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Abstract

We present an algorithm for a single pursuer with one flashlight that searches for an unpre-
dictable, moving target with unbounded speed in a polygonal environment. The algorithm decides
whether a simple polygon with n edges and m concave regions (m is typically much less than n,
and always bounded by n) can be cleared by the pursuer, and if so, constructs a search schedule
in time O(m? + mlogn +n). The key ideas in this algorithm include a representation called
the “visibility obstruction diagram” and its “skeleton,” which is a combinatorial decomposition
based on a number of critical visibility events. An implementation is presented along with a
computed example.

1 Introduction

Consider the following scenario: in a dark polygonal region there are two moving points. The
first one, called the pursuer, has the task to find the second one, called the evader. The evader
can move arbitrarily fast, and his movements are unpredictable by the pursuer. The pursuer is
equipped with a flashlight and can see the evader only along the illuminated line segment it emits.
The pursuer (or 1-searcher [SY92]) wins if she illuminates the evader with her flashlight or if both
happen to occupy the same point of the polygon. Clearly, the pursuer should, at all times, be
located on the boundary of the polygon and use the flashlight as a moving boundary between the
portion of the polygon that has been cleared (i.e., the evader is known not to hide there) and the
contaminated portion of the polygon (i.e., the part in which the evader might be hiding). If there
is a movement strategy of the pursuer whereby she wins regardless of the strategy employed by the
evader, we say that the polygon is searchable with one flashlight, or 1-searchable.

The problem above was introduced by Suzuki and Yamashita [SY92], who were interested in the
existence and complexity of an algorithm which, given a simple polygon P with n edges, decides
whether P is 1-searchable and if so, outputs a search schedule. Although the problem has been open
for a while, no complete characterizations or efficient algorithms were developed. Naturally, several,
restricted variants were considered. Independently of [SY92], Icking and Klein [IK92] defined the
two-guard walkability problem, which is a search problem for two guards whose starting and goal
position are given, and who move on the boundary of a polygon so that they are always mutually
visible. Icking and Klein gave an O(nlogn) solution, which later was improved by Heffernan
[Hef96] to the optimal ©(n). Tseng et al [THLYS] extended the two-guard walkability problem
by dropping the requirement that the starting and goal positions are given. They presented an
O(nlogn) algorithm which decides whether a polygon can be searched by two guards, and a O(n?)
algorithm which outputs all of the possible starting and goal positions which allow searchability
by two guards. Recently, Lee et al [LPCO00] defined 1-searchability for a room (i.e., a polygon with
one door — a point which has to remain clear at all times) and presented an O(nlogn) decision

*An earlier version of this paper appeared at SoCG’2000.



algorithm and a method to construct a solution in time O(n?). In this paper we solve the original
problem defined in [SY92], and we show that it is a nontrivial generalization of the variants of
1-searchability defined in [IK92] and [LPC00].

Originally, the problem of 1-searchability of a polygon was introduced in [SY92] together with
a more general problem in which the pursuer (a.k.a. k-searcher) has k flashlights; when k is not
bounded this corresponds to a 360° vision. For results concerning 360° vision refer to [SY92, CSY95,
GLL197, LSC99] for search in polygons and to [LH99] for curved planar environments.

Our model is motivated in part by the need in mobile robotics systems to develop simple sensing
mechanisms and to minimize localization requirements (knowing the precise location of the robot).
The “flashlight” could be implemented by a camera and vision system that uses feature detection to
recognize a target. Alternatively, a single laser beam could be used to detect unidentified changes
in distance measurements. Many localization difficulties are avoided since the robot is required
to follow the boundary of the environment. Sensors could even be mounted along tracks that
are fastened to the walls of a building, as opposed to employing a general-purpose mobile robot.
Although it is obviously restrictive to consider only environments that can be cleared by a single
pursuer, the problem considered in this paper is rather challenging. In addition, it may be possible
to extend some of the ideas in the algorithm for a single 1-searcher to allow the coordination of
multiple pursuers, eventually broadening the scope of applications.

The rest of the paper is organized as follows. Section 2 introduces the notation and provides
observations which reduce pursuit-evasion by a 1-searcher to a search problem on a torus. In
Section 3.1 we define critical points on the boundary which are essential for determining the solution
schedule of the 1-searcher. In Section 3.2 we use these points to reduce the search as presented in
Section 2 to a search in a finite maze. In Section 4 we present an O(m?+m logn+n) algorithm which,
given a polygon with n edges and m concave regions, decides whether the polygon is searchable
and if so, constructs a schedule for the 1-searcher. Section 5 discusses an implementation of the
algorithm, and also the relationship between our result and the results in [IK92, Hef96, THL9S8],
[EGHP'00] and [LPCO00]. Section 6 concludes the paper with a summary and directions for future
research.

2 Notation and preliminaries

2.1 Notation

Let P be a simple polygon. (From now on, a polygon is always assumed to be simple.) We denote
the boundary of P by dP. We assume that 0P C P and that 0P is oriented in the clockwise
(also called positive) direction. For any two points a,c € P, we write (a,c) to denote the open
interval of all points b € @P such that when starting after a in positive direction along 0P, b is
reached before ¢. We also use the notation [a,c|, [a,c) and (a,c] for the closed and half-closed
intervals on OP.

Let po,p1,...,pn—1 denote the vertices on P ordered in the positive direction. The edges of
OP are eg, €1, ...,e,_1, where edge e; has endpoints p; and p;;1, where i € Z,, (i.e., the indices are
computed modulo n; e.g., pg = pp)-

We use the standard definition of visibility. For points ¢,d € P we say that d is visible from
¢, if every interior point of the line segment cd lies in P — OP. Obviously, if one point is visible
from another, then the two are mutually visible. Note that no two points on the same edge of P
are mutually visible.



2.2 Configuration: a snapshot of the pursuit

We start with a simple example of how the pursuer can clear the polygon in Figure 1(a). Initially,
she is at point 0 with the flashlight pointing at 0. To start the search she moves from point 0 to
point 14, while at the same time! she rotates the flashlight from point 0 to point 1. Next, the
pursuer, while staying at 14, rotates the flashlight from point 1 clockwise to point 5. Then she
moves from point 14 to point 13 constantly illuminating point 5. Following that, she rotates the
flashlight from point 5 to point 7, and then moves from point 13 to point 10. After a final rotation
of the flashlight from point 7 to point 8, the pursuer is at point 10 illuminating point 8. The
search is completed when she moves from 10 to 9 and simultaneously rotates' the endpoint of the
flashlight from 8 to 9.

