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Abstract

In this paper we present a framework for analyzing
and determining robot motion plans for situations in
which the robot is affected by an environment that prob-
abilistically changes over time. In general, motion plan-
ning under uncertainty has recently received substantial
interest, and in particular a changing-environment has
been recognized as an important aspect of motion plan-
ing under uncertainty. We model the environment as
a finite-state Markov process, and the robot executes a
motion strategy that is conditioned on its current po-
sition and the state of the environment. Optimality of
a robot strategy is evaluated in terms of a performance
functional that depends on the environment, robot ac-
tions, and a precise encoding of relevant preferences.
By using a simple, yet powerful computation technique
that is based on dynamic programming, we can numer-
ically compute optimal robot strategies for a wide class
of problems, surpassing previous results in this context
that were obtained analytically. Several computed mo-
tion planning examples are presented.

1 Introduction

The modeling and analysis of uncertainty is crucial
to the design of an autonomous system that navigates
in a realistic environment. Four important aspects of
uncertainty in robot motion planning are:

1. Partially predictable robot actions (e.g., [1, 3, 4])
2. Imperfect sensing (e.g., [3, 5])

3. Incomplete environment information (e.g., [2, 12])
4

. Changing, partially predictable environment (e.g.,
[10, 11])

This first aspect indicates situations in which some form
of motion command is given to a robot; however, the
actual direction or path chosen by the robot can only be
known to lie within some set, or is sampled from a known
probability distribution. With imperfect sensing, the in-
formation that the robot has regarding its current con-
figuration may be incomplete or inaccurate, which com-
plicates the selection of a robot plan that adequately ac-
complishes some goal. Incomplete environment informa-
tion represents a difficult aspect of uncertainty in which
the robot does not have complete knowledge of structure
of the workspace, but instead the structure is known to
belong to some set of alternatives (or in some cases is
completely unknown).

The final aspect of uncertainty is the primary focus of
this paper. We will present motion planning problems
with this form of uncertainty in isolation, to analyze and
demonstrate the effects of a changing environment on a
robot strategy. We assume that the changing portion of
the environment can at least be predicted with probabil-
ity distributions. We then present a method of treating
this problem in a stochastic framework, which uses some
general notions from stochastic optimal control theory
[6]. Using this framework, we can compute numerical
solutions that are optimal with respect to some crite-
ria that precisely characterize the problem of interest.
One could also combine a changing, partially predictable
environment with other forms of robot uncertainty. In
an approach similar to the one presented here, motion
planning with partially predictable actions and sensing
uncertainty has been recently addressed [9], facilitating
such a combination.

A model of uncertainty due to a changing environ-
ment was introduced in [10, 11]. The key idea was to
abstract the dynamic component of the environment in
terms of discrete events or alarms and use a probabilistic
framework to analyze the expected performance of dif-
ferent motion planning strategies. However, the develop-
ment of analytical, optimal solutions under this frame-
work becomes quite difficult with a more complicated
environment than those presented in [10] and [11]. This
motivates the approach taken in this paper, which is able
to model more complicated changing environments and
uses dynamic programming to achieve numerical solu-
tions.

One further benefit is the ability to experiment with a
variety of cases by varying the definition of a precise per-
formance functional and transition probabilities (these
terms are defined in Section 2). These variations allow
us to study the situations in which the optimal behavior
of the robot changes considerably, offering a greater un-
derstanding of the interaction of a robot with a changing,
partially predictable environment.

Section 2 presents the general framework and defini-
tions. In Section 3 the framework is applied to a corridor
crossing problem, which was introduced in [10]. In Sec-
tion 4, we obtain optimal solutions for a servicing prob-
lem, which was introduced in [11]. Section 5 provides a
concluding discussion.

2 Our General Framework

In this section we define the general concepts and ter-
minology that form the basis for our framework. Since
the interaction of the robot with a changing environment



is of fundamental importance, time must be explicitly
considered in both motion planning and execution. We
consider a discretized representation of time as stages,
with an index k& € {1,2,..., K'}. Stage k refers to time
(k—1)At. We generally take At sufficiently small to ap-
proximate continuous paths. This appropriately reflects
a situation in which a real robot is limited to some sam-
pling rate for acquiring sensor information and executing
motion commands. A finite K is only used to prevent
us from developing a special treatment of infinite stages.
In practice, an appropriate value of K is automatically
determined during the execution of the dynamic pro-
gramming (see Section 2.1).

