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ABSTRACT

We present an algorithm for a single pursuer with one flash-
light searching for an unpredictable, moving target in a 2D
environment. For a simple polygon with n edges, the algo-
rithm uses O(n?) time to decide whether the polygon can be
cleared by a 1-searcher, and if so, constructs a search sched-
ule. The key ideas in this algorithm include a representation
called the visibility obstruction diagram and a decomposi-
tion of this diagram based on a skeleton that arises from
critical visibility events. An implementation is presented
along with a computed example.

1. INTRODUCTION

Consider the following scenario. In a (dark, doorless) polyg-
onal region there are two moving agents (represented as
points). The first one, called the pursuer, has the task
to find the second one, called the evader. The evader can
move arbitrarily fast, and his movements are unpredictable
by the pursuer. The pursuer is equipped with a flashlight
and can see the evader only along the illuminated line seg-
ment it emits. The pursuer (a.k.a. 1l-searcher) wins if she
illuminates the evader with her flashlight or if both hap-
pen to occupy the same point of the polygon. Clearly, the
pursuer should, at all times, be located on the boundary of
the polygon and use the flashlight as a moving boundary
between the portion of the polygon that has been cleared
(i-e., the evader is known not to hide there) and the con-
taminated portion of the polygon (i.e., the part in which
the evader might be hiding). If there is a movement strategy
of the pursuer whereby she wins regardless of the strategy
employed by the evader, we say that the polygon is search-
able with one flashlight, or 1-searchable.

The problem above was introduced by Suzuki and Yamashita
[11]. The main points of interest are the existence and com-
plexity of an algorithm which, given a simple polygon P with
n edges, decides whether P is 1-searchable and if so, outputs
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a search schedule. Although the problem has been open for
a while, no complete characterizations or efficient algorithms
were developed. Naturally, several, restricted variants were
considered. Previously, Icking and Klein [7] had defined the
two-guard walkability problem, which is a search problem
for two guards whose starting and goal position are given,
and who move on the boundary of a polygon so that they are
always mutually visible. Icking and Klein gave an O(nlogn)
solution, which later was improved by Heffernan [5] to the
optimal ©(n). Tseng et al [12] solved the two-guard walka-
bility problem in which the starting and goal positions are
not given. Recently, Lee et al [9] defined 1-searchability for
a room (i.e., a polygon with one door — a point which has
to remain clear at all times) and presented an O(n?) solu-
tion. In this paper we solve the original problem defined in
[11], and we show that it is a nontrivial generalization of the
variants of 1-searchability defined in [7] and [9].

Originally, the problem of 1-searchability of a polygon was
introduced together with a more general problem in which
the pursuer has 360° vision [11]. For results concerning 360°
vision refer to [11, 2, 4, 10] for search in polygons and to [§]
for curved planar environments.

Our models are motivated in part by the desire in mo-
bile robotics systems to develop simple sensing mechanisms
and to minimize localization requirements (knowing the pre-
cise location of the robot). The “flashlight” could be im-
plemented by a camera and vision system that uses fea-
ture detection to recognize a target. Alternatively, a single
laser beam could be used to detect unidentified changes in
distance measurements. Many localization difficulties are
avoided since the robot is required to follow the boundary
of the environment. Sensors could even be mounted along
tracks that are fastened to the walls of a building, as opposed
to employing a general-purpose mobile robot. Although it
is obviously restrictive to consider only environments that
can be cleared by a single pursuer, the problem considered
in this paper is surprisingly challenging. It may be possi-
ble to extend some of our ideas to allow the coordination of
multiple pursuers, eventually broadening the scope of appli-
cations.

The rest of the paper is organized as follows. Section 2
introduces the notation and provides observations which re-
duce pursuit-evasion by a 1l-searcher to a search problem in
St x 81, ie., in a torus. In Section 3.1 we define critical



Figure 1: (a) a simple polygon (b) corresponding visibility obstruction diagram

points on the boundary which are essential for determining
the schedule of the 1-searcher. These points help us in Sec-
tion 3.2 to simplify the search from Section 2 to a search
in a finite maze. In Section 3.3 we present an O(n?) algo-
rithm which, given a polygon with n edges, decides whether
the polygon is 1-searchable and if so, outputs a schedule for
the pursuer. Section 4 discusses an implementation of the
algorithm, and also the relationship between our result and
the results in [7, 5, 12], [3] and [9]. Section 5 concludes the
paper with a summary and directions for future research.

2. NOTATION AND PRELIMINARIES
2.1 Notation

Let P be a simple polygon. (From now on, a polygon is
always assumed to be simple.) We denote the boundary of
P by OP. We assume that 0P C P and that OP is oriented
in the clockwise (also called positive) direction. For any
two points a,c € P, we write (a,c) to denote the set of all
points b € OP such that when starting after a in positive
direction along OP, b is reached before c. We also use the
notation [a, c], [a,c) and (a, ] for the closed and half-closed
intervals on OP.

