Programming is Writing:
Why Student Programs Need
to be Carefully Read

Gary T. Leavens, Albert L. Baker, Vasant Honavar,
Steven M. LaValle, Gurpur Prabhu
TR #97-23
December 1997

Keywords: software, programming, writing, student ratio, teaching assis-
tant.

1994 CR Categories: K.3.2 [Computers and Education] Computer and
Information Science Education — Computer science education.

Submitted for publication.

(© Gary T. Leavens, Albert L. Baker, Vasant Honavar, Steven LaValle, and
Gurpur Prabhu, 1997. All rights reserved.

Department of Computer Science
226 Atanasoff Hall
Towa State University
Ames, lowa 50011-1040, USA

Programming is Writing:
Why Student Programs must be Carefully Read

Gary T. Leavens™ Albert L. Baker Vasant Honavar
Steven M. LaValle
Gurpur Prabhu
226 Atanasoff Hall
Department of Computer Science

lowa State University, Ames, [A 50011-1040 USA
December 19, 1997

Abstract

Teaching a student to write computer programs well is much like teach-
ing a student to write English prose well. That is, although a program
must be correct in every last detail, achieving correctness is only half of
the task. The other half consists of intangible factors such as clarity, orga-
nization, conciseness, maintainability, etc. Although these factors cannot
be automatically measured, they have a large economic impact, because
a major cost of software development is the time spent by other people
reading programs to validate, maintain, and enhance them.

To teach these intangible factors, student programs must be read by
a skilled programmer. Furthermore, grades for programs must be partly
based on these intangible factors. Completely automatic testing and grad-
ing of student programs by machine not only ignores these intangible fac-
tors, but fosters the attitude that such factors are unimportant. When
programs are automatically tested and not read, students come to be-
lieve that functional correctness is all that matters. They tend to write
programs by making changes in an initial attempt at a program until it
“works.” The result is students who cannot write programs well.

From this analysis and our experience, we conclude that enough hu-
man resources, such as teaching assistants, have to be made available for
programming courses to ensure that there is adequate time for careful
reading of student programs.

1 Introduction

Computer programmers are in demand because programming is highly-skilled
work and there are too few programmers. Computer programming is a precise
and technical skill that cannot be learned without extensive training and prac-
tical experience. This is because computers are extremely literal-minded when
they carry out their instructions (as described further below). Because em-
ployers are reluctant to hire people who have no training, students seek formal
training in programming. This creates a high demand for computer program-
ming courses, as evidenced by the sustained high enrollment since the late 1970s

[8].

*Leavens’s work was supported in part by NSF grant CCR-9503168

Programming is Writing 2

In a typical research university, however, high demand for courses and lim-
ited resources leads to problems. In this report we take our own university
and department as a case study of such problems, which we believe illustrate
the problems facing computing departments everywhere. We focus on a vital
resource: the course staff, including professors, teaching assistants (TAs), and
other humans (such as lab monitors) who assist students in ways that machines
cannot. (These TAs are not necessarily graduate students; undergraduate stu-
dents have been successful TAs in some introductory courses [10]. Similarly, the
professors need not be primarily involved in research; dedicated instructional
staff is used in many highly-rated computing research departments [7].)

In our particular case, as at most research universities, it is the number of
TAs (and the ratio of students to TAs) that varies most rapidly when resource
problems occur. Hence, we take the ratio of students per TA as a prime indicator
of the course staffing.

At a college where there are no TAs, the resource problems would show up
in the number of students per staff member. Since this is primarily a case study,
however, we use “TA” below to mean the people who are hired to do grading
in a course, regardless of whether they are undergraduates, graduate students,
instructors, or professors.

What happens when the demand for programming courses increases, or when
the number of TAs available for such courses declines? Two responses to such
a dilemma are possible:

1. one can assign more students per TA, or
2. one can limit enrollments to maintain the student to TA ratio.

Clearly, neither of these responses is ideal. (We reject as harmful to students
the possible responses of intentionally failing large numbers of students early in
a course or teaching so poorly that they become discouraged.) Ideally, more
money could be used to pay for more TAs, thus maintaining an acceptable ratio
of students per TA.

However, universities change slowly, and while demand for computer pro-
gramming courses has risen dramatically in the past few years; during this time
many universities have seen flat or declining budgets. Our own department
has been fortunate to have a fairly steady budget over the past decade, but
is experiencing an increase in enrollment. Hence, like many other computing
departments, we have been faced with the dilemma described above.

In the past our department has responded to this dilemma by assigning more
students per TA in our programming courses. Whereas we once typically had
about 25 students per TA in our courses, this semester (Fall 1997) we have 50
students per TA.