In robot motion planning, the position of A in a
workspace is usually represented by a point in an n-
dimensional configuration space, C, in which n is the
number of degrees of freedom of A [7]. In this paper
we are generally interested in planning paths in which
the robot configurations are guaranteed to lie in Cy, e,
which is the subset of the configuration space in which
the robot is not in contact with obstacles. In particular,
for the examples presented here, we take Cjr.. C R
We could alternatively execute compliant motions and
use the subset Cyqu4a [3, 8].

For geometric motion planning problems without un-
certainty, the space of possible situations that can occur
is sufficiently characterized by C. In our context, the
environment can additionally interfere with the motion
plans of A. We consequently define a finite set, F of en-
vironment states. At a given stage, k, the environment
is in some state ex € E, which is known to the robot. To
uniquely identify all of the possible situations that can
occur in our changing environment problem, we define a
state space as X C C x E. The state of A at stage k is
denoted by zj, which represents both a configuration of
A in the geometric sense, and an environment state, eg.
The environment states in £ form a partition of the state
space, X. Each time the environment state changes, the
robot is forced into a different portion of X (see Figure
1). By using the state space representation, we could

X

Figure 1. The environment process can also be considered
as a partition of X.

for instance model a situation in which Cy,.. can change
over time. A different environment state might repre-
sent the fact that a corridor has been blocked, and the
corresponding subset of the state space represents the
resulting Cjree. It will be seen in the coming sections
that a other situations can be modeled by this form of
state space.

We additionally consider the environment as a finite-
state Markov chain, which we call the environment pro-
cess. At the initial stage, k¥ = 1, the environment state,
e1 € E is given. For a given environment state ey, the
next environment state, ey is specified as a probability
distribution over F. This probability distribution is de-
fined by a vector P; such that F[j] = P(er41 = jler =
i). Figure 2 depicts an example environment process for
which £ = {1,2,3}. The environment state transition
probabilities can be specified as

P= [08 01 0.]

Py= [0.1 06 0.3] (1)
Ps= [0.2 05 0.3].

Figure 2. The environment process can be considered as a
finite-state Markov chain with state transition probabilities.

For this example, the environment process is inde-
pendent of the configuration of A. In general, how-
ever, we allow A to have influence over the environment
by defining the environment transition probabilities as
P(eg41lxr, ug). This is a function of both the state, zy,
and the robot action ug, which will be defined next. We
could also incorporate environment transition probabil-
ities that change over time; however, we preclude this
type of model in this presentation.

An action (or command), which is denoted by ug, can
be issued to A at each stage k. We let U denote the
action space for A, requiring that u; € U. To describe
the effect of a robot action with respect to state, we de-
fine a state transition distribution as P(xpy1|eg, ug). In
this paper we assume that if e;41 is additionally given,
then 41 is completely determined. Note, however, that
A only has information about future environment state
through an environment state transition probability dis-
tribution.

The following state transition distribution is suffi-
ciently general to characterize the examples presented
in this paper. We have C C ®2. We define the action
space as U = [0,27) U {0}. If up € [0,27), then A at-
tempts to move a distance [|v[| At toward a direction in C,
in which [|v|| denotes some fixed speed for A. If uj, = @
then the robot remains motionless.

Consider the case in which z € Cy,.. is at a distance
of at least ||v||At from the obstacles. If A chooses action

u £ 0 from state zy, then!

zp 1+ ||v]|At cos(uyg)
z 2+ [|v]|At sin(ug) |, (2)
€r41

Tr41 =

in which the environment state er41 is known to be
sampled from P(ep41|ek, ur). We can thus consider a
finite-valued random variable Xj;4; with corresponding
distribution P(zp41|z, uk), which can be inferred from
the given model. If u; = 0, then Tp1 = Tp41,1 and
Tp 2 = Tp41,2; however, exyq is not necessarlly equal to
er. We currently prohlblt the robot from considering
motion directions that collide with obstacles; however,
one could also consider compliant motion [3, 8].

We now define the notion of a robot plan or strategy in
our stochastic framework. At first it might seem appro-
priate to define some action uy for each stage; however,
we want plans that are prepared for the various contin-
gencies presented by the changing environment. There-
fore, we define a strategy at stage k of A as a function

1We use the notation z,; to refer to the " element of the
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t : X — U. For each state, zj, a strategy yields an ac-
tion ur = 5 (2g). The set of mappings {71,72, .. .,’yK}
is denoted by ¥ and termed a strategy of A. This is
equivalent to a control law or policy in control theory
[6]. For the examples that we present in this paper, the
decision functions 7 will be the same for all £ (i.e., each
robot action depends only on the current state, and not
the particular stage).