Let po,pi1,-.- ,Pn—1 denote the vertices on P ordered in
the positive direction. The edges of OP are eg,e1,... ,€n—1,
where edge e; has endpoints p; and p;41, where ¢ € Z,, (i.e.,
the indices are computed modulo n; e.g., po = pn).

We use the standard definition of visibility. For points ¢,d €
OP we say that d is visible from c, if every interior point of
the line segment cd lies in P — dP. Obviously, if one point
is visible from another, then the two are mutually visible.
Note that any two points on the same edge of P are not
mutually visible.

2.2 Rules of pursuit

We start with a simple example of how the pursuer can
clear the polygon in Figure 1(a). Initially, she is at point
0 with the flashlight pointing at 0. To start the search she
moves from point 0 to point 14, while at the same time!
she rotates the flashlight from point 0 to point 1. Next,
the pursuer, while staying at 14, rotates the flashlight from
point 1 clockwise to point 5. Then she moves from point 14
to point 13 constantly illuminating point 5. Following that,
she rotates the flashlight from point 5 to point 7, and then
moves from point 13 to point 10. After a final rotation of
the flashlight from point 7 to point 8, the pursuer is at point
10 illuminating point 8. The search is complete when she
moves from 10 to 9 and simultaneously rotates! the endpoint
of the flashlight from 8 to 9.

The next observations follow immediately. We can assume
that the evader moves only along the boundary. As we men-
tioned above, the pursuer also moves along 0P and uses the
flashlight to separate the clear and contaminated portions of
the polygon. Furthermore, without loss of generality, we will
assume in the rest of the paper that the clear portion of the
polygon is always to the left of the pursuer as she looks in
the direction of the beam of light. We call this assumption
the left invariant. Thus, a single pair of points is sufficient
to record the current status of the pursuit as seen by the
pursuer. We define a configuration to be a pair (p,q) of
points p,q € 0P, and the space of all configurations X to
be:

X ={{p,9) | p,q € OP} .

Let Xg4 C X denote the set of all diagonal configurations
{(p, q) such that p and q lie on the same edge of 0P. We also
denote by X, C X all configurations of mutually visible

'Note that the beginning and the end of the search are the
only times when the pursuer has to simultaneously move
herself and rotate the flashlight. Without loss of general-
ity, we can assume that the rest of the time she alternates
between pursuer moves and flashlight rotations.



points, i.e., pairs (p,q) such that g is visible from p. In-
tuitively, for (p,q) € Xu, p represents the position of the
pursuer, while ¢ represents the point illuminated by the
flashlight. From the left invariance assumption it follows
that all points between p and ¢ (along OP) are clear and all
the points between ¢ and p are contaminated. Finally, let
X, =X — Xg— X,.

DEFINITION 2.1. The visibility obstruction diagram or
VOD for a polygon P is defined as the triple (Xq4, Xv, Xn),
where X4, X, and X,, are defined as above.

Figure 1 provides an example of a simple polygon and the
VOD corresponding to it. The black squares along the di-
agonal of Figure 1(b) represent X4, the shaded area repre-
sents X,, and the white area represents X,. The solution
described in Figure 1(a) is plotted as a directed rectilinear
path (connected sequence of directed segments in X, shown
as solid arrows in Figure 1(b)) starting from the letter ‘S’
in the lower right corner, wrapping around and ending at
the letter ‘F’. Each of the motions of the pursuer and the
rotations of the flashlight can be represented by vertical or
horizontal directed segments in X as follows:

1. Flashlight rotation in clockwise direction over
visible points and stationary pursuer corresponds to
a horizontal segment in X, directed from left to right.
In Figure 1, the rotation from point 1 to point 5 in the
beginning of the solution is represented by the first
(horizontal) arrow in the path.

2. Flashlight rotation in counterclockwise direc-
tion over visible points and stationary pursuer cor-
responds to a horizontal segment in X, directed from
right to left.

3. Motion in counterclockwise direction of the pur-
suer with the flashlight illuminating the same point
corresponds to a vertical segment in X, directed up.
In Figure 1, the move of the pursuer from point 14 to
point 13 while illuminating point 5 is represented by
the second (vertical) arrow in the path.

4. Motion in clockwise direction of the pursuer with
the flashlight illuminating the same point corresponds
to a vertical segment in X, directed down.