The following observations are immediate. Because of his unbounded speed, we can assume
that the evader moves only along the boundary. As we mentioned above, the pursuer also moves
along OP and uses the flashlight to separate the clear and contaminated portions of the polygon.
Furthermore, without loss of generality, we will assume in the rest of the paper that the clear
portion of the polygon is always to the left of the pursuer as she looks in the direction of the beam
of light emitted by her flashlight. We call this assumption the left invariant. Thus, a single pair
of points is sufficient to record the current status of the pursuit as seen by the pursuer. We define
a configuration to be a pair (p, ¢) of points p,q € 0P, and the space of all configurations X to be:

X = 0P x 0P ={{p,q) | p,q € OP} .

Let X4 C X denote the set of all diagonal configurations (p,q) such that p and ¢ lie on the
same edge of P. We denote the set of all feasible configurations, X, C X, consisting of pairs
(p,q) of mutually visible points, i.e., such that ¢ is visible from p. Intuitively, for (p,q) € X,, p
represents the position of the pursuer, while ¢ represents the point illuminated by the flashlight. If
the left invariance assumption holds for configuration (p, ¢), then all points between p and ¢ (along
OP) are clear and all of the points between ¢ and p are contaminated. Finally, let the set of all
non-feasible configurations, X,, = X — X; — X, consist of all pairs (p,q) of points which do
not lie on the same edge and are not mutually visible. Thus a non-feasible configuration represents
a situation, that cannot arise because of the geometry of P.

Definition 2.1 The wvistbility obstruction diagram(VOD) for a polygon P is defined as the
3-partition of X, (X4, Xy, X)), where Xy, X, and X, are defined as above.

Figure 1 provides an example of a simple polygon and the VOD corresponding to it. The black
squares along the diagonal of Figure 1(b) represent X, the shaded area represents X, and the
white area represents X,,.

2.3 Linking the snapshots together

In the previous section we have shown how for a polygon P with VOD X, we can represent a single
snapshot of the pursuit as a feasible configuration in X,,. Next we are interested in a way to encode
an entire strategy of the pursuer. Without loss of generality we can assume that the pursuer starts
at time ¢ = 0 and finishes at time ¢ = 1. For every time ¢, 0 < ¢ < 1, let us denote by T'(t) € X, the
feasible configuration that the pursuer is in at that time. That is, let T'(t) = (T (t), T2(t)), where
T1(t) € OP denotes the position of the pursuer and T5(t) € P denotes the point on the boundary

'Note that the beginning and the end of the search are the only times when the pursuer has to simultaneously
move herself and rotate the flashlight.



Figure 1: (a) a simple polygon (b) corresponding visibility obstruction diagram

illuminated by the flashlight at time ¢. We are interested in T (t), T>(t) and T'(¢) as functions of
the time t, because we would like to represent a pursuer strategy (i.e., continuous motion of the
pursuer and rotation of the flashlight) as a path in X,,. Clearly, every strategy of the pursuer can be
mapped via T into a path in X,. On the other hand, does every path in X, have a corresponding
pursuer strategy? The answer is “no”. If T'(¢) corresponds to a pursuer strategy, then it does not
contain:

1. a vertical jump: this would imply discontinuity in 7} (¢), which is impossible since the pur-
suer must move continuously along the boundary. Therefore, if there are any discontinuities
in T'(t), they have to be horizontal jumps.

2. a horizontal jump entirely over points in X,: this would imply that a pursuer who is
stationary at point p € P and is rotating her flashlight from point ¢; to point g2 does not
illuminate some point between ¢; and gy. But this is impossible, since all points between ¢
and g9 are visible from p, and every visible point must be illuminated. Therefore, if there are
any horizontal jumps in T'(¢), they have to be over X — X, = X;N X,,.

3. a horizontal jump over X;: this would correspond to the pursuer pointing the flashlight
outside the polygon, which is impossible. Therefore, horizontal jumps in T'(t) are only possible
over X,,.

4. a left-to-right horizontal jump over configurations in X,,: this would correspond to a
stationary pursuer who tries to rotate the flashlight clockwise across an interval of invisible
points in QP — this will invalidate the left invariant. For example, in Figure 1(a), if the
pursuer is at point 14 and rotates the flashlight from point 5 to point 12 (over the invisible
points between 6 and 11), this will cause the whole polygon to be contaminated again, thus
losing all of the work to this point. This invalid move is shown as the left-to-right dotted
arrow in Figure 1(b).



Finally, by combining (1)-(4) we conclude that if there is any discontinuity in 7'(¢), it can be
only a horizontal jump from right to left over X,,. This corresponds to a stationary pursuer, who
rotates the flashlight to the left across an interval of invisible points. For example, in Figure 1(a),
if the pursuer is in point 13 and rotates her flashlight from point 5 to point 2 (over the interval of
invisible points between 3 and 4), the move is represented in Figure 1(b) as the right-to-left dotted
arrow in X. We call this a recontamination move since in the example originally the points on
the boundary between 13 and 5 are clear, while after the move only the points between 13 and 2
remain clear, i.e. the interval between the points 2 and 5 is contaminated again.

Note that, technically, recontamination happens every time when the pursuer rotates the flash-
light in counterclockwise direction. However, since counterclockwise rotation over visible points is
reversible (i.e., a subsequent clockwise rotation of the flashlight to the original position preserves
the left invariant), we consider it as a trivial form of recontamination and reserve the term “re-
contamination” for the irreversible counterclockwise rotation of the flashlight over an interval of
non-visible points.

Definition 2.2 Let T'(t) = (T1(t),T2(t)) € Xy, 0 <t < 1, be a path in X, which has k disconti-
nuities (k > 0) at times t1,to...,tg, such that T'(t) is continuous the rest of the time, and every
discontinuity represents a horizontal jump from right to left over X,,. Let also T(0) = lim;_,q+ T(t)
be the beginning of the path, such that, T(0) = (p,p) for some vertex p € OP and T(t) approaches
T(0) from above or from the right. (This means that the path starts from a configuration in which
the entire boundary is contaminated.) We define T'(t) to be a legal path. Also, if T(t) is a legal
path in which T(1) = lim;_,,- T'(t) is the end of the path, such that, T(1) = (q,q) for some vertex
q € OP and T(t) approaches T'(1) from below or from the left (this means that the path ends in a
configuration in which the entire boundary is clear), we say that T(t) is a winning legal path or
simply winning path.

For example, the winning path representing the solution described in Figure 1(a) is plotted as
the rectilinear path of solid arrows in Figure 1(b) starting from the letter ‘S’ in the lower right
corner, wrapping around? and ending at the letter ‘F’.

From the discussion above it is clear that there is a one-to-one correspondence between a
(winning) pursuer strategy and a (winning) legal path. This leads to the following statement.

Proposition 2.3 Let P be a polygon with a VOD X. P is 1-searchable if and only if there exists
a winning path in X.