Some subset G of the state space X is defined as the
goal region. The robot terminates if 2y € G. By this we
mean that if z;, € G, then for all &’ such that k < k' < K,
we choose uj, = 0. This is similar to the notion of a
termination condition in [3, 7], but in our work there
is no uncertainty associated with the present state (or
configuration) of A.

We use the notation w(y, z1,e) to refer to the path
taken through the state space by the implementation of
7, an initial state, 1, and a given environment state
sequence e = {ey,ea,...,ex}. We refer to w(y,z1,e)
as a sample path for v (given z; and e). We also de-
fine Wy, z1), which is a random process that takes on
values of sample paths once e is known. Note that the
probability distribution of e can be directly determined
from 7, x1, and the state transition distribution; there-
fore, the probability distribution over the sample paths
(which defines W(y,z1)) is known.

We can encode the objectives that are to be
achieved by a nonnegative real-valued functional
L(z1, ..., 2g 41, U1, ..., ug ), called the loss functional (or
performance functional) of A. A robot strategy that pro-
duces less loss will be considered preferable. We will be
interested in considering loss that is accumulated at each
stage; hence, it is assumed that the loss functional can
be expressed as

ZLK41, UL, -

M=

Lz, .. sug) =) Ip(er,up) +lgp1(Tr41).
k=1
(3)
We state that l;(zg,0) = 0, implying that there is no
additional loss for choosing
The ultimate goal of the planner is to determine an
optimal strategy v* = {77,735, ..., 7k} that causes L to

be minimized in an expected sense.

2.1 Computing optimal strategies

One of the primary advantages of our framework is
that a straightforward numerical computation procedure
can be used to determine optimal strategies. We employ
the dynamic programming principle on the state space to
recursively determine v*. Although the computational
cost of dynamic programming increases exponentially in
the dimension of the state space, for a given dimension
the algorithm is very efficient. We expect the computa-
tional approach to be reasonable for problems as large
as a three dimensional configuration space with several
environment states. This dimensionality includes many
interesting motion planning problems (see [7]); however,
for more difficult problems some sort of suboptimal so-
lution technique might be required.

The expected loss obtained by starting from stage &,
and implementing the portion of the optimal strategy,
vk, - - 7%}, can be represented as

Li(zp) = {Zl (zi, 77 (24)) + 1K+1(1‘K+1)} (4)

The expectation is taken over the possible environment
sequences, e.

The dynamic programming principle [6] states that
Lk(xk) can be obtained from Lk+1(xk+1) by the follow-
ing recurrence:

Li(zr) =

ni + Y Li(ze1)P

min < g (2, ug) (Tpg1|zr, up)day
Tre41

(3)

Note that the sum in (5) is taken over a finite number of
states, which can be reached using (2).

At stage K 4 1, we can use the last term of (3) to ob-

tain L (#x4+1) = (k+1(2x41). The loss functional
L% can be determined from E}_H through (5). Us-
ing the ug € U that minimizes (5) at zg, we define
Yic(zg) = ug. If g € G, then v, (z;) = 0. We then
apply (5) again, using L} to obtain L% _, and vj_;.
Eventually, the loss values stabilize, and we terminate
when |L;(z) — L}, (x)] becomes small for all z € X.

After the algorithm terminates the resulting stage is des-
ignated as £ = 1, and an explicit prior choice of K is not
necessary. Finally, we take v* = {47,... 7%}

In our implementation of the dynamic programming
algorithm, we quantize the state space into an array, typ-
ically of size 40 x 40 x |E|, in which |F| represents the
number of environment states. Furthermore, the action
set is quantized (typically into 32 or 64 values, excluding
0) for the evaluation of (5). The resulting loss function

L3(z1) shares similarities with the concept of a global
navigation function in motion planning [7], and the cor-
responding wavefront expansion method from that con-
text can be viewed as a special form of dynamic pro-
gramming.

3 A Corridor Crossing Problem

In this section we will consider a corridor crossing
problem that generalizes the problem treated analyti-
cally in [10]. This serves as the first illustration of the
general framework presented in Section 2. Tt clearly
demonstrates how dynamic programming is used to ob-
tain the numerically optimal solution. Although the
optimal solution was obtained analytically in [10], the
model presented here can be changed easily to reflect
a modified behavior of the robot, which makes the ap-
proach more flexible.