5. Recontamination move in which a stationary pur-
suer moves the flashlight to the left across an interval
of invisible points corresponds to a horizontal segment
directed from right to left over an area of X,. In Fig-
ure 1, if the pursuer is in point 13 and rotates the
flashlight from point 5 to point 2 (over the invisible
points between 3 and 4), the move is represented as
the right-to-left dashed-dotted arrow in X.

All five moves preserve the left invariant, and each of the
first four moves is reversible, i.e., performing a move and
its inverse preserves the left invariant. On the other hand,
the recontamination move is not reversible. In fact, if the
pursuer tries to rotate the flashlight clockwise across an in-
visible interval this will invalidate the left invariant. For ex-
ample, in Figure 1(a), if the pursuer at point 14 rotates the

flashlight from point 5 to point 12 (over the invisible points
between 6 and 11), this will cause the whole polygon to be
recontaminated and hence will invalidate the left invariant.
This invalid move is shown as the left-to-right dotted arrow
in Figure 1(b) . Note that, technically, recontamination hap-
pens every time when the pursuer rotates the flashlight in
counterclockwise direction. However, since counterclockwise
rotation over visible points only is a reversible move, we con-
sider it as a weak form of recontamination. We reserve the
term “recontamination” for the irreversible counterclockwise
rotation of the flashlight over an interval of nonvisible points.

The following vertical or horizontal directed segments in X
do not have corresponding moves of the pursuer:

e segment from left to right which crosses X,: as ex-
plained above, it does not preserve the left invariant.

e vertical segment which crosses X,: this would imply
that either the pursuer leaves 0P, or for some config-
uration, the endpoint of the flashlight is not visible by
the pursuer.

o directed segment which crosses X;: this corresponds to
the pursuer pointing the flashlight outside the polygon.

DEFINITION 2.2. Let P be a simple polygon with a con-
figuration space X. A legal path is a continuous rectilinear
path in X which uses only the five valid moves described
above. A legal path which starts immediately above X4 and
ends immediately below Xq is a winning legal path.

We use the phrase “immediately above (below)” in the defi-
nition in order to allow the pursuer to start (end) the search
with a continuous motion of herself and the flashlight. Also
note that the circularity of 0P implies that there is a vertical
and horizontal wraparound along each of the axes.

If for some polygon P there exists a winning legal path which
does not contain a recontamination move, we say that P
can be cleared without recontamination. On the other
hand, if all of the legal winning paths for P contain a recon-
tamination move, we say that clearing P requires recon-
tamination. (For a more detailed example of a polygon,
which requires recontamination, see Figure 5, discussed in
detail in Section 4.)

3. ALGORITHM FOR FINDING A SCHED-
ULE FOR THE 1-SEARCHER

In this section we introduce an algorithm which given a poly-
gon outputs either a description of a winning legal path, or a
message that the polygon is not 1-searchable. In Section 3.1,
using simple geometric conditions, we define points which
are of crucial importance for finding a schedule for the 1-
searcher. We call them “red points” and later we show that
they provide basis for the alternating order of the moves of
the pursuer and the rotations of the flashlight. In Section 3.2
we use the red points to construct a more compact “skele-
ton” representation of the VOD. Finally, in Section 3.3 we
show how to reduce the search for a winning legal path in
X to a breadth-first search in the “skeleton” space.
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Figure 2: Example of left and right red edges

3.1 Red points

Before we proceed with the description of the algorithm, we
need a few more definitions. Vertex p; € OP is a reflex ver-
tex if the angle formed by edges e;—1 and e;, in the interior
of P, is greater that 180° (i.e., points p;—1, pi, and pit1,
form a left turn). Otherwise, p; is a non-reflex vertex.
A maximal subinterval of P of the form C = (pi, pj+1),
where all the vertices p;y1,...,p; are reflex vertices, forms
a concave region. Obviously, two concave regions cannot
overlap and must be separated by non-concave regions (each
of which contains at least one non-reflex vertex). For exam-
ple, Figure 1(a) shows two concave regions labeled A and

Consider the k-th concave region Cr = (pi,pj+1) of P, see
Figure 2. Define aj, and bj, to be the midpoints of the edges
e; and e;, respectively. Shoot a ray [1, 6] starting at point
aj, through p;11 and let = be the point of P where the
ray leaves P for the first time. Define a} to be the point
in afz N OP which is farthest from aj, in positive direction
along the boundary. Similarly, shoot a ray starting at point
b, through p; and let y be the point of P where the ray
leaves P for the first time. Define by to be the point in
b,y N OP which is farthest from b) in negative direction
along the boundary.

Given the points a}, and a}, define H(a},) = (a},a}]. Note
that a}, is not visible from any point in H(a},). Thus, intu-
itively, whenever the pursuer stays in #(a},), the evader can
hide in a} and is guaranteed that he will not be detected.
Similarly, we can define H (b)) = [by, b},).