In this report, we explain why increasing the number of students per TA
beyond a limit of about 25 is a mistake and a serious disservice to students. In
Section 2, we explain the intangible factors that good programs should exhibit
and describe their economic importance. This section concludes by drawing the
analogy of writing programs to writing English prose. In Section 3, we explain
the necessity of having students write programs in programming courses, and
why it is difficult to have TAs carefully read student programs if the number
of students per TA rises much beyond the limit of 25, at least in introductory
courses. In Section 4 we describe our observations of how students program
when their programs are automatically graded by machine and not carefully
read by humans. Finally, in Section 5 we summarize this argument and offer
some concluding remarks.

Programming is Writing 3

2 Programming is Writing

To the outside observer (who is not a practicing mathematician or computer
scientist), programming seems like something akin to solving a mathematical
problem. Memories of algebra or trigonometry may lead one to believe that the
process of getting the answer is not as important as geting the right answer.
Nothing could be further from the truth.

Writing a program is not at all like finding a number that solves some prob-
lem. Even if the task is to find a specific number, writing a program is more like
writing a chapter in a textbook that tells people how to solve such problems.
The programmer does not, personally, find the number, but writes instructions
for finding the number.

This analogy between a computer program and a textbook chapter is en-
hanced by a closer look at programs. A computer program is a list of detailed
instructions for a machine, together with some associated “comments.” The in-
structions themselves make up an algorithm; the algorithm is like the rules for
carrying out some task and formulas that may be found in a textbook chapter.
However, unlike a textbook chapter written in English, algorithms expressed
in a computer program are completely formal; that is, they have a mathemati-
cally described syntax and semantics, and must be 100% syntactically correct in
every detail. The comments (or “documentation”) are like the remarks in a text-
book; they provide additional explanation and motivation, history, descriptions
of purpose, or overviews.

Of course, if only one problem is to be solved or one number is to be found,
then usually a computer program is not needed. The analogy to a textbook
chapter holds again, in that programs usually have to be able to solve all (or
many) instances of a particular type of problem instead of just one instance.

Although programs are a means to instruct a computer, humans have to read
them as well. Indeed, in the software industry, the human readers of a program
are just as important as the machine. This is critical for several reasons:

e Programs are often written in teams, and team members need to under-
stand some of each other’s code.

e Debugging a program (getting it to work correctly) also requires reading.
Here the reader is often the program’s author; the difficulty of finding
bugs in a program [2, Chapter 13] shows the difficulty in reading programs
carefully. Even the program’s own author will have difficulty in reading a
program that is unclear, poorly organized, or poorly documented.

e Programs are often read during “code walkthroughs.” Here the readers
are programmers other than the program’s author, who read the program
carefully to validate its correctness [2, 9].

e Programs are read by “reusers,” people who wish to use or adapt the code
for another purpose.

e Perhaps the most important reader of a program is the maintenance pro-
grammer. This is, very often, a different person than the program’s author.
The maintenance programmer has to understand a program to fix or en-
hance its functionality. Often the author of the program is not available
to answer questions.

Because about half of the cost of a program is spent in its maintenance phase
[1, page 18], maintenance costs have an enormous economic impact. “Studies
have shown that 30-90% of software expenditure is spent on maintaining existing

Programming is Writing 4

software [12, 14]” [11, page 66]. “Software engineers generally agree that the
total cost of maintenance is more than the cost of development of software” [6,
page 14].

“Studies have also shown that maintenance programmers spend about half of
their time studying the code and related documentation. This has led Standish
[12] to conclude that the cost of comprehending a program is the dominant cost
of a program over its entire life cycle” [11, page 66].

Thus, training students to write a program so that it is clear, concise, well
organized, well documented, etc., is vital for the economic health of the software
industry. Hence, it is necessary to emphasize these aspects of writing programs
when training students.

In summary, writing computer programs is much like writing a textbook
chapter to instruct (a computer) to solve a collection of problem instances. For
good economic reasons, programs must be written so that they can be easily
read by others.

3 Too Many Students Leads to Less Careful Read-
ing

Since writing programs is a skill, it has to be practiced to be learned. Who would
imagine that an English course in technical writing could be taught without
writing assignments? In a computer programming course, it would be equally
absurd to try to teach programming without having students write programs.
Typically many programs are assigned over the course of a semester, so that the
students are more or less constantly writing programes.

What students write must be carefully read, as feedback is necessary to
develop writing skills. In an English course, the writing assignments are carefully
read by qualified instructors. To allow sufficient time for careful reading, English
departments limit the number of students that are graded by each instructor.
The same should hold for courses in computer programming.

In the following we again use our own department as a case study, and
specialize it to our own introductory (200-level) undergraduate courses.

3.1 How much time TAs have available

One way to get a handle on the amount of time available for reading student
programs is to estimate the time available for the task. In our department, TAs
are usually required to attend classes, teach a discussion section, hold office
hours, and meet with the professor. We estimate that TAs spend at least 8
hours per week, Ttizcq, on such fixed activities (see Table 1).