Note that T4 (t) and T5(t) are treated differently. Since the pursuer moves continuously on the
boundary, then T (t) is also continuous. On the other hand, since the endpoint of the flashlight can
jump over invisible intervals of P, then T5(t) is piecewise continuous: we allow T5(¢) to make
horizontal jumps from right to left over X,,. This is the main difference between the problem of
clearing a polygon with a single 1-searcher as compared to the problem of clearing a polygon with
two guards [IK92]. The two-guards problem can also be represented as a search in the VOD, with
the only difference that T5(t) and, therefore, T'(¢) have to be continuous, i.e., the recontamination
move is disallowed.

If for a polygon P there exists a winning path which does not contain a recontamination move,
we say that P can be cleared without recontamination. On the other hand, if all of the
legal winning paths for P contain a recontamination move, we say that clearing P requires
recontamination. (For a more detailed example of a polygon, which requires recontamination,
see Figure 7, discussed in detail in Section 5.)

2The circularity of OP implies that there is a vertical and horizontal wraparound along each of the axes, making
X into a torus.



2.4 Compact encoding of a solution

In the previous section we showed that in order to check whether a polygon is 1-searchable, it
suffices to verify whether there exists a winning path in its VOD. However, if in addition we would
like our algorithm to describe the winning path (i.e., output a winning strategy of the pursuer) we
have to take into account several configurations. If a polygon is 1-searchable, then the number of
existing winning paths is infinite. They may vary by shape or length, so, intuitively, we would like
to output a relatively simple (shorter, smoother, with less detours) path T'(¢). Even in this case,
it is clear that we cannot expect the algorithm to print all of the configurations 7T'(¢) in the time
interval ¢ € [0, 1]. This implies that instead, we have to print a finite sequence

T(to=0),T(t1),T(t2),...-T(tk—1),T(tx =1) ,
which conforms to the following two requirements:

e the length of the sequence, k, is as small as possible, (ideally, k is bounded by a polynomial
in n, since we are looking for an algorithm which runs in polynomial time)

e each move from configuration T'(¢;) to configuration T'(¢;+1), 0 < 7 < k belongs to a finite
set of “elementary moves”: these moves should be easy to describe, and straightforward to
implement in a real-world application.

Note that the two requirements might be conflicting. Next, we present a reasonable tradeoff
between them, by carefully defining of the set of “elementary moves”.

2.4.1 The naive approach: rectilinear paths in X,

The most straightforward, yet flawed, approach to choosing a set of elementary moves is to assume
that during any elementary move either the pursuer is stationary or the flashlight illuminates the
same point. Thus the motions of the pursuer and the rotations of the flashlight can be represented
by vertical or horizontal directed segments in X as follows:

1. Flashlight rotation in clockwise direction over visible points and a stationary pursuer corre-
sponds to a horizontal segment in X, directed from left to right. In Figure 1, the rotation
from point 1 to point 5 in the beginning of the solution is represented by the first (horizontal)
arrow in the path.

2. Flashlight rotation in counterclockwise direction over visible points and a stationary pursuer
corresponds to a horizontal segment in X, directed from right to left.

3. Motion in counterclockwise direction of the pursuer with the flashlight illuminating the same
point corresponds to a vertical segment in X, directed up. In Figure 1, the move of the
pursuer from point 14 to point 13 while illuminating point 5 is represented by the second
(vertical) arrow in the path.

4. Motion in clockwise direction of the pursuer with the flashlight illuminating the same point
corresponds to a vertical segment in X, directed down.

5. Recontamination move

One advantage of choosing the five moves above as elementary ones is that they are simple and
easy to describe. However, the examples in Figure 2 suggest, that there is a serious drawback if we



Figure 2: The size of a rectilinear legal path is not bounded by n

use a rectilinear moves to describe a winning strategy for the pursuer even in a relatively simple
polygon. Detailed explanation follows.

Consider first the polygon in Figure 2(a). It can be searched, for example by the following
rectilinear winning path:

(0,0, (15,1), (15,3), (13,3), (13, 8), {7, ), (v, @), (10, @), (10, 4), (8,4), (8,6), (7, 7)

While this is not the only rectilinear winning path, an important property of the polygon is that in
order to get from configuration (13,3) to configuration (10,4), we need to introduce intermediate
stopping points «, 8 and .

Let us now change slightly the shape of the polygon. We move vertices 13 and 10 horizontally
towards each other, leaving the rest of the vertices intact, see Figure 2(b). The original position of
the edges 10,11 and 12,13 is shown as a dashed line. How does a rectilinear winning path for the
new polygon look like? It will have at least 9 intermediate stopping points:

(0,0),(15,1), (15,3), (13, 3), (13, €), (3, €}, (3, d), (h, d), (h,c),
{9,),{9,0), (£, 0), ([, ), (10,0}, (10,4), (8,4), (8,6),(7,7)

Note that the polygons in Figure 2(a) and (b) are very similar. In particular, they have the
same number of edges, n, and furthermore, the visibility relation between edges and vertices is the
same in the two polygons. Intuitively, the length of the minimal rectilinear winning paths should
be the same. However, as we have shown, the second polygon requires a longer rectilinear winning
path. Since we can use a similar construction to build a polygon in which the vertices 10 and 13 are
arbitrarily close, it follows that we can increase the length of its rectilinear winning path arbitrarily
while keeping n fixed. Thus, the length of the path and hence the time to describe a solution, does
not depend on the number of edges n; therefore, the proposed set of elementary moves is unsuitable
for a compact encoding of a solution.

2.4.2 Encoding a solution with length O(n?)

Given that several other papers dealing with 1-searchability [SY92, LPC00] had to formally describe
a strategy of the pursuer, how did they encode a solution? While a detailed definition can be found
in [SY92, LPCO00], we summarize the approach, which we call conservative, as follows. The set of
elementary moves contains the recontamination move, and four other elementary moves that allow
simultaneous pursuer motion and flashlight rotation, as long as those do not cross a vertex of 0P.
It can be seen that this approach limits the maximal length of a solution to ©(n?); therefore, the
time required for an algorithm to print a solution is Q(n?).



There is a minor drawback to using the conservative set of instructions to describe a solution.
Consider the following example from Figure 2(a). Suppose that the pursuer is at point 15 and
is illuminating point 1. If the pursuer starts to rotate the flashlight in clockwise direction until
it illuminates point 3, this intuitively represents a single move: (15,1) — (15,3). However, in
the conservative approach, we have to break the rotation of the flashlight at every vertex that we
illuminate, thus in this case, the rotation will be described as: (15,1) — (15,2) — (15,3). An
extreme example would be the case of a regular n-sided polygon in which every pair of points is
visible. Clearly, this is the simplest possible instance of the problem and can be cleared with a single
rotation of the flashlight. On the other hand, if we use the conservative instructions, the single
rotation has to be broken into a series of n instructions, one for each vertex that is illuminated by
the flashlight.