We have defined, for each concave region C}, of P, four types
of important points aj}, b}, aj and b}; these are called the
red points of P and the set of all such points, for the
various concave regions of P is denoted by A’, B', A”, and
B” respectively.

LEMMA 3.1. Let P be a polygon with n edges. The red

points of P and their order along OP can be found in time
O(nlogn).

Proof: The points in A’ and B’ can be found in time O(n).
To find the points in A” and B”, we can use the ray-shooting
algorithm of Chazelle et al [1] with a total time of O(nlog n).
|

3.2 Skeletons

Instead of trying to determine the exact shape of X,, in
this section we will use the information obtained from the
red points to define an “equivalent” search space that is
computationally much more convenient.

DEFINITION 3.2. Let P be a polygon with m concave re-
gions and aj,, a}, bj, and b}, be the red points defined for the
k-th concave region, 0 < k <m — 1. We define a skeleton
SK C X to be the union of the following sets of configura-
tions:

e qa diagonal line, D = {{p,p) | p € P}

e two unions of horizontal lines,
AH = U}Z:oll (ar,q) | g € H(ai)} and
BH = U, {(bk,a) | a € H(b})}

e two unions of vertical lines,
AV =% {(p.ai) | p € H(ai)} and
BV = U {(p, i) | p € (b))}

In order to illustrate the intuition behind the term “skele-
ton”, in Figure 3(a) we show X together with SK for the
polygon in Figure 1. All the horizontal and vertical lines
of SK span from the diagonal to a horizontal or vertical
extremum of a X, region. In a sense, those lines form a
supporting frame for the regions of X,.



(a)

q

4 ab b daqha

IS Y

o

., Ot

S

o

(b)

Figure 3: Skeleton (a) and square grid (b) of the polygon from Figure 1

Next we show that if we relax somewhat the restrictions that
the regions X,, and X, impose on a legal path, we can build
a simpler representation of X, which will allow us to find a
solution in time O(n?). The solution in the new search space
can then be modified into a winning legal path in X using
the algorithm in [5]. The idea is to replace the regions X,
and X4 by their skeletons. More formally, define a coloring
of the configurations in X as follows:

e all configurations in DU AH U BH, i.e., the diagonal
and horizontal lines, are black

e all configurations in SK — (DU AH U BH), i.e., the
vertical lines, are red

e all configurations in X — SK are white

A convenient way to illustrate the coloring of X is shown
in Figure 3(b). It represents X over the square grid formed
by plotting the red points aj, aj, b}, by, k € Zm, along
the axes. For convenience we assume that the configuration
(ag, ag) is in the upper left corner of the grid. Note that the
thin lines which form the grid are added for reference only
and are not part of the skeleton. The thick grey and black
lines in the figure correspond to the red and black lines of

SK.

DEFINITION 3.3. A relaxzed path in X is a continuous
rectilinear path which does not cross a black line and does
not cross a red line from left to right. A relazed path which
starts immediately above D and ends immediately below D
is a winning relaxred path.

The main difference between a relaxed path and a legal path
is that the former can enter into X, in any direction as long
as the path does not cross the skeleton. The correctness of
our algorithm is based on the following theorem.

THEOREM 3.4. (i) Every winning legal path is a winning
relazed path. (i) Every winning relaxzed path can be trans-
formed into a winning legal path.

Proof: Since SK C X, U X, the restrictions to a relaxed
path are a subset of the restrictions to a legal path, and the
correctness of (i) follows immediately. The proof of (ii) is
rather lengthy and quite involved. An outline of the argu-
ment is presented in the appendix. |

3.3 Description of the algorithm

The grid is useful to illustrate compactly the restrictions
imposed by the skeleton. Intuitively, we can think about
a winning relaxed path as a path in a maze. The black
lines in X represent rigid walls, while the red lines in X
represent one directional doors which can be entered only
from right to left. Clearly, we can apply a breadth-first
approach to search for a winning relaxed path directly in
the grid. However, since breadth-first-search is most of-
ten associated with graphs, we will present the search in
an equivalent directed graph Gp, representing the connec-
tivity between neighboring squares of the grid. Suppose the
sequence (1o, 71, ..., 4m—1) consists of all the red points in
A’ A" B', and B”, such that ro = ao’ and the elements of
the sequence are ordered in the positive direction along OP.
The vertices in the graph correspond to the squares in the
grid:

V(GP) = {vij | 4,] € Zam},

where vertex v;; represents the square in the ¢-th row and
j-th column of the grid. To define E(Gp), the edges in the
graph, we first give an intuitive description, which we will
follow by a more formal definition.

