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Abstract

We present a framework for analyzing and determin-
ing motion plans for a robot that operates in an envi-
ronment that changes over time in an uncertain man-
ner. We first classify sources of uncertainty in motion
planning into four categories, and argue that the frame-
work addressed in this paper characterizes an important,
yet little-explored category. We treat the changing envi-
ronment in a flexible manner by combining traditional
configuration space concepts with a Markov process that
models the environment. For this context, we then pro-
pose the use of a motion strategy, which provides a mo-
tion command for the robot for each contingency that it
could be confronted with. We allow the specification of a
desired performance criterion, such as time or distance,
and the goal is to determine a motion strategy that is op-
timal with respect to that criterion. A motion planning
problem in this framework is formulated as the design of
a stochastic optimal controller. Applications and compu-
tational issues are discussed in a companion paper [12].

1 Introduction

The ability of a robot to autonomously plan and ex-
ecute motions under uncertainties greatly improves its
range of operation. Substantial interest in the field of
robot motion planning has led to a variety of approaches
that use different models of the robot and its environ-
ment [9]. The success of a motion planning approach
depends to a large extent on the manner in which vari-
ous forms of uncertainty are modeled and treated.

There are two popular representations of uncertainty
that have been applied to geometric motion planning
problems. One representation restricts parameter un-
certainties to lie within a specified set. A motion plan is
then generated that is based on worst-case analysis (e.g.,
[10, 13]). We refer to this representation as bounded un-
certainty. The other popular representation expresses
uncertainty in the form of a posterior probability den-
sity. This often leads to the construction of motion plans
through average-case analysis (e.g., [2, 14])

Uncertainty can be introduced into a motion planning
problem in a number of ways. We organize this uncer-
tainty into four basic sources for discussion:

o Uncertainty in robot sensing (RS)
o Uncertainty in robot predictability (RP)

e Uncertainty in environment sensing (ES)

o Uncertainty in environment predictability (EP)

We will now describe each of the sources of uncer-
tainty, and the final source will be the primary focus of
this paper. For the discussion, we will consider each type
of uncertainty in isolation, although in general any com-
bination of these types can be considered simultaneously
in a motion planning formulation.

Type RS uncertainty. Suppose that the space of
collision-free configurations, Cyre., is known by the robot
(a space of valid configurations, Cygiq, Which includes
contact with obstacles, could alternatively be defined
[9]). At a given point in time, the robot position is as-
sumed to be characterized by a point, q in Cy... Under
Type RS uncertainty, incomplete or imperfect informa-
tion is utilized by the robot to make an inference about
its configuration. With a bounded uncertainty model,
the robot might have sufficient information to infer that
for some subset () C Cyyee, its configuration, q must lie
in Q. In [10, 13] this representation of uncertainty is used
to guarantee that the robot recognizably terminates in a
goal region. With a probabilistic model, the robot might
infer a posterior probability density over configurations,
p(q), that is conditioned on sensor observations, initial
conditions, or additional knowledge (e.g., [3, 6]).

Type RP uncertainty. Suppose again that the
space of collision-free configurations, C¢ree, is known by
the robot; however, in addition, the robot knows its cur-
rent configuration q € Cfre.. Motion commands can be
given to the robot, but with Type RP uncertainty the
future configurations cannot, in general, be completely
predicted. With bounded uncertainty, the robot may in-
fer that some future configuration will belong to a subset
@ C Cfree- The method of preimage backchaining con-
stitutes of large body of work in which bounded uncer-
tainties are propagated and combined with Type RS un-
certainty, to guarantee that the robot will achieve a goal
(e.g., [10, 13]). With a probabilistic model, future con-
figurations can be described by a posterior density over
configurations, p(q), that is conditioned on the initial
configuration and the executed motion command (e.g.,
2]).

We describe Types ES and EP by making a direct
analogy to Types RS and RP (see Figure 1). While
Type RS models sensing uncertainty in a space of con-
figurations, we will consider Type ES to model sensing
uncertainty in a space of environments. As Type RP
models uncertainty in prediction in a space of configu-
rations, we will consider EP to model uncertainty in a



space of environments.
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Figure 1. Four sources of uncertainty in the motion planning
problem.