Intuitively, it is not necessary to break up moves of the pursuer or rotations of the flashlight
only because they cross a vertex. In the next section we show a set of elementary instructions which
combines the advantages of the previous two approaches and allows us to encode every solution with
O(m) instructions, where m, the number of concave regions in the polygon is defined in Section 3.1.

2.4.3 Atomic moves

In this section we define the five atomic moves, which will be the basic building blocks for any
legal path. One of the five moves is the recontamination move. The other four moves resemble the
four conservative moves from Section 2.4.2: the pursuer is moving while simultaneously rotating
the flashlight. We call the moves northeast, northwest, southeast and southwest since these are the
directions of the respective paths in X.

Definition 2.4 Let p1,p2,q1,92 € OP be in clockwise order on the boundary, such that, ¢ =
(p2,q1), " = (p1,q2) € Xy. Let also R € X — X4 be the rectangle with lower left corner ¢ and upper
right corner c'. We say that there is an atomic northeast move from c to " if either of the
following conditions holds:

(i) R C X,, i.e., every configuration in R is feasible

(i1) For every feasible configuration ¢ € RN X, there is an atomic northeast move from ¢ to c
and an atomic northeast move from c to c”.

Note that the condition recursively divides in move into two submoves. Condition (i) represents
the base of this recursion. An atomic northeast move can be intuitively be considered as a chain
of diagonal motions in the northeast direction in X.

Case (i) can be illustrated by the following example, see Figure 2(a). The move from configu-
ration (14, 3) to configuration (13, ) is a northeast one. To show this, we choose p; = 14, po = 13,
¢1 = 3 and g9 = . Clearly, every point in [g1, go] is visible from every point in [p1,ps]. Thus the
rectangle R, as defined above, contains only feasible configurations and the case (i) holds.

A move from (15,1) to (13, 3) is an example for an atomic northeast move, case (ii).

The atomic southwest, southeast and northwest moves are defined similarly.

An immediate observation is that each of the five rectilinear elementary moves defined in Sec-
tion 2.4.1 is an atomic one. Furthermore, if we now use the atomic moves, a solution (i.e., winning
path) for the polygon in Figure 2(a) can be represented as:

(0,0) — (15, 1) 2513, Y2510, a) Y58, 6) —> (7,7) ,



where NE and NW stand for the atomic northeast and northwest moves. An important observation
is that Figure 2(b) has almost identical solution:

(0,0) —s (15, 1) 2513, )M%(10, a) 258, 6) —> (7, 7).

This illustrates the clear advantage of the set of atomic instructions compared to the rectilinear
ones defined in Section 2.4.1.

Also, a solution for the case of a n-sided regular polygon can be described with a single north-
eastern move, which is an advantage as compared with the conservative moves from Section 2.4.2.

3 Shelters and skeleton of the search space

In Section 3.1 we use simple geometric conditions to introduce “critical points”, which provide
the basis for determining the alternating order of the moves of the pursuer and the rotations of
the flagshlight. In Section 3.2 we use the critical points to construct a more compact, “skeleton”
representation of the VOD.

3.1 Critical points

Vertex p; € 9P is a reflex vertex if the angle formed by incident edges e; 1 and e;, in the interior
of P, is greater that 180° (i.e., points p; 1, p;, and p;y1, form a left turn). Otherwise, p; is a
non-reflex vertex. A maximal subinterval of OP of the form C = (p;,p;11), in which all of the
vertices p;11,...,p; are reflex vertices, forms a concave region. Obviously, two concave regions
cannot overlap and must be separated by non-concave regions (each of which contains at least one
non-reflex vertex). For example, Figure 1(a) shows two concave regions labeled A and B.

b/k:y X

Figure 3: An illustration of critical points

Inasmuch as the concave regions of P represent the obstructions to visibility, their extreme
edges represent the best hiding places for the evader (in view of his unbounded speed). Consider
the k-th concave region Cy = (ps,pj+1) of P, see Figure 3. Define shelters of Cj to be the two
points aj and b, the midpoints of the edges e; and e;, respectively. Shoot a ray [CEG194, HS95]
starting at point ay through p;;; and let z be the point of 0P where the ray leaves P for the first
time. Define the threshold of aj, denoted by a}, to be the point in @zZNIP which is farthest from



ay, in positive direction along the boundary. Similarly, shoot a ray starting at point by through p;
and let y be the point of 3P where the ray leaves P for the first time. Define the threshold of by,
b, to be the point in bry N OP which is farthest from by in negative direction along the boundary.
Given the points aj and a}, define H(ay) = (ax,a},] C OP. Note that ay, is not visible from any point
in H(ag). Thus, intuitively, whenever the pursuer stays in #(ay), the evader can hide at a; and is
guaranteed not to be detected by the pursuer. Similarly, we can define H(by) = [b},, bx) C OP.

We have defined, for each concave region Cy of P, four types of important points: two shelters,
ap and by, and two corresponding thresholds, aj, and bj,. These are collectively called the red
points of Cj and the sets of all such points, for the various concave regions of P, are denoted,
according to types, by A, B, A, and B’ respectively:

A={ag,...,am-1}, A'={ap,...,al, 1}
B={by,...,bm—1}, B ={bj,...,b,_1}.

Lemma 3.1 Let P be a polygon with n edges and m concave regions. The critical points of P and
their order along OP can be found in time O(n + mlogn).

Proof: The points in A and B can be found in time ©(n). To find the points in A’ and B’ we can
use the ray-shooting algorithms of Chazelle et al [CEGT94]. After a preprocessing time of O(n),
we can find each threshold by a single ray-shooting query in time O(logn). Thus we perform 2m
queries for a total time O(n + mlogn). |

3.2 Skeleton of X,

One of the main ideas of our algorithm is that instead of trying to determine (and use) the exact
shape of X,,, we will use the information obtained from the critical points to build an “equivalent”
search space that is computationally much more convenient. The leads to a skeletal representation
of the X,, in the VOD, and will allow us to construct a solution in time O(m? +mlogn + n), where
m is the number of concave regions of P. A detailed description of the new search space follows.

For any shelter a; € A define the horizontal wall o and vertical wall ! to be segments in
Xn:

o = {{ai,q) | g € H(a)}, of = {(p,ai) | p € Hlap)} -

Similarly, each shelter b; € B induces the horizontal and vertical walls ﬂz-h and ;] respectively:
Bl = {(bi,a) | ¢ € H(B:)}, ={(p,bi) [ p € H(bi)} -
Note that all walls are subsets of X,.
Definition 3.2 For a polygon P define the skeleton S C X, to be
S=DUA" UBPUAY UB?, where:
e D= {(p,p) | p € OP} is the diagonal wall, or simply the diagonal,

o Ah = U,c 0 ozk, Bh = Um:_1 ﬂ,’:, are the two sets of horizontal walls,

o A" = 0 oy, B U,c o Bi, are the two sets of vertical walls.