Suppose that the goal of a robot is to move from a
point A to a point B across a corridor that has other
moving objects. The motion of the objects in the en-
vironment is not known a priori. There are no fixed
obstacles, so under the absence of other moving objects
the robot would proceed in a straight line from A to B.
However, while the robot is within the corridor an ap-
proaching object will cause it to dart to the safety of the
opposite side of the corridor. In order to model the situ-
ation it was suggested in [10] that this dynamic behavior
of the robot be modeled in terms of “alarms” which fol-
low a probabilistic distribution. In particular, a Poisson
distribution was used to reflect the independence of the
alarms. Here we generalize the model in terms of the
framework presented earlier. The environment changes
are captured in terms of the two states—alarm and no-
alarm states, and the model is developed as follows.



We define a subset S C X as a shelter region. When
the robot is in this portion of the state space, the alarm
condition can be ignored. For this example, we consider
the other side of the corridor to be a shelter region, while
the interior of the corridor is unsafe.

We consider a two-state environment process. The
environment states are £ = {0,1}, in which ¢, = 0
indicates that the alarm is off at stage &k, and e; = 1
indicates that the alarm is on at stage k. The transition
probabilities are generally specified as Py = [po 1 — po]
and P, = [0 1]. By the definition of P;, once the alarm
is on, it remains on for the duration of the execution.

The following represents a general loss functional that
applies to the models in Sections 3 and 4:

L(xl, LK1, ULy e UK) =

K
Zlk(.rk,uk) ifegy €G
k=1 (6)

cy otherwise
If ug # 0, then the term I, is defined as

Cu ifzpz=0orz; €5
e (zr, ug) = { cy +cq4 otherwise (7)
Otherwise I = 0.
A cost of ¢; is incurred if the goal is not completed.
If this value is taken to be as large as possible with re-
spect to the other numbers, then the optimal strategy ~*
will always solve the goal. The variable c; is included,
however, in case one wants to consider not solving the
goal and accepting some penalty. At each stage, a fixed
cost ¢, 1s added. Since the distance that the robot can
move at each stage is fixed, the cost ¢, simply becomes
a measure of the distance traveled along the path by
the robot. The cost ¢, represents the importance of the
alarm condition. If ¢, is small, then the robot can choose
to ignore it with little penalty. If ¢, is large, then the
robot is forced to respond. We note that this adds to
the flexibility of our approach compared to the model
considered in [10] where ¢, was assumed to be infinitely
high and the robot was forced to respond to an alarm.
In this section we present and compare the numeri-
cally optimal strategies for two different cases. We con-
sider Case 1, in which ¢, = 2, and Case 2, in which
ca = 10, while the following conditions remain fixed.
The configuration space for this problem ranges from 0
to 100 along each axis. The robot has the ability to
move a fixed distance ||v||At = 2 at each stage. We take
cy = 1 and ¢; = 1000. We take pg = 0.98. The start-
ing configuration is (80, 95), and the initial environment
state is e; = 0 (representing z; = (80,95,0) ). The goal,
G C X, is a set of two points, (10, 10,0) and (10, 10, 1).
By using the dynamic programming algorithm de-
scribed in Section 2.1, we obtained an optimal strategy,
v*, for each of Case 1 and Case 2. Figures 3.a and 3.b
depict the level sets of Lj(zq1) for Case 1. Figure 3.a
corresponds to the subset of X in which e = 0. Figure
3.b corresponds to the remaining portion of X, in which
e = 1. The difference between the contour lines in Fig-
ures 3.a and 3.b provides a clear illustration of the effect
that the alarm has on the planning problem. The val-
ues for Lj (1) increases monotonically in both figures as
the distance from the goal increases; however, there is
a much sharper increase when ¢ = 1. Furthermore, the
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a. b.
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Figure 3. Level sets of Li(z1) and robot strategies for a
corridor crossing problem. See Section 3 for details.

shelter has the effect of spreading out the contours since
a region is provided in which the alarm penalty has no
effect.

Figures 3.c and 3.d depict the computed optimal
strategy, v* for Case 1. Figure 3.c corresponds to the
subset of X in which e = 0, and Figure 3.d corresponds
to e = 1. At each quantized location in z; € X, a di-
rection is indicated that specifies the action up = v; ()
that the robot will take when in that location. In these
figures, and in figures from Section 4, white enclosed re-
gions indicate .S, and black enclosed regions indicate G.
One can observe from these figures that when e becomes
1, the robot action changes from a direction that points
close to the goal, to pointing almost vertically downward.