Although a space of configurations is a well-defined
concept in robotics literature, we must define what is
meant by a “space of environments.” The robot’s en-
vironment could be expressed in different ways. One
could consider the environment as the representation of a
workspace with obstacles. For the purpose of discussion,
we consider Csr.. to be a representation of the environ-
ment. If we begin with C¢,.. and add another obstacle
to the workspace, a new environment, C}me will be ob-

tained.

Consider a £ to be a set of possible environments. In
such a case, we would have, for instance, Cyre. € € and
C}Tee € £. For a given n-dimensional C-space, £ might
be defined as the power set of C. This would charac-
terize every conceivable C¢,¢. that could be obtained as
a subset of C. Besides a configuration space, the envi-
ronment could represent additional information relevant
for motion planning. For instance the environment could
become hazardous, as considered in [14]. Typically, there
are many restrictions on the types of environments that
can occur, and we will primarily consider £ conceptually
as a reference set for discussion.

Type ES uncertainty. By analogy to Type RS, sup-
pose that a space of possible environments, £, is known
to the robot. At a given point in time, the particular
environment that the robot belongs to can be consid-
ered as a point in e € £, which represents some Cyree.
Under Type ES uncertainty, incomplete or imperfect in-
formation is utilized by the robot to make an inference
about its environment. If more information is available,
it might be the case that the possibilities for £ are re-
stricted to some finite set. For instance, the only un-
certain aspect about the environment might be the ex-
istence of a few obstacles at some fixed locations. With
a bounded uncertainty model, the robot might have suf-
ficient information to infer that for some subset F' C &,

the environment, e must lie in . With a probabilis-
tic model, the robot might infer a posterior probabil-
ity density over environments, p(e), that is conditioned
on sensor observations, initial conditions, or additional
knowledge (e.g., [5, 15]).

Type EP Uncertainty. Suppose again that the
space of environments, &, is known by the robot; how-
ever, in addition, the robot knows its current environ-
ment e € £. Predictable motion commands might be
given to the robot, but with Type EP uncertainty fu-
ture environments cannot be completely predicted. With
bounded uncertainty, the robot may infer that some fu-
ture environment will belong to a subset F' C £. With
a probabilistic model, future environments can be de-
scribed by a posterior density over environments, p(e),
that can be conditioned on the initial environment, the
robot configuration, or an executed motion command.

In this paper we are concerned with systematically
handling Type EP uncertainty, when the environment
is partially predictable. The basic framework that we
present models problems in which £ is restricted to a
finite number of environments. This covers a wide va-
riety of motion planning problems, and as shown in the
companion paper [12], leads to computationally feasible
solutions. As an illustrative example, consider the prob-
lem in Figure 2, in which a robot must reach a goal region
in minimal time, while the configuration space may un-
predictably change during execution. In particular, the
doors may open or close randomly, changing the feasible
paths to the goal.

Figure 2. A changing environment in which the workspace
changes over time, by (a) the opening and closing of “doors.”

We provide general formulations of the robot, its mo-
tion model, a goal region, and the environment. For
geometric aspects of the problem we use general con-
figuration space concepts that characterize basic motion
planning problems [9]. The environment is modeled as
a Markov process, which is powerful enough to encode
many important stochastic processes, such as a Wiener
process (Brownian motion) or a Poisson process. By
combining these concepts into a composite state space,
we can model a variety of motion planning problems.

We now discuss the importance of determining opti-
mal motion strategies. In classical motion planning ap-
proaches, the output of algorithm is usually a “motion
plan” for a given description of the C, the initial and the
goal positions. When unpredictable changes occur in the



workspace, dynamic replanning is often used. This has
been used, for example, in the context of error-detection
and recovery [4], and task-level reasoning [7]. Alterna-
tively, a fixed command might be given to the robot, and
local collision avoidance is performed to handle unex-
pected aspects of the environment [1, 16]. In the frame-
work that we propose, a “motion strategy” provides a
motion command for the robot for each contingency that
it could be confronted with. This motion strategy can
be considered as a state-feedback stochastic controller
[8], on a state space that simultaneously considers the
environment and the robot configuration. Replanning
is not needed when the environment changes, because
the robot responds appropriately for different regions of
the state space during execution. In addition, a state-
feedback controller is advantageous, since it will typically
be robust to small modeling errors that can develop dur-
ing execution. To select a motion strategy, we formulate
an explicit performance criterion (or loss functional) that
evaluates a trajectory executed by the robot. This allows
a variety items, such as time or distance, to be optimized
through the selection of a strategy.