In order to construct the set E(Gp), we start with the set
E™ of edges between all pairs of vertices corresponding to
neighboring squares. From E™ we then subtract E<¢, the set
of edges across the diagonal, and E", the set of edges across



a horizontal line. This guarantees that a path in Gp cannot
cross the diagonal or a horizontal line, correspondingly. Fi-
nally, we remove E", the set of right edges through a vertical
line, which ensures that a path in Gp cannot cross a vertical
line from left to right. Formally, the set of edges in Gp is
defined as follows:

E(Gp)=E" — E*— E' — E",

where

e E" represents the set of all edges between neighboring
squares in the grid:

E" = {{vi,j,vix1,5), (Vi,j, Vij41) | 4,5 € Lam}

e E? represents the set of all the left and down incoming
or outgoing edges from the diagonal squares in the
grid:

EY = {{viit1,vi), (v, viio1),
(Vi1,i5 Vi) (Viis Vit1,i) | 4 € Zam}

e FE" represents the set of all left-to-right edges between
neighboring squares across a vertical red line in the
grid

E* = {{vij-1,vi5) |
3k : ((rj = ai) A (r; € [ag,ak)) V
((rj = bk) A (i € [b),b%))}

e E" represents the set of all edges between neighboring
squares across a horizontal black line in the grid

E" = {(vic1,,0i), (0ig,vic1) |
3k : ((ri = ay) A (rj € [ag,ai)) V
((ri = %) A (rj € [b%, b%))}

Finding a winning relaxed solution is equivalent to finding
a nontrivial (nonzero length) path in the graph Gp starting
from some diagonal vertex v;,; and ending at some diagonal
vertex v; ;. Finding a path in Gp can be done using breadth-
first search, and it takes time linear in the size of the graph.
Note that the search in Gp will find a relaxed, but not nec-
essarily legal, path 7. However, according to Theorem 3.4,
there exists a corresponding winning legal path p. We can
find p by breaking up 7 into monotonous® subpaths (possi-
bly interrupted by recontamination) and applying the algo-
rithm of Heffernan [5] for constructing straight or counter
walks, successively on each part of the polygon between the
subpaths.

THEOREM 3.5. There is an algorithm that, given a simple
polygon P with n edges, in time O(n®) decides whether P
can be cleared by a 1-searcher, and if so, outputs a search
schedule.

2A subpath in X is monotonous if the corresponding moves
of the pursuer and the flashlight on P are monotonous. A
monotonous path in X corresponds to either a straight or a
counter walk as defined in [5]

FIND_RELAXED_SOLUTION()

input a polygon as a sequence of points (po,Pi,...Pa—1)
determine the points {af,...a) ,} and {b},...b._,}

use ray shooting to find points a}, b} for i € Zy
sort the red points into a sequence (To,Ti,...,Tan—1)
construct the graph Gp

using BFS in Gp find a path from vi,i to vy j

output the path or a message if one does not exist

~NOoO O WwWN

Figure 4: Outline of the algorithm for finding a win-
ning relaxed path

Proof: An outline of an algorithm which, given a simple
polygon, finds a search schedule for an 1-searcher is pre-
sented in Figure 4. The correctness of the algorithm fol-
lows immediately from Theorem 3.4 and the definition of
the graph Gp.

We have to show that the algorithm runs in time O(n?).
Steps (1) and (2) of the algorithm take time ©(n). Note
that the number of concave regions, m, cannot exceed the
number of edges in the polygon. Thus the number of red
points is exactly 4m which is O(n). From Lemma 3.1 it
follows that step (3) can be done in time O(nlogn). Step (4)
takes time O(mlogm). Steps (5) and (6) can be completed
in time O(m?) since the graph has O(m?) vertices and the
outdegree of each vertex is bounded by 4.

Thus the total running time is O(nlogn + m?), which is
equivalent to O(n”) in the worst case, when m = O(n). 1§

4. IMPLEMENTATION AND COMPARISON
WITH PREVIOUS WORK

The algorithm outlined in Figure 4 was implemented using
GNU C++ and the Library of Efficient Data Types and
Algorithms (LEDA), and experiments were performed on a
Pentium III 500Mhz PC running Linux. The algorithm was
determined to be efficient enough for practical use in real
environments. Figure 5 provides an example of the program
output. Note that the position of the pursuer on the bound-
ary is designated with a small white circle.

The polygon in Figure 5 is interesting beyond a mere il-
lustration of the algorithm implementation. It represents
a polygon which requires a recontamination in order to
be searched successfully. The recontamination happens be-
tween frames (d) and (e): the endpoint of the flashlight
jumps over an interval of P, thus some of the area which
was already cleared is contaminated again after the pursuer
rotates the beam to the left.