Let o (resp. oY) be a horizontal (resp. vertical) wall. The tip of ol (resp. oY) is the
configuration (a;,a;’) € X (resp. (a;',a;) € X). The tips of the walls 8 and 37 are defined
similarly. Note that a tip (of a wall) need not belong to X,. However, as the next lemma shows,
for every tip 7 (of a horizontal or vertical wall) there is a feasible neighborhood C' C X, such that
7 belongs to the (topological) closure of C.

Lemma 3.3 Let (aj,ax) be the tip of of. There exists a sufficiently small rectangle Q with left
upper corner {aj,u1) and lower right corner (v,ug), where a € (u1,u2) and aj, € (ax,v), such that
the interior of Q lies entirely in X,. A similar statement holds for the tips of the other three types
of walls.

Proof: The proof follows directly from the definitions of the critical points aj and aj. Let ay, lie
on the edge e; = pipi+1 of OP; refer to Figure 3 in Section 3.1. Let w1 = p; and us = p;11. Also,
let v € (a},ax) be sufficiently close to a},, such that the entire edge e; is visible from every point in
the interval (a},v]. Clearly, the interior of @ lies in X,,. [ |

q]_ S_L S SZ q2

Figure 4: Illustration for the proof of Lemma 3.4
The next lemma establishes that all horizontal and vertical walls in S touch the diagonal.

Lemma 3.4 Let v1v3 be a horizontal (resp. vertical) segment, such that v1,v9 € X, and t7o3ND =
0. If vyoe N X, £ 0, then v1o3 N (AY UBY) £ (resp. v1o2 N (.Ah U Bh) £0).

Proof: The two cases being similar, we assume the hypotheses for a horizontal segment o103,
where v1 = (p,q1), va = (p, q2), see Figure 4(a). By assumptions, there exists a point s € (g1, ¢2),
such that u = (p, s) € X,,. Then there exist configurations u; = (p,s1) and us = (p, s2), such that
uiug is the maximal horizontal subsegment of v7v5 which contains u and whose interior lies in X,.
Since none of the points in (s1, s2) are visible from p, there must exist a concave region Cy which
obstructs the view from p. Moreover, exactly one of the points s; and sy lies on Cj and is visible
from p, while the other point is not visible from p and does not lie on Cy, see Figure 4 (b,c). We
consider both cases:

o If s9 € Cx and (p,s2) € X,, then s = a; € (s1,52) and p € H(ag), see Figure 4(b). Thus
uiug NAY # .

e If s; € Cy and (p,s1) € X,, then s = by € (s1,52) and p € H(bx), see Figure 4(c). Thus
(AP N 'Bv ;é @



From both cases it follows that ujus N (AY U BY) # 0, and since uuy C v1vg, the lemma follows. B

Lemma 3.3 and Lemma 3.4 illustrate the intuition behind the term “skeleton” because all
horizontal and vertical walls in S span from the diagonal to a horizontal or vertical extrema (tips)
of X,,. Thus, in a sense, these lines form a supporting frame for X,. For example, Figure 5(a),
shows the VOD together with the skeleton S for the polygon in Figure 1.
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Figure 5: Skeleton (a) and square grid (b) of the polygon from Figure 1

Next we show that if we relax somewhat the restrictions that the regions X,, and Xy impose
on legal paths, we can build a simpler representation of X, which, as we shall see, will allow us
to find a solution in time O(m? 4+ mlogn + n). The idea is to replace the regions X,, and X, by
the skeleton S. The new search space is called skeletal obstruction diagram (SOD) and is
illustrated in Figure 5(b). It represents the skeleton S of the same polygon, drawn over the square
grid formed by plotting the critical points along the axes. For convenience we assume that the
configuration (ag,ap) is in the upper left corner of the grid. Note that the thin lines which form
the grid are added for reference only and are not part of the skeleton. The thick grey and black
lines in the figure correspond to the vertical and horizontal walls of S.

Definition 3.5 A relaxed path in X is a continuous rectilinear path which does not cross the
diagonal D or a horizontal wall and does not cross a vertical wall from left to right. A relaxed path
which starts immediately above D and ends immediately below D is a winning relaxed path.

Clearly, every legal path is also relaxed. The following theorem shows that clearing P is equiv-
alent (up to some transformation) to finding a relaxed path in its corresponding SOD.

Theorem 3.6 (i) Every winning legal path is a winning relaxzed path. (ii) Every winning relazed
path can be transformed into a winning legal path.

Proof: Since S C X,, U X4, the restrictions to a relaxed path are a subset of the restrictions to a
legal path, and the correctness of (i) follows immediately. The proof of (ii) is rather lengthy and
quite involved. A detailed argument is presented in the appendix. |



4 Finding a solution

4.1 Finding a relaxed path in time O(m? + mlogn + n)

The grid in Figure 5(b) is useful to illustrate compactly the restrictions imposed by the skeleton.
Intuitively, we can think about a winning relaxed path as a path in a maze with horizontal and (one-
way) vertical walls. For clarity of exposition we will present the search for a winning relaxed path
in a directed graph Gp that represents (the restrictions on) the connectivity between neighboring
squares of the grid. Suppose the sequence (rg,71,...,74m—1) consists of all of the critical points in
A, A', B, and B’, such that 7y = ap and the elements of the sequence are ordered in the positive
direction along OP.
V(Gp), the set of vertices in the graph consists of:

(vl) non-diagonal vertices, one for each square away from the diagonal; e.g., the square labeled
with A in Figure 5(b),

(v2) starting vertices, one for each half-square, a triangle immediately above the diagonal; e.g.,
the half-square labeled with B in Figure 5(b), and

(v3) goal vertices, one for each half-square, a triangle immediately below the diagonal; e.g., the
half-square labeled with C in Figure 5(b).

We define E(Gp), the edges in the graph as the maximum subset of V(Gp) x V(Gp) satisfying
the following rules:

(el) there can be edges only between neighboring (i.e., sharing a common grid line segment)
squares,

(e2) there is no edge across the diagonal,

(e3) there is no edge across a horizontal wall,

(e4) there is no edge from left to right across a vertical wall, and
(e5)

there is no edge from right to left across a vertical wall o’ (resp. ") if there are no horizontal
walls crossing o’ (resp. V) between the edge and the tip of o (resp. £Y).