2 Mathematical Formulation

In this section we develop the mathematical concepts
that model motion planning problems with Type EP un-
certainty. Section 2.1 introduces the finite-state Markov
process that is used to model the changing environment,
and the relationship of this model to the configuration
space of the robot. In Section 2.2 we define a model
of robot motion, which accepts a motion command and
produces a next configuration. Section 2.3 introduces the
concept of dynamic regions in the robot’s configuration
space. These regions are used to explicitly define inter-
action that occurs with the environment and the robot,
which is effected through the definition of a performance
criterion.

2.1 The Environment Process

For geometric motion planning problems without un-
certainty, the space of possible situations that can occur
is sufficiently characterized by Cgree (Or Cyqria [9]). In
our context, the environment can additionally interfere
with the motion plans of A, compelling us to define a
finite set, F, of environment modes.

Since we are modeling problems in which the envi-
ronment changes, we require an explicit representation
of time in many subsequent definitions. We define a dis-
cretized representation of time by a set of stages, with an
index k € {1,2,...,K}. Stage k refers to time (k—1)At.
At a given stage, k, the environment is in some mode
e, € E, which is known to the robot. We generally take
At sufficiently small to approximate continuous trajec-
tories.

We additionally consider the environment as a finite-
state Markov process, which we call the environment pro-
cess. As another example of using a Markov model in
the analysis of motion planning, see [16]. At the initial
stage (k = 1) the environment mode, e; € E, is given.
For a given environment mode, ey, the next environment
mode, er41, is specified with a probability distribution

over E. This probability distribution is defined by a vec-
tor P; such that P;[j] = P(egy+1 = jler =1).

We now present an example of a four-mode environ-
ment process that can model the problem from Fig-
ure 2.a. We define the following four environment modes:
e =0 if Doors 1 and 2 are open, e = 1 if 1 is closed and
2 is open, e = 2 if 1 is open and 2 is closed, and e = 3 if
both are closed. Suppose each door is modeled with Pois-
son processes. Let A denote a Poisson arrival rate. The
density for the time of the first arrival is p(t,) = de~*te.
We denote the arrival rate of a door closing, given that
it is open, as A., and the arrival rate of a door opening,
given that it is closed as A,.

Assume for this example that the two doors are gov-
erned by independent, identical Poisson processes. The
probability that a closed door will open in time At is

At
P01 = /\oe_Aot“dta =1- 6_)\°At. (1)

0

The probability that it will stay closed is P;; = 1 —
Py, . For a door that is initially open, we similarly obtain
PlO :1—6_/\6At, andPOo :1—P]_0.

The environment transition probabilities can be gen-
erated by taking products of pairs of Pyg, Fo1, Pio, and
P11:

0 P PooPro  ProPoo P}
P | _ | PoPnn PP PoPu PoPn
P, | 7| PnPoo PFPoiPio PP PPy
P P34 Py Pii PPy P2

The four-mode process is depicted in Figure 3, in
which we take A, = A, = 0.10101354 (approximately
one expected arrival every ten seconds), and At = 0.2.
This results in Pig = Py; = 0.02 and Pyg = P;; = 0.98.

Figure 3. The environment process can be considered as
a finite-state Markov process with state transition probabili-
ties.

For this example, the environment process is indepen-
dent of the robot configuration. In general, however, we
allow the robot to have influence over the environment
by conditioning the probabilities on the configuration of
the robot. The servicing problem, discussed in [12], is
an example in which this extension is needed.

In general, to uniquely identify all of the possible sit-
uations that can occur in our problem, we define a state



space as the cartesian product, X = Cfree X E. This
is similar to the view taken in [4], in which the space
for motion planning is a cartesian product of Cype. With
a single parameter that characterizes a hole width for
a peg-in-hole task. The state at stage k is denoted by
x,, which simultaneously represents both a configuration
of A in the geometric sense, and an environment mode,
er. The environment modes form a partition of the state
space, X. Each time the environment mode changes, the
robot is forced into a different layer of X.