It is important to note that a schedule for a 1-searcher which
contains a recontamination move cannot be simulated by a
corresponding search schedule with two guards [7, 5, 12].
The reason is that the two guards cannot maintain visibility
and stay on 0P while attempting to simulate a jump of the
flashlight. Therefore, there are polygons that can be cleared
by a 1-searcher but cannot be cleared by two guards. Since
every schedule for two guards is a schedule for a 1-searcher
as well, it follows that the set of polygons that can be cleared
by a 1-searcher is a strict superset of the polygons that can
be cleared by two guards. Also, note that while the polygon
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Figure 5: A polygon which requires recontamination (between frames (d) and (e)).

in Figure 5 can be cleared by a chain of three guards using an
algorithm by Efrat et al [3] (this is generalization of the two
guards problem to a chain of k guards), this is not equivalent
to finding a solution for a 1-searcher.

Similarly, it is not hard to show that every point in the
polygon in Figure 5 is contaminated at some time during
any successful 1-searcher schedule. Thus there is no point d
such that the room (P, d) can be cleared by a 1-searcher as
described in the O(n?) algorithm of Lee et al [9].

5. CONCLUSION

In this paper we have presented an O(n?) algorithm which,
given a simple polygon with n edges, decides whether the
polygon can be cleared by a l-searcher and if so, outputs
a search schedule. The algorithm is a nontrivial generaliza-
tion of the two-guard search algorithm and solves a (rather
longstanding) problem left open in [11]. The most interest-
ing extension of the result in the current paper would be an
algorithm which, given a polygon and an integer k, decides
whether the polygon can be cleared by k 1-searchers, and
ideally, returns a search schedule. Note that the problem
does not impose any restrictions on the mutual visibility
between the 1-searchers which, we can easily show, allows
clearing of a strictly greater set of polygons as compared to
a chain of £+ 1 guards. Finally, while the proposed problem
for k 1-searchers is NP-hard for polygonal regions which
contain holes [13], little is known about the complexity of
the problem for simple polygons.
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APPENDIX
A. PROOF OF THEOREM 3.4, PART (II)

In this section we provide an outline of the proof that a
winning relaxed path can be transformed into a winning
legal path.

LEMMA A.1. Every horizontal or vertical line of the skele-
ton has a tip which touches a region in X,. Specifically, let
{a},a}) be the endpoint of a red line. There erists a suf-
ficiently small rectangle Q with left upper corner {(aj,u1)
and lower right corner {v,u2), where a} € (ui,u2) and
aj € (a},v), such that the interior of Q lies entirely in X,,.
(A similar statement is true for the other three kinds of end-
points of red lines.)

Proof: The proof follows directly from the definitions of
the red points a}, and aj; refer to Section 3.1 and Figure 2.
We choose u1 = pi, u2 = pit+1 to be the endpoints of the
edge that a}, lies on. Also, we choose v € OP, such that
v € (ay,a}), and v is sufficiently close to aj such that the
edge pipi11 is visible from every point in the interval (a}, v).
Clearly, the interior of @ lies in X,. ]

LEMMA A.2. Let uv be a horizontal or vertical segment,
such that u,v € X,. Ifuv N X, £ 0, thenuwo N SK # 0.

Proof: The lemma states the fact that relative to a fixed
point p, every maximal interval of points invisible from p

has to contain a point ¢ € A’ U B’, such that p € H(g). In
other words, if there is a part of the boundary which is not
visible from p, it must contain some red point, aj, or bj,. B

In general, X, consists of a finite number of maximal con-
nected regions. We call them conservative regions, be-
cause any path within a region preserves the left invariant®.
For example, there are three conservative regions in Fig-
ure 3(a).
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Figure 6: Horizontal separation of conservative re-
gions in the proof of Lemma A.3.

The following lemma states that conservative regions which
do not overlap horizontally are separated by black horizontal
lines.

LEMMA A.3. Let C be a conservative region, and let the
configuration {(p1,q2) € X be a local minimum of the bound-
ary of C. For q1,qs € OP, such that q2 € (q1,q4), suppose
that the configurations c1 = (p1,q1) and c2 = (p1,q4) do not
lie on the boundary of C. Let Q be a sufficiently small rect-
angle with an upper edge ¢ica, such that all interior points
of Q lie in Xn. For qs € (q1,q4), if (p3, q3) € Xo—Q, then it
follows that there is a black horizontal line which separates
p1 and ps, i.e., there exists p» € OP, pa € (p1,p3) such that
the horizontal segment between (p2,q1) and (p2,qs) is a part
of a black line.