Rule (el) ensures that a path in the graph represents a continuous relaxed path. Rules (e2),
(e3) and (e4) are required by the definition of a relaxed path. Finally, rule (e5) guarantees that a
relaxed path avoids unnecessary recontamination, i.e., we disallow a recontamination move between
two squares if there is a path between them which does not require recontamination.

Finding a winning relaxed solution is equivalent to finding a path in the graph Gp from a
starting to a goal vertex. Finding a path in Gp can be done by a breadth-first search and it takes
time linear in the size of the graph.

Theorem 4.1 There is an algorithm that, given a simple polygon P with n edges and m concave
regions, decides whether P can be cleared by a I-searcher, and if so, outputs a winning relazed path
in time O(n + mlogn + m?).

Proof: An outline of an algorithm which, given a simple polygon, finds a winning relaxed path
if one exists, is presented in Figure 6. The correctness of the algorithm follows immediately from
Theorem 3.6 and the definition of the graph Gp.



FIND_RELAXED_SOLUTION()

Input a polygon as a sequence of points (po,p1,---Pn—1)-
Determine the shelter points {ag,...ap—1} and {bg,...bp_1}.

Use ray shooting to find the threshold points a}, b} for i € Z,.
Sort the critical points into a sequence (ro,T1,...,Tap_1)-
Construct the graph Gp.

Using BFS in Gp find a non-zero length path from D to D.
Output the path or a message if one does not exist.

~NOoO O W N

Figure 6: Outline of the algorithm for finding a winning relaxed path

We have to show that the algorithm runs in time O(n + mlogn + m?). Steps (1) and (2) of
the algorithm take time ©(n). To perform step (3) we apply from Lemma 3.1, which states that
after a preprocessing of O(n), we need to perform 2m ray shooting queries, each of which can be
performed in time O(logn), thus the total time for step (3) is O(mlogn + n). Step (4) takes time
O(mlogm). Steps (5) and (6) can be completed in time O(m?) since the graph has m?
and the outdegree of each vertex is bounded by 4.

Note that the number of concave regions cannot exceed the number of edges in the polygon, so
the number of critical points, 4m, is O(n). Thus the total running time is O(n+mlogn+mlogm+
m?) = O(n + mlogn + m?), which in the worst case, when m = O(n), is equivalent to O(n?). &

vertices

4.2 Transforming a relaxed path into a legal path

Note that the search in Gp will find a relaxed, but not necessarily legal, path. In time O(m? +
mlogn+mn) we can transform a relaxed path into an encoding of a winning path using O(m) atomic
instructions. We do this in two different stages.

The first stage is to find the places where recontamination occurs in the relaxed path, i.e., where
it crosses a vertical wall from right to left. Now we have to find a pair of configurations ¢y, c; € X,,
representing the corresponding recontamination move from ¢y to ¢1, see Lemma A.4. Such a pair can
be found in time O(ng+n1+logn+m), where ng and ny are the number of vertices in the respective
concave regions. In order to compute the total time for finding all of the recontamination moves,
we note that there can be at most two recontamination moves across a given concave region (one
per hiding place in a region) and thus at most O(m) recontamination moves. Thus, the total time is
O(n) (since the vertices of P are counted at most twice) +O(m)-O(log n+m)) = O(n+mlogn+m?).

Once we have broken the relaxed path into subpaths which do not contain any recontamination,
we have to transform each path into a sequence of the other four atomic moves. This can be done
iteratively in a procedure similar to the induction in Proposition A.5, for a total time of O(m?).

Thus, the total time for generating a description of a winning path consisting of atomic instruc-
tions is O(n + mlogn + m?). Note that in the worst case, when m = ©(n) this is equivalent to
©(n?). However, in the cases in which m is much smaller than n, our algorithm is much faster
than O(n?). Consider, for example, approximating curved planar environments [LH99] by simple
polygons. In a sequence of arbitrarily fine approximations, n will tend to infinity; however, the
number of concave regions, m, remains finite (m is equal to one-half of the number of inflection
points along the curved boundary).

On the other hand, if we need a more detailed description of the sequence of vertices visited by
the pursuer or illuminated by the flashlight, this can be done in time O(n?) by computing in O(n)
time the visibility polygon for each of the vertices and critical points as identified by the algorithm.



5 Implementation and comparison with previous work

The single-pursuer algorithm was implemented using GNU C++ and the Library of Efficient Data
Types and Algorithms (LEDA), and experiments were performed on a Pentium IIT 500Mhz PC
running Linux. The algorithm was determined to be efficient enough for practical use real environ-
ments. Figure 7 provides an example of the program output. Note that the position of the pursuer
on the boundary is designated with a small white circle.

Err
i

Figure 7: A polygon which requires recontamination (between frames (d) and (e)).

The polygon in Figure 7 is a simplified version of one from [SY92] and is interesting beyond
a mere illustration of the algorithm implementation. It represents a polygon which requires a
recontamination in order to be searched successfully. The recontamination happens between frames
(d) and (e): the endpoint of the flashlight jumps over an interval of 0P, thus some of the area
which was already cleared is contaminated again after the pursuer rotates the beam to the left.

It is important to note that a schedule for a 1-searcher which contains a recontamination move
cannot be simulated by a corresponding search schedule with two guards [IK92, Hef96]. The reason
is that the two guards cannot maintain visibility and stay on 0P while attempting to simulate
a jump of the flashlight. Therefore, there are polygons that can be cleared by a 1-searcher but
cannot be cleared by two guards. Since every schedule for two guards is a schedule for a 1-searcher
as well, it follows that the set of polygons that can be cleared by a 1-searcher is a strict superset
of the polygons that can be cleared by two guards. Also, note that while the polygon in Figure 7
can be cleared by a chain of three guards using an algorithm by Efrat et al [EGHP*00] (this is
generalization of the two guards problem to a chain of k guards), this is not equivalent to finding
a solution for a 1-searcher.

Similarly, it is not hard to show that every point in the polygon in Figure 7 is contaminated at
some time during any successful 1-searcher schedule. Thus there is no point d such that the room
(P,d) can be cleared by a 1-searcher as described in the O(n?) algorithm of Lee et al [LPCO00].



6 Conclusion

In this paper we have presented an O(m? + mlogn + n) algorithm which, given a simple polygon
with n edges and m concave regions, decides whether the polygon can be cleared by a 1-searcher and
if so, outputs a search schedule. The algorithm is a nontrivial generalization of the two-guard search
algorithm and solves a (rather longstanding) problem left open in [SY92]. The most interesting
extension of the result in the current paper would be an algorithm which, given a polygon and an
integer k, decides whether the polygon can be cleared by k 1-searchers, and ideally, returns a search
schedule. Note that the problem does not impose any restrictions on the mutual visibility between
the 1-searchers which, we showed in Section 5, allows clearing of a strictly greater set of polygons
as compared to a chain of k + 1 guards. Finally, while the proposed problem for & 1-searchers is
N P-hard for polygonal regions which contain holes [YUSK97], little is known about the complexity
of the problem for simple polygons.
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A Proof of Theorem 3.6, part (ii)

In this section we provide the proof that a winning relaxed path can be transformed into a winning
legal path.