2.2 Defining the Robot Behavior

In this section we present several concepts that lead to
the definition of a strategy, which characterizes a fixed
behavior for the robot. We begin by defining an ac-
tion, ug, (or command), which can be issued to A at
each stage, k. We let U denote the action space for A,
while requiring that ux, € U. We define a state transition
distribution as P(Zg41 |z, ur). This represents a proba-
bility distribution over a finite set of next states, given
zj, as the initial state, and an action uy.

As an example, we present a state transition distri-
bution that applies to the case in which ¢ C R2, and
the robot is limited to translational motion. More com-
plicated motions are considered in the companion pa-
per. Dynamic robot constraints could also be intro-
duced; however, velocities would have to be represented
in the state space, and the robot constraints would have
to be specified in state-space form. We define the ac-
tion space as U = [0,27) U {@}. If uy € [0,27), then A
attempts to move a distance [|v||At toward a direction
in C, in which ||v|| denotes some fixed speed for A. If
ur, = (0, then the robot remains motionless.

Consider the case in which zy € Cyre. is at a distance
of at least ||v||At from the obstacles. If A chooses action
u # 0 from state z (We use the notation zi[i] to refer

to the i** element of the vector x.), then

zp[1] + ||v]| At cqs(uk)
Tryr = [ zi[2] + [[v]| At sin(ur) ]

€rk+1

3)

in which the environment mode e;4; is known to be
sampled from P(eg41|zk,ur). We can thus consider a
finite-valued random variable X, with corresponding
distribution P(zjy1|zk,ur), which can be inferred from
the given model. If u; = 0, then zx[1] = z41[1] and
zk[2] = zr41[2]; however, eg41 is not necessarily equal
to e because the environment transition equation deter-
mined epy1.

We now define the notion of a robot strategy for our
context. At first it might seem appropriate to define
some action uy, for each stage; however, we want a motion
plan that is prepared for the various contingencies pre-
sented by the changing environment. Therefore, we de-
fine a strategy at stage k of A as a function v : X — U.
For each state, zp, the function v, yields an action
ur, = Ye(zr). The set of mappings {v1,7v2,...,7K} is
denoted by v and termed a strategy. For most motion
planning problems, the solution strategy, v, will be the
same for all k (i.e., each robot action depends only on the
current state, and not the particular stage). Section 4

presents a discussion of time varying strategies, in which
this assumption is relaxed.

We represent a desired performance criterion by a
real-valued functional L(z1,...,Zx+1,%1,...,UK), called
the loss functional. A strategy that produces a lower
loss will be considered preferable. The ultimate goal
of a planner is to determine an optimal strategy v* =
Y7, --,75%} that causes L to be minimized in an
expected sense.

2.3 Defining Performance

Sections 2.1 and 2.2 have introduced the environment
process and a model of the robot behavior. This sec-
tion discusses the key concepts that are used to model
the effect that the environment has on the robot. In
particular, costs that appear in a loss functional directly
depend on dynamic regions in the state space. If the
robot enters a particular dynamic region, the amount of
loss received might increase or decrease. For instance, a
dynamic region might correspond to the robot’s collision
with a closed door, which would incur a very high loss.

We will define dynamic regions in the workspace, W,
and subsequently discuss how these regions are mapped
into the state space, X. In addition to static obstacles,
let W contain a set of m dynamic regions, denoted by
{D1,...,Dp}. Each dynamic region is a subset of W,
and pairs of dynamic regions are not necessarily disjoint.

A dynamic region D; in W can map into the region
CDj C Cfree, which is given by:

Cch = {q € Cfree| ‘A(q) ND; 7£ 0} (4)

We call CDf a contact (dynamic) C-region. This yields
configurations in which the robot is in contact with D;.
A contact C-region is useful for problems such as that in
Figure 2.a, in which contact with a door must be deter-
mined.

In some situations, we will be interested in determin-
ing whether the robot is completely contained in some
D;. A dynamic region D; in W maps into the region
CD; C Cfree, which is given by:

C’D; = {q € Cfree' A(q) - Dz} (5)

We call CD; an enclosure (dynamic) C-region. One could
alternatively define CD§ as the subset of configuration
space in which the robot and dynamic region interiors
overlap, and also the containment in the definition of
CD; could be made strict. Note that CD® C CD°.