Proof Sketch: The proof relies on an observation of Guibas
et al [4] that when the pursuer moves along the boundary, an
interval of visible points appears/disappears exactly when
a point on a bitangent line is crossed?. Note that in the
lemma, the existence of a local minimum (p, g2) for the con-
servative region C means that when a pursuer is moving in
the positive direction along the boundary, a visible interval
neighboring point ¢» disappears exactly when the pursuer

3The conservative regions in our paper have a meaning close
to the conservative cells defined by Guibas et al [4].

“These are the “green points” defined in [4].



crosses point p;. Therefore, p; must be a point where a bi-
tangent intersects OP. Assume that the pursuer continues
to move clockwise on the boundary past point p1. How soon
can point g3 become visible? No point = € (g1, g4), includ-
ing g3, is visible before the pursuer crosses another point p}
of the bitangent. Since there is a point p2 € A’ U B’ such
that p2 € (p1,p}) and (q1,494) C H(p2), it follows that there
is a corresponding black horizontal line which includes the
segment between the configurations (p2,q1) and (p2,q4). 1

Since describing the exact shape of the conservative regions
is rather complicated, we would like to enclose every region
in a rectilinear boundary which will be easier to construct
and explore.

DEFINITION A.4. Given a configuration ¢ € X, the set
of all configurations reachable from c without crossing the
skeleton is called o vistbility tile (of c).

Note that every conservative region of X is contained in
some visibility tile. If a tile does not contain a conservative
region, it is an empty tile. Otherwise it is nonempty.

PROPOSITION A.5. Let T be a nonempty tile, let Co and
C1 be two conservative regions in T, and co and c¢1 be two
configurations, such that co € Co and c1 € C1. If there is a
rectilinear path within T from co to c1 and the path consists
of k segments, then there is a rectilinear path from co to ci
entirely within X,, i.e., along mutually visible points.

Proof Sketch: The proof is by induction on k, the number
of segments in the rectilinear path between co and c;.

The basis of the induction includes two cases: £k =1 and k =
2. The case for k = 1 follows immediately from Lemma A.2.
The case for k = 2 follows from Lemma A.3. The inductive
step includes separate arguments for monotonous and non-
monotonous rectilinear paths. (We define a “monotonous
rectilinear path” as a rectilinear path, the projection of
which on any of the two axes is either a nondecreasing or a
nonincreasing vertical /horizontal path.) We omit the details
for space considerations. |

COROLLARY A.6. Each tile T contains at most one con-
servative region. This implies that, for a nonempty tile T,
if ¢, € Xy NT, then there is a path between ¢’ and c”’
entirely within X, NT.

Let Ty and 7171 be two nonempty tiles, and let p,qo,q1 be
points in dP, such that qo € (p,q1) and the configurations
do = (p,q0) and d1 = (p,q1) are interior points in Ty and
T1, correspondingly. If the line segment dodi crosses nei-
ther the diagonal nor any nonempty tiles other than Tp and
T, we say that Tp is a left neighbor of 7. We assume
that neither of the tiles borders the diagonal line. We can
make the assumption since our goal with the relation “left
neighbor” is to represent the recontamination move of the

pursuer, and recontamination from or to a tile which bor-
ders the diagonal is not useful. If there is recontamination
to a nonempty tile which is immediately above the diagonal,
then we can ignore all the previous moves, since this tile is
reachable directly from the diagonal. Similarly, if there is
recontamination from a nonempty tile which is immediately
below the diagonal, we can ignore the rest of the moves,
since the diagonal is reachable before the recontamination.

|—\_|
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Figure 7: Position of Cy, Ci, Ty, and T in the proof
of Lemma A.7.

LEMMA A.7. If To and T1 are two nonempty tiles such
that To is a left neighbor of Th, then the corresponding con-
servative regions, Co and C1, overlap horizontally, i.e., there
exist co = (p,q0) € Co and ¢1 = (p,q1) € C1. Also, the seg-
ment Coc1 does not cross any conservative regions other than
Co and Cl .

Proof Sketch: Note that if one of the two tiles T; is un-
bounded, then the corresponding conservative region Cj; is
unbounded and it overlaps horizontally with the whole ver-
tical axis, which proves the claim. Therefore, it suffices
to consider the case in which both tiles are bounded from
above and below by black lines. Let Lo = (lo,-) (respec-
tively, L1 = (l1,-)) be the lowest (resp., highest) horizon-
tal black line which borders Ty (resp., T1). Similarly, let
mo = {(mg, mg) (resp., m1 = (m3, m{)) be the global mini-
mum (resp., maximum) on the boundary of the conservative
region of Tg (resp., Th), see Figure 7.