In general, X, consists of a finite number of maximal connected regions. These are called
conservative regions, because any path within a region preserves the left invariant®. For example,
there are three (two small and one large) conservative regions in Figure 5(a).

Figure 8: Horizontal separation of conservative regions in the proof of Lemma A.1.

The following lemma states that conservative regions which do not overlap horizontally are
separated by horizontal walls.

Lemma A.1 Let C be a conservative region, and let the configuration (p1,q2) € X be a local
minimum of the boundary of C. For q1,q4 € OP, such that g2 € (q1,q4), suppose that ¢ = (p1,q1)
and co = (p1,q4) are configurations from X, which do not lie on the boundary of C. Let Q be
a sufficiently small rectangle (possibly a segment) with an upper edge ¢icz, such that all interior
points of Q lie in X,,. For q3 € (q1,q4), if (p3,q3) € Xy —Q, then it follows that there is a horizontal
wall which separates p1 and ps, i.e., there exists po € OP, py € (p1,p3) such that the horizontal
segment between (p2,q1) and (p2,q4) is a part of a horizontal wall.

Proof: The proof relies on an observation of Guibas et al [GLL197] that when the pursuer moves
along the boundary, an interval of visible points appears/disappears exactly when a point on a
bitangent line is crossed?. Note that in the lemma, the existence of a local minimum (pi, o) for
the conservative region C' means that when a pursuer is moving in the positive direction along
the boundary, a visible interval neighboring point ¢» disappears exactly when the pursuer crosses
point p1. Therefore, p; must be a point where a bitangent intersects 0P. Assume that the pursuer
continues to move clockwise on the boundary past point p;. How soon can point g3 become visible?
No point = € (g1, q4), including g3, is visible before the pursuer crosses another point p| of the
bitangent. Since there is a point po € AU B such that py € (p1,p}) and (q1,q4) C H(p2), it follows
that there is a corresponding horizontal wall which includes the segment between the configurations

(P2, q1) and (p2, qa)- i

Since describing the exact shape of the conservative regions is rather complicated, we would

3The conservative regions in our paper have a meaning close to the conservative cells defined by Guibas et al
[GLL*97].
4These are the “green points” defined in [GLL*97].



like to enclose every region in a rectilinear boundary which will be easier to construct and explore.

Definition A.2 Given a configuration ¢ € X — S, the set of all configurations reachable from c
without crossing the skeleton is called a visibility tile (of c).

Note that every conservative region of X is contained in some visibility tile, and a tile is a simply-
connection region that has a rectilinear boundary. If a tile does not contain a conservative region,
it is an empty tile. Otherwise it is nonempty.

Lemma A.3 FEwvery tile contains at most one conservative region. Thus, for a nonempty tile T, if
co,c1 € Xy NT, then there is a path between cy and c1 entirely within X, NT.

Proof: The claim is trivial for an empty tile, so assume that 7" is a nonempty tile. Let cy,c1 be
two configurations, such that cg,c; € X, NT'. Since ¢y, c1 € T, then there is a finite rectilinear path
7 within 7" from ¢y to ¢;. We will prove by induction on &, the number of segments in 7 that there
is a rectilinear path from cy to ¢; entirely within X, N7, i.e., along feasible configurations.

The basis of the induction includes two cases: k¥ = 1 and k = 2. The case for £ = 1 follows
immediately from Lemma 3.4. The case for £k = 2 follows from Lemma A.l. Assume that the
statement is true for all paths of length less than &, & > 3.

Consider a rectilinear path © = (¢y = 7, 71, ..., T = ¢1) within 7. The inductive step includes
separate arguments for monotonous® and nonmonotonous rectilinear paths.

Trz ° : "'[3:‘”2 Tr? ¢ Tftz T[3

SR S

(a) (b)

Figure 9: Inductive hypothesis for a monotonous path, Lemma A.3

First, let us assume that 7 is monotonous. Without loss of generality, assume that the segments
mon1, T17ma and Tawg are left-to-right, upward, and left-to-right, respectively, see Figure 9. (The
rest of the cases are similar.) Let us start to translate the segment 7175 horizontally from left to
right to the segment 7] 7, where one of the next two events will occur:

e 7, = w3, see Figure 9(a).

Then the path (co = mg,n}, 7, = 73,..., 7 = ¢1) has length less than k£ and the starting
points are in X, so the induction hypothesis applies.

SWe define a “monotonous rectilinear path” as a rectilinear path, the projection of which on any of the horizontal
(resp. vertical) axis is either a nondecreasing or a nonincreasing horizontal (resp. vertical) path.



e 77 will enter the white tip of a horizontal or vertical wall, see Figure 9(b)

That is, there exists a point z € X, U ). Then we can apply the inductive hypothesis to
the paths (co = mo, 7}, z) and (z, ), 73,..., 7 = c1).

We have shown that, if the path has length k& and is monotonous, the statement holds.

T, T L T
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Figure 10: Inductive hypothesis for a nonmonotonous path, Lemma A.3

Second, we consider the case in which the path 7 is not monotonous. This implies, that there
exists ¢ such that the segments m;—17; and ;117,12 are in opposite directions.

Without loss of generality, assume that m,—17;, T;7m;+1 and 711712 are upward, left-to-right
and downward, respectively, see Figure 10. (The rest of the cases are similar.) Let us start to
translate the segment 7;7;;1 downward to the segment mjm;, ,, where one of the next three events
will occur:

e T, = Tiy2, see Figure 10(a).

Then the path (co = 7o, ..., Ti_1, 7T, T, | = Tit2,..., Tk = c1) has length less than k and the
starting points are in X, so the induction hypothesis applies.

o T =mi_1.

Then the path (co = 7o, ..., Ti—1 = T}, T, 1, Tit2, - .., Tk = ¢1) has length less than k and the
starting points are in X,, so the induction hypothesis applies.

e 7w | will enter the white tip of a vertical wall, see Figure 10(b).