Figure 4.a shows a sample path, w(y*, z1, ), for Case
1, in which €® = {0,0,...,0}. This corresponds to the
situation in which the robot is prepared for alarms, but
none occur. Figure 4.b represents Case 2.

A path w(y*,z1,e") is equivalent to the notion of a
static path, which was presented in [10]. In that work,
these paths were shown analytically to be exponential in
form, which appears to be true for our numerically opti-
mal strategy. Further, the exponential curve is sharper
in Figure 4.b due to the increased cost ¢,, which was
observed for an increased Poisson frequency in [10].

Figures 4.c and 4.d show 30 sample paths drawn from
the random process W(v*, 1), for Case 1 and Case 2, re-
spectively. This corresponds to the behavior that would
be observed if the models are accurate, and the robot
repeatly executes the optimal strategy v*.

4 A Servicing Problem

In this section we consider a servicing problem, which
is a generalization of the problem considered analytically
in [11].

The point robot moves in a plane that is populated
with a certain service area (or shelters [11]). The chang-
ing environment is again captured in terms of alarms
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Figure 4. Sample paths of W(~*, z1) for a corridor crossing
problem. See Section 3 for details.

that are detected on-line and follow a Poisson distri-
bution. When the environment is in the alarm state
the robot should move to the nearest part of the service
area. After this area is reached, the robot should con-
tinue its motion toward a goal position. The problem is
to find a strategy that minimizes the expected cost, when
there are penalties for both path length and ignoring an
alarm. A simple variation of this problem was considered
in [11], in which the service area was restricted to be a
set of points in the plane and analytical solutions were
presented for the limiting cases when the alarms have
a very high or a very low frequency. We model a more
general version of that problem and present the optimal
solution which is computed numerically.

Let S C X represent the service area. Note that S
is not necessarily connected. When an alarm is on, the
robot can respond by going to a point in .S and turning
it off. The environment states are £ = {0, 1}, in which
er = O indicates that the alarm off at stage k, and e, = 1
indicates that the alarm is on at stage k. The transition
probabilities depend on the state of the robot. We define

Py=1[po 1—po]. If e =1 and 2 € S, then we have
P, = [0 1]. However, if ¢4 = 1 and z € S, then
P =1 0]

In this section we present and compare the numer-
ically optimal strategies for three different cases. We
consider Case 1, in which ¢, = 2, and Case 2, in which
ca = 20. The following conditions remain fixed. The
configuration space for this problem ranges from 0 to
100 along each axis. The robot has the ability to move a
fixed distance ||v||At = 2 at each stage. We take ¢, = 1
and ¢; = 1000. We take po = 0.90. The initial state
is 1 = (5,95,0). The goal, G, is a set of two points,
(95,5,0) and (95,5, 1).

Figure 5.a shows the sample path w(y*,z1,e°) for
Case 1, and Figure 5.b shows w(y*,z1,e°) for Case 2.
Figures 5.c and 5.d show 30 sample paths from W(y*, 1)
for Case 1 and Case 2, respectively. For Case 1, the
robot path is pulled toward the service area; however,

e. f.
Figure 5. Sample paths and a strategy for a servicing prob-
lem. See Section 4 for details.

in Case 2 the penalty is so strong that the robot plans
to move in nearly straight line segments from shelter to
shelter. This coincides with the Delaunay path, which
was shown to be the analytic solution for this problem
when the alarm frequency is high [11]. We were able to
compute a numerically optimal v* for Case 1 and Case
2, for which the analytical solutions are not known.

Figure 6 depicts the level sets of L7(21) for both cases.
Figures 6.a and 6.b depict the level sets for Case 1, Fig-
ures 6.c and 6.d depict the level sets for Case 2. It is
important to note the circular curves that tend to sur-
round the components of the service area. The service
area causes wells to appear in L (x1), which increase in
size as ¢q increases.