Since Tp is a left neighbor of T1, there exists a horizontal
edge dodi which extends from Tp to 7:. Without loss of
generality, assume that dod; lies between lines L; and L.
(The case in which dod: lies between lines Lo and L; is sim-
ilar, we just have to redefine the lines Ly and L; to the
highest and lowest horizontal lines of the corresponding re-
gions.) If we assume that my & (I1,100) or mgy & (I1,1o), we
can apply Lemma A.1 to show that there are nonempty tiles
between Ty and T3. This would contradict the hypothesis,
therefore, it follows that mg, m} € (I1,lp). For the sake of
contradiction, assume that the white regions do not overlap
horizontally, i.e., my € (I1,m}). We can apply Lemma A.3
by choosing mo for the local minimum in the lemma, and
any point in X, sufficiently close to m1 for the configuration
in X,. It follows that there is a horizontal black line which




Figure 8: Inductive step in Proposition A.8.

crosses the rectangle with left upper corner mg and lower
right corner m1. This implies that the black line lies between
the lines L; and Lo, so either Lg is not a bordering line of
Ty, or L; is not a bordering line of T1. We have reached a
contradiction, therefore our assumption that mg € (I1, m})
is false. It follows that Co and Ci overlap horizontally, i.e.,
there exist co = (p,qo) € Co and c1 = (p,q1) € Ch.

Using Lemma A.l again, we can show that there are no
nonempty tiles (other than Ty and T}) in the rectangle with
left lower corner mo and right upper corner mi. It follows
that the horizontal segment ¢oc; does not cross any conser-
vative regions other than Cy and Ci. ]

Every relaxed path 7 which starts and ends at a nonempty
tile can be partitioned into a sequence of subpaths 79, p1,
Ti,---, Pk, Tk Such that every subpath 7; lies completely in-
side a nonempty tile and every subpath p; starts in the tile
of 7;_1, ends in the tile of 7;, and crosses no other nonempty
tiles. On the other hand, a legal path p can be partitioned
into a concatenation of subpaths to,r1,%1,...,7%,tx Where
each t; is a legal path inside the same conservative region
and r; is a horizontal path which starts from the conser-
vative region of ¢;_1, ends in the conservative region of ¢;,
and does not cross other conservative regions. Intuitively,
a path t; corresponds to a sequence of the four reversible
moves of the pursuer as defined in section 2.2. A horizontal
segment r; (always right-to-left) corresponds to the fifth, re-
contamination move: stationary pursuer, rotating the flash-
light counterclockwise across an interval of invisible points.
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We will show that we can transform every relaxed path =
into a legal path p, by replacing every subpath 7; and p;
with legal subpaths ¢; and r;. A formal description follows.
For convenience, we use s(m) and f(7) do denote the start
and the end of a path w (same for path p).

PROPOSITION A.8. Ewvery relazed path m = 10-p1-7T1 - - - Pk~
T with s(w), f(w) € X, and starts and ends in X, can be
transformed into a legal path p =to-11-t1...7 - tr, where
Ti, Pi, ti and r; are defined as above and s(w) = s(p) and

f(m) = £(s).

Proof: The proof is by induction on k, the number of times
the path 7 switches between nonempty tiles.

[Basis, k =0]. If # = 79, this implies that 7 starts and
ends in the same conservative region and never leaves its
original tile. From Corollary A.6 it follows that there exists
a path p = to, such that s(p) = s(w), f(p) = f(x), and to
lies entirely within X,,. Thus p is a legal path.

[Hypothesis, k < n]. Assume that the proposition is true
for all k < n.

[Inductive step, k =n]. Let 7 =79-p1-71...pn - Tn be as
described in the proposition. We have to show that it can be
transformed into a legal path p =to-71-t1...7n - tn. Let Tp
and T be the first two nonempty tiles that 7 visits, i.e., 70 C
To and 71 C T1. From Lemma A.7 it follows that there exists
a pair of configurations ¢o € X, NTp and ¢1 € X, NT1 such
that 7o = ¢oc1 is a horizontal segment in X, see Figure 8.
Also, by the assumption, we have s(79) = s(w) € To N Xy,
and since ¢p € Top N X, from Corollary A.6 it follows that
there exists a legal path to C To N X, with s(to) = s(70)
and f(to) = co. Finally, there is a path 71 C T such that
s(t1) = c1 and f(ri) = f(m1) = s(p2).

We apply the inductive hypothesis to the relaxed path 7/ =
T{-p2-T2 ... pn-Tn to get the legal path p’ = t1-ra-ta... 7y tn.
We define the legal path p = to - ro - p’ thus proving the
inductive step. |

LEMMA A.9. Every winning relazed path can be trans-
formed into a winning legal path.

Proof: Follows immediately from Proposition A.8 and also
from the fact that, for every nonempty tile 7" which borders
the diagonal, the corresponding conservative region C also
borders the diagonal. |