That is, there exists a point z € X, Umjm; ;. Then we can apply the inductive hypothesis to
the paths (co = o, ..., mi—1,7},z) and (z, 7, |, Tit2,..., Tk = C1)-

We have shown that, if the path has length k£ and is not monotonous, the statement holds.
Combining the proofs of the cases for monotonous and nonmonotonous paths, we conclude that
the lemma is true. ]

Let Ty and T3 be two nonempty tiles, and let p, qg, ¢1 be points in @P, such that g € (p,q;1) and
the configurations dyp = (p,qo) and di = (p,q1) are interior points in T and T4, correspondingly. If
the line segment dygd; crosses neither the diagonal nor any nonempty tiles other than 7 and 71,



we say that T is a left neighbor of 77, see Figure 11. We assume that neither of the tiles borders
the diagonal line. We can make the assumption since our goal with the relation “left neighbor”
is to represent the recontamination move of the pursuer, and recontamination from or to a tile
which borders the diagonal is not useful. If there is recontamination to a nonempty tile which is
immediately above the diagonal, then we can ignore all of the previous moves, since this tile is
reachable directly from the diagonal. Similarly, if there is recontamination from a nonempty tile
which is immediately below the diagonal, we can ignore the rest of the moves, since the diagonal is
reachable before the recontamination.

Co
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Figure 11: Position of Cy, Cy, Ty, and T in the proof of Lemma A.4.

Lemma A.4 If Ty and T are two nonempty tiles such that Ty is a left neighbor of Ty, then the
corresponding conservative regions, Cy and Cy, overlap horizontally, i.e., there exist co = (p,qo) €
Co and ¢1 = (p,q1) € Cy. Also, the segment ¢gc1 does not cross any conservative regions other than

C() and Cl.

Proof: Note that if one of the two tiles T; is unbounded (on torus), then the corresponding
conservative region C; is unbounded and it overlaps horizontally with the whole vertical axis,
which proves the claim. Therefore, it suffices to consider the case in which both tiles are bounded
from above and below by horizontal walls. Let Lo = (lo,-) (respectively, Ly = (l1,-)) be the lowest
(resp., highest) horizontal wall which borders Ty (resp., 71). Similarly, let mg = (mg, mg) (resp.,
mq = (m),mY)) be the global minimum (resp., maximum) on the boundary of the conservative
region of Ty (resp., T1), see Figure 11.

Since Ty is a left neighbor of T, there exists a horizontal edge dod; which extends from Ty to T;.
Without loss of generality, assume that dyd; lies between lines L and L. (The case in which dody
lies between lines L and L1 is similar, we just have to redefine the lines Ly and L to the highest and
lowest horizontal lines of the corresponding regions.) If we assume that m{, & (I1,1y) or m{, & (1,1o),
we can apply Lemma 3.3 to show that there are nonempty tiles between T and 77. This would
contradict the hypothesis; therefore, it follows that m{, m| € (I1,l). For the sake of contradiction,
assume that the white regions do not overlap horizontally, i.e., my € (I1,m}). We can apply
Lemma A.1 by choosing mg for the local minimum in the lemma, and any point in X, sufficiently
close to my for the configuration in X,,. It follows that there is a horizontal wall which crosses the
rectangle with left upper corner mg and lower right corner m;. This implies that the horizontal wall
lies between the lines L; and Ly, so either Ly is not a bordering line of Tj, or L; is not a bordering
line of T7. We have reached a contradiction; therefore, our assumption that my € (I1,m}) is false. It
follows that Cjy and C; overlap horizontally, i.e., there exist ¢g = (p, o) € Cp and ¢; = (p,q1) € Cy.



Figure 12: Inductive step in Proposition A.5.

Using Lemma 3.3 again, we can show that there are no nonempty tiles (other than Ty and T1)
in the rectangle with left lower corner mg and right upper corner m. It follows that the horizontal
segment ¢gc; does not cross any conservative regions other than Cy and Cf. |

Every relaxed path 7 which starts and ends at a nonempty tile can be partitioned into a sequence
of subpaths 1y, p1, 71, --., Pk, Tk such that every subpath 7; lies completely inside a nonempty tile
and every subpath p; starts in the tile of 7;_1, ends in the tile of 7;, and crosses no other nonempty
tiles. On the other hand, a legal path p can be partitioned into a concatenation of subpaths
to,r1,t1,--.,Tk, tx, Where each t; is a legal path inside the same conservative region and r; is a
horizontal path which starts from the conservative region of ¢;_1, ends in the conservative region of
t;, and does not cross other conservative regions. Intuitively, a path ?; corresponds to a sequence
of the four reversible moves of the pursuer as defined in section 2.2. A horizontal segment 7;
(always right-to-left) corresponds to the fifth, recontamination move: stationary pursuer, rotating
the flashlight counterclockwise across an interval of invisible points.

We will show that we can transform every relaxed path 7 into a legal path p, by replacing every
subpath 7; and p; with legal subpaths ¢; and r;. A formal description follows. For convenience, we
use s(m) and f(7) do denote the start and the end of a path 7 (same for path p).

Proposition A.5 Every relazed path m = 19+ p1 - 71 ... px - T, with s(x), f(7) € X, and starts and

ends in X, can be transformed into a legal path p =ty -r1-t1...7% - ty, where 7;, p;, t; and r; are
defined as above and s(m) = s(p) and f(n) = f(s).

Proof: The proof is by induction on k, the number of times the path 7 switches between nonempty
tiles.

[Basis, k = 0]. If 7 = 79, this implies that 7 starts and ends in the same conservative region and
never leaves its original tile. From Lemma A.3 it follows that there exists a path p = tg, such that
s(p) = s(n), f(p) = f(x), and ¢ty lies entirely within X,. Thus p is a legal path.

[Hypothesis, k < n]. Assume that the proposition is true for all k£ < n.

[Inductive step, k =n]. Let # = 79 p1 - 71 ... pp, - Ty, be as described in the proposition. We have
to show that it can be transformed into a legal path p = tg -7y - t1 ... - tn. Let Ty and 77 be



the first two nonempty tiles that 7 visits, i.e., 790 C Ty and 73 C T1. From Lemma A.4 it follows
that there exists a pair of configurations ¢y € X, N Ty and ¢; € X, NT; such that rp = ¢yeg is a
horizontal segment in X, see Figure 12. Also, by the assumption, we have s(7g) = s(w) € Ty N X,
and since ¢y € Ty N X, from Lemma A.3 it follows that there exists a legal path t3 C Ty N X,
with s(tg) = s(79) and f(tg) = ¢o. Finally, there is a path 7{ C Tj such that s(r{) = ¢; and
f(r1) = f(m1) = s(p2).

We apply the inductive hypothesis to the relaxed path 7/ = 7{ - p2 - 7o ... pp - T, to get the legal
path p' =t -1y -ty... 7, - t,. We define the legal path p = tg - ry - p’ thus proving the inductive
step. |

Lemma A.6 FEvery winning relazed path can be transformed into a winning legal path.

Proof: Follows immediately from Proposition A.5 and also from the fact that, for every nonempty
tile T" which borders the diagonal, the corresponding conservative region C also borders the diagonal.
|