We now want to map the dynamic regions into the
state space, since the loss functional depends on the state
trajectory. Since the dynamic regions have been mapped
into C¢ree, the mapping into X can be considered as lift-
ing the contact C-region (or enclosure C-region) into dif-
ferent layers of X. We want the dynamic region to only
influence the robot at certain layers. For instance, with
the example in Figure 2.a, we only want the dynamic re-
gion to exist in X in environment modes that correspond
to the door being closed. In other modes, the door should
not interfere with the robot. For each i € {1,...,m} we
select a subset, F;, of environment states, F; C E.



We can represent a state £ € X by (q,e), in which
q € Cfree and e € E. If D; is a contact dynamic region,
then we define

X; ={(q,e) € X| q € CD; and e € E;}. (6)

Alternatively, if D; is an enclosure dynamic region, then
we define

Xi={(aq,e) € X| q € CD; and e € E;}. (7

Each X; may be formed from either a contact or enclo-
sure dynamic region.

We now define a goal region as a special kind of dy-
namic region (in addition to D;,i € {1,...,m}). We first
define a subset G C W as a goal region in the workspace.
We next consider G as a contact goal region (or enclo-
sure goal region), and apply (4) (or (5)) with D; = G to
obtain the goal region in configuration space. A subset
E, C E is selected, and we obtain X¢ by applying (6)
(or (7)). The termination condition for a given motion
planning problem will be to bring the system to any state
in Xg.

For a given set A, let I4 denote its characteristic func-
tion: T4(a) =11if a € A, and I4(a) = 0 otherwise. We
assume that a loss functional is of the following additive
form, which is often used in optimal control theory [8]:

K
L(ZEl, W TK41,UT, ...,’LLK) = Zlk(xk,uk) +lK+1(.Z'K+1).

k=1

(8)
The first K terms correspond to costs that are received
at each step during the execution of the strategy. The
final term, Ik 41, is a terminal cost that will be used to
ensure that the robot achieves the goal (if the goal is
reachable).

The term I, in (8) is defined as Iy (zx,ur) =

0 If 2z, € X

m
Cu + Z[ciIXi (x) + c;IXic ()] Otherwise
i=1
(9)
The constant ¢,, > 0 corresponds to the cost for choos-
ing an action. This cost will often be the same for every
uy, € U, but in general can be dependent on the particu-
lar action. For instance, if time optimality is considered,
then ¢, = At. However, if distance optimality is con-
sidered, then one might choose ¢, = 0 if ux = 0, and
¢y = ||v||At otherwise.

The constant ¢; > 0 is a penalty that is added if x;, €
X;. The constant ¢; > 0 is a penalty that is added if z;, ¢
Xi. In (9), X¢ denotes X \ X;. For the case of a changing
configuration space, for instance, these constants could
become ¢; = 00, to indicate that a collision has occurred,
and ¢} = 0 otherwise.

The term Ilxi1(zk4+1) in (8) is  defined
as cylxe, (K +1), in which X§& denotes X \ Xg. The
constant ¢y can be considered as the cost of failure. We
typically consider ¢y = oo, but can also associate a finite
cost with failure.

In the companion paper [12], we will apply the general
model presented so far to obtain the solution of specific
motion planning problems. In the rest of the paper, we
consider the generalizations of the basic framework pre-
sented so far, to handle more complex situations.

3 Incorporating Type ES Uncertainty

It has been assumed so far that at stage k the robot
knows the environment mode, e. In general, it could be
the case that the robot has limited sensing, and cannot
perfectly determine the current environment mode. We
assume that the environment transition probabilities de-
pend only on the previous environment mode, and hence
can be written P(eg41|ex). The motion planning prob-
lem is analyzed in the information space, which in this
case is represented by a space of density functions. De-
tailed treatment of information spaces in optimal control
theory can be found in [8], and their application to mo-
tion planning with uncertainty in control and sensing
appears in [11].

In this section we briefly describe how successive dis-
tributions over E can be obtained. Suppose that the
robot is equipped with a sensor that produces an obser-
vation oy at each stage, k € {1,..., K'}. We assume that
a noise or error model for the sensor can be specified as
P(oglex). This characterizes the observations that are
likely to be made for a given environment mode. The
form P(og|ex) is typically used in a variety of robotics
applications that involve statistical sensor error [6], and
in general for stochastic control theory [8].