In Figure 7 we show results for a servicing problem in
which there are also obstacles in the workspace. For this
problem, no analytical results are yet known [11]. We
consider Case 1, in which ¢, = 3, and Case 2 in which
cqa = 8, while the following conditions remain fixed. The
configuration space again ranges from 0 to 100 along
each axis. The robot has the ability to move a fixed
distance [|v|]|At = 2 at each stage. We take ¢, = 1
and c; = 10000. We take pg = 0.90. The initial state
is 1 = (5,95,0). The goal, G, is a set of two points,
(95,40,0) and (95,40,1). Figure 7.a shows the sam-
ple path w(y*,z1,e°) for Case 1, and Figure 7.b shows
w(y*,z1,e") for Case 2. For Case 2, the penalty ¢, is
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Figure 6. Level sets of L}
Section 4 for details.
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Figure 7. Sample paths for the Servicing problem with ob-
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zl) for a servicing problem. See

stacles. See Section 4 for details.

high enough to cause the robot to choose paths that have
a greater length, as long as the service area is nearby to
keep the overall cost low.

5 Discussion

We have presented a general framework for analyzing
and determining robot motion plans under a partially
predictable, changing environment. The environment is
modeled as a finite-state Markov process in which the set
of environment states is chosen to represent a particular
changing situation. Under this probabilistic framework
we define the concept of optimality in the expected sense
and then present a method for computing the iterative
solutions using a dynamic programming approach. Al-
though this only provides a numerically optimal solution,
the computation scheme is powerful enough to handle a
wide class of motion planning problems that go far be-
yond what is known in literature about the analytical
solutions for the uncertain and changing environment.

We consider the specific examples explored in this pa-
per as initial experiments with a general framework for
dealing with a partially predictable, changing environ-
ment. Several generalizations and applications of the
models can be considered.

We could consider a set of M service areas,
{S1,...,Sm}, each performing some separate function.
Each service area has its own alarm that indicates that a
service needs to be performed by bringing the robot to a
state in S;. Note that each S; could have multiple com-
ponents; and the service areas could in general overlap.
The environment states would represent various subsets
of alarms that are allowed to be on at a given stage.

As mentioned in Section 2, we can also model a sce-
nario in which C¢,.. changes, depending on the environ-
ment state. This would lead to an optimal strategy in
which the robot takes into account the possibility that
the topology of Cjr.. might suddenly change at some
future time.

Although our discussion was based on robot motion
planning, the same stochastic framework can be applied
to other situations with partially predictable, changing
environments. One example would be for designing rout-
ing strategies in a computer network via a set of nodes
some of which could fail randomly. Another example
analogous to that of the problem analyzed in Section 4
would be what we would term as a “Traveling Service-
man Problem”: to design an optimal strategy for a tech-
nician through a service area with a stochastic modeling
of the demands from different stations.

References
[1] K. Basye, T. Dean, J. Kirman, and M. Lejter. A

decision-theoretic approach to planning, perception, and
control. IEEE Ezxpert, 7(4):58-65, August 1992.

[2] B. R. Donald. Error Detection and Recovery for Robot
Motion Planning with Uncertainty. PhD thesis, MIT,
Cambridge, MA, 1987.

[3] M. A. Erdmann. On motion planning with uncertainty.
Master’s thesis, MIT, Cambridge, MA, August 1984.

[4] K. Y. Goldberg. Stochastic Plans for Robotic Manip-
ulation. PhD thesis, Carnegie-Mellon, Pittsburgh, PA,
August 1990.

[5] G.D. Hager. Task-Directed Sensor Fusion and Planning.
Kluwer Academic Publishers, Boston, MA, 1990.

[6] P. R. Kumar and P. Varaiya. Stochastic Systems. Pren-
tice Hall, Englewood Cliffs, NJ, 1986.

[7] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[8] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot mo-
tion planning with uncertainty in control and sensing.
Art. Intell., 52:1-47, 1991.

[9] S. M. LaValle and S. A. Hutchinson. An objective-
based stochastic framework for manipulation planning.
In IEEE/RSJ/GI International Conference on Robots
and Systems (to appear), September 1994.

[10] R. Sharma. Locally Efficient Path Planning in an Un-
certain, Dynamic Environment using a Probabilistic
Model. IFEFE Transactions on Robotics and Automa-
tion, 8(1):105-110, February 1992.

[11] R.Sharma, D. M. Mount, and Y. Aloimonos. Probabilis-
tic Analysis of Some Navigation Strategies in a Dynamic
Environment. IEEFE Transactions on Systems, Man, and
Cybernetics, 23(5):1465-1474, September 1993.

12] A. Stentz. Optimal and efficient path planning for
g
partially-known environments. In IEFE Int. Conf. on
Robotics and Automation, pages 3310-3317, 1994.



