). For our purposes, since the dimension is high and the
number of needed samples does not depend on dimension, the basic Monte Carlo integration method is
appropriate. For a complete introduction to Monte-Carlo integration, see [12].

In the derivation that follows, we treat the region of integration as a vector of random variables, denoted by
T, defined on a unit cube. If a different region of integration is needed, an appropriate integral transformation
can be applied. Take h: T — R and h € L2.! The integral (1) is represented as

I(h) = /T h(t)dt. (28)

Take a set of n independent samples t1, ta, - - -, tn, drawn uniformly from the space T. The n'* estimate

of I(h) is
() = 1 Y- hits) (29)

By the strong law of large numbers, ||I,(h) — I(h)|| — 0 as n — oo, with probability one. Consider
the variance of the estimate, 02 = E[I,(h) — I(h)]*. From (29), we observe by linearity that E[l,(h)] =
E[I(h)] = I(h). From this observation we obtain an expression for the variance of the estimate [18],

oy, = E[I}] = 2E[L,(h) E[I(h)] + E[I(h)]* = %{I(hz) — (W)} (30)

!By h € L?, we mean that fh2 < .



This indicates that the error is reduced at a rate of 1/n.

4.1 Importance sampling for peaked integrands

The Monte Carlo integration method is known to have difficulty when the integrand is peaked [12]. The
reason is that most of the area that contributes to the integral is concentrated in a small region, which is
missed by most of the samples. This has led to methods that attempt to concentrate the samples in the
peaked area(s), and is termed importance sampling.

For the model in Section 2.3, we identify a rectangular region in the domain of integration which contains
nearly all of the points that significantly contribute to the integral. The random sampling is only performed
inside the rectangular box, and the number of samples required is significantly reduced (by a factor of
thousands in many practical cases).

First we consider the case of evaluating the integral (1) for some region R with size n. If we use the
expressions (12), (13), and (14), and an approximation from [26], the integrand can be expressed as

uw!' Mu

f(m)y (31)

in which M and @ are positive definite symmetric matrices, and f represents the chi-square density. The
Monte Carlo sampling is applied to a volume integral that is obtained by transforming the integral over the
parameter space into a volume integral over the unit hypercube; this transformation is a generalization of
the spherical coordinate transformation [15].

We are evaluating the chi-square at various points throughout the integration. We can take some maximum
value, k; >> no?, such that sample points that yield a sum-of-squares value greater than k; contribute
relatively little to the integration, since either density asymptotically approaches zero. We use the Cornish-
Fisher approximation [28] to the chi-square cumulative distribution function to obtain a k; at the 99.9th
percentile for some n. The left side of the equation below represents the set of all parameter values that
yield sum-of-squares less than k. Note that this is a subset of the right side:

) u’ Mu <\ ) ul Mu <k (32)
YW Qu = maz(ulQu) = [°
Since [Ju|| =1,
maz(ul Qu) = mazeig(Q) = ko, (33)

in which mazeig(Q)) represents the maximum eigenvalue of ). Therefore, the right side below describes a
solid ellipsoid, centered at u = 0, which encloses all the points in the parameter space that significantly
contribute to the integration:

T
u" Mu T
{ll. uTQu <k’1} - {11.11 1Wu<k:1k2} (34)
Let {A1, A2, ..., An} denote the eigenvalues of M, in order of increasing magnitude. Also, let 5 denote the

corresponding eigenvector matrix, which is a rotation matrix that aligns the ellipsoid with the coordinate
axes (diagonalizing M). Take u = Sv, and we obtain

u' Mu = (Sv)TM(S5v)=vISTMSv =vTAv (35)
in which A = diag{A1, A2, ..., An}. Using v, the ellipsoid equation becomes

D v} < kiks. (36)



The half lengths of the principle ellipsoid axes are

k1ks
Ai

b = (37)

The rectangular subset of ®Y that has corners located at coordinates +b; encloses the ellipsoid, and the
rectangular faces are tangent to the ellipsoid surface. We can apply the inverse of the spherical coordinate
transformation to map the corners of the box into 7. These form a rectangular subset, 7”7, of 7" in which
the corners have coordinates we denote by 1/2 & ¢;.

The portion of parameter space that significantly contributes to the resulting integral lies within 7", hence
we only need to draw samples uniformly from 7”. Using these results, the integral (1) can be computed by

Yo Aiv
Ef (VT STQ SV) (38)

Above, F represents the ratio of the area of 7' to T', and n is the number of samples, v, that are used. The
F also represents the factor by which the number of required samples is reduced.

To compute an integral in the denominator of (4), we use the smallest rectangular region, 7", (and
corresponding rotation ) of the two regions R; and Rj. If that region is R; then the integral is computed

by
Ao} vISTM,S5v
Zf TE T I\ orerpoay (39)
viStQ15v viStQaSv
in which the A; are the eigenvalues of M; and S is its eigenvector matrix.

5 Experimental examples

In this section we briefly present some segmentation results that were obtained with a clustering algorithm
that begins with a partition of the image into small regions, and iteratively groups regions that have the
highest probability of homogeneity, as prescribed by (4). These segmentations, and other experiments that
we have performed, require high-dimensional (from 3 to 20) parameter space integrations using the models
presented in Section 2.

The first two rows of Figure 5 show two range image experiments that use the implicit quadric surface
model (Section 2.3). Figures 5.a and 5.d show synthetic renderings of the 3D data sets. Figures 5.b and
5.e show an (automated) initial partition of the image, on which the clustering is performed. The final
segmentation results, shown in Figures 5.c and 5.1, are obtained after performing the clustering and a simple
boundary localization operation [16]. Figures 5.g-i show texture segmentation results on intensity images
(using the model in Section 2.2) that were obtained by clustering on images that were initially partitioned
with square grid. Figures 5.j-1 show some segmentations of intensity images by applying a quadric parametric
polynomial model of Section 2.1 directly to the intensities.

6 Conclusions

We have presented integration methods that pertain to a wide class of statistical image models. In particular,
these methods have been successfully applied to the implicit polynomial surface model, the parametric
(explicit) polynomial surface model, and a Markov random field model. These integration methods are

2Some of rectangular faces in the parameter space may lie outside the unit hypersphere. When the first axis is found that is
outside, the remaining c; are set to their maximum value, 1/2.



Figure 3: Some image segmentation results.



crucial for the Bayesian computation required in our related segmentation work [15], which use (4). Since
the models presented in Section 2 are nested families, it would be interesting in future work to study the
application of (2) for model selection.
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