We proceed by induction, using P(e;) as a given
basis, and the transition from P(eg|ok,...,01) to
P(egt1|0k+1,---,01) as the inductive step. If we have
P(ek|ok,- - -,01), then before a new observation, the pos-
terior distribution of exy1 can be determined as

. ,01) = Z P(€k+1|6k)P(6k|Ok,. ..,01).
ex€E

P(€k+1 |0k7 ..

(10)
The new observation, ogt1, can be incorporated to ob-
tain P(eg+1|0k+1,--.,01) =

P(opt1l€k+1,0ky---,01)P(€gt1|0k, ..., 01) (11)
P(og+1|0ok,---,01)
in which P(og41|ok,...,01) =
Z P(0k+1|6k+1, Oky---, Ol)P(ek+1|0k: “eey 01).
ex+1€EE
(12)

By making appropriate substitutions above, and by re-
ducing conditionals, we obtain P(ejt1|0g+1,---,01) =

P(Ok+1|6k+1) Z P(6k+1|€k)P(6k|Ok, ceey 01)
ex€E

> D P(okyilersr)Pleryaler)Pleklok, - -, 01)
ex€EFer1€EE

(13)
Equation (13) defines P(egt1|0k+1,---,01) in terms of
the following probabilities: P(eg+1lex), P(ex|ok,---,01),



and P(oyy1|eg+1), which are given. Hence, at each stage
during the execution of a strategy, a new posterior dis-
tribution can be computed.

4 Time-Varying Strategies

The strategies that have been discussed up to this
point are stationary in the sense that the robot actions
only depend on the state. In turns out that with lit-
tle effort, the model components can be allowed to vary
over time. This affords the opportunity to model many
interesting problems, such as the incorporation of known
moving obstacles.

We briefly describe the general time-varying compo-
nents that can be defined to yield nonstationary so-
lutions. Suppose that the workspace contains obsta-
cles, Bi(t),...,By(t), that may possibly be in motion.
This results in a time-varying free configuration space,
Crree(t) [9]. To handle discrete time, at each stage, k,
we define a stage-dependent free configuration space

Crrecltl= ()

te[(k—1)At,kAt)

Crree(t). (14)

In addition, we can have moving dynamic regions
Di(t),...,Dp(t). In configuration space each of these
becomes CDj(t) or CD;(t), and in the state space we
have X1 (t),...,Xm(t). As done in (14), we can similarly
define X;[k], ..., Xnn[k] to be stage-dependent dynamic
X-regions. To obtain the appropriate loss functional, we
simply replace (9) by lp(zk, ur) =

0 If 2, € X

cy + Z[CiIXi k] (Tk) + cilxe (zx)]  Otherwise

i=1
(15)
In addition to the time-varying components discussed
above, additional components can vary with time. By al-
lowing the environment transition probabilities to vary,
many more statistical processes can be modeled. For in-
stance, it might be known that the workspace is more
likely to become hazardous after some prescribed time,
or become increasingly more likely to be hazardous over
time. We can also allow the goal region to move over
time, to obtain Xg[k]. In this case, the robot must in-
tercept the moving goal as a terminating condition for

the strategy.

5 Conclusions

We have characterized the problem of probabilistically
handling Type EP uncertainty as a problem of stochastic
optimal control. One could alternatively model the en-
vironment with bounded uncertainty, leading to worst-
case analysis. One could also consider a continuum of
environments.

In a broader setting, the combination of the addi-
tional sources of uncertainty from Section 1 should be
addressed. We argue that the framework presented here
can facilitate such a combination. In Section 3, we de-
scribed how Type ES uncertainty can be incorporated.

In addition, however, Type RP and Type RS can also
be incorporated in a straightforward manner. A treat-
ment of these forms of uncertainty in motion planning
that uses concepts similar to those presented here can
be found in [11]. The incremental motion model can be
defined stochastically, to reflect Type RP uncertainty.
The information space concepts from Section 3 can be
expanded to include complete sensing history that char-
acterizes uncertainty in the robot configuration. Com-
putational issues involved in a combination of this form
will depend directly on the dimensions of the state and
information spaces for the problem.
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