The remaining time for which a TA is hired we call Tyyq4i1qp1e. That is
Tavastable is the budgeted time, T}y 4401, minus 1iz0q. In our department, where
Tyudger = 20, Tuvastadle, is 12 hours per week. Dividing Tyyaitasze by the number
of students in a class gives the available time per student per week.

Tavaitabie/ student = (Tyudger — Tticed)/ size(class) (1)

For Tyyager = 20, this equation is displayed in Figure 1. The following are
example data points, in terms of minutes per week available for grading (and
other activities, such as helping students outside of office hours):

e for 20 students, T,y aitapie/student = 36 minutes,

o for 25 students, Tyyaitapie/student = 29 minutes,

Programming is Writing)

Hours
per

Week | Activity

attending lectures

teaching discussion section

preparing for discussion section

office hours (meeting with students)

meeting with professor

| total = Tfixed |

O — N = = W

Table 1: Hours per week for fixed activities.

e for 30 students, Tyyaitapie/student = 24 minutes,
o for 40 students, Tyyaitapie/student = 18 minutes,

e for 50 students, Tyyaitapie/student = 14 minutes.

3.2 How much time TAs spend grading

We did an informal survey of our TAs, and asked them how long they spent
grading programs. The survey was responded to by 9 TAs out of about 30;
8 were TAs for undergraduate courses, one for a graduate course. All of the
undergraduate courses whose TAs responded to the survey were introductory
(200-level) programming courses. Note that all of the undergraduate courses
for which TAs responded have about 50 students per (20 hour a week) TA.

This survey revealed that, on the average, TAs spent about 8 minutes per
program doing grading, with a range from 4 minutes (for 3 page programs) to 19
minutes (for 12 page programs with extensive specifications). This high value
was for the one graduate course, where the programs consisted of both code and
extensive specifications (formalized documentation).

To focus on the undergraduate courses, we disregard the one graduate course;
these 8 responses are the bulk of our survey, and give us data for this critical
stage in the development of programmers.

For the undergraduate courses, the TAs reported that they all spent less than
10 minutes (on average) grading time per program. The average was about 7
minutes per program. The average length of such a program was 3.25 pages.
This means that TAs are currently spending about 2 minutes per page to grade
each program. This group of TAs estimated that they spent about 6 minutes on
the average reading programs, with time estimates ranging from 1 minute (for 2
page programs) to 12.5 minutes (also for 2 page programs). At the low end, the
TA commented that he only read the summary information in the program, not
the code, at the high end the TA commented that the estimate of 12.5 minutes
was for a program with bugs. This wide variation in reading times is in accord
with theory, which says that algorithmically deciding any non-trivial property of
a program from its text (even whether the program halts) is impossible [13, 5].

Recall that for the undergraduate courses, the class size was about 50 stu-
dents per TA. At that class size, TAs have a maximum of about 14 minutes
per student per week to spend grading. Yet the TAs responding to the survey
reported that they only spent half of that time on the actual act of grading
programs. Presumably, the TAs spent some of their other time doing other
things, such as grading non-program problem sets, helping students outside of

Available Grading Minutes per week for
a 20 hour per week TA

oo
o O
&

minutes per student per week
5
I

10 15 20 25 30 35 40 45 50 55 60 65 70
class size

Figure 1: Class size vs. time available after fixed commitments are subtracted
for a 20 hour per week TA.

office hours, preparing test cases and grading scripts, recording grades, answer-
ing student email, studying the material in the course, helping make up test
questions, preparing homework problem sets or files, and so on.

Suppose we modify the equation (1) to reflect the reality that the time spent
grading a student’s program is only 1/2 of the time available. (In our experience,
the amount of time needed for other activities that consume available time is
also roughly proportional to the size of the class.) Then we get the following
equation that can be used to estimate the time TAs will spend grading programs
based on class size.

Torading/ student = 1/2 X (Tyudget — Tyived)/ size(class) (2)

For Tyyager = 20, this equation is displayed in Figure 2. The following are
example data points, in terms of minutes per week that this model predicts a
20-hour a week TA will be spent grading:

o for 20 students, Tyrqding/student = 18 minutes,
o for 25 students, Tyrading/student = 14.5 minutes,
o for 30 students, Tyrqding/student = 12 minutes,
o for 40 students, Tyrqding/student = 9 minutes,

o for 50 students, Ty, qding/student = 7 minutes.

3.3 How much time is enough?

Now that we have a way to predict how much time will be spent grading based
on class size, we can consider whether it is enough for a given class. There are

Actual grading minutes per week for a 20
hour per week TA

80
75
70
65

55
50

40
35

25
20
15

Minutes per student per week

10 15 20 25 30 35 40 45 50 55 60 65 70

Class size

Figure 2: Class size vs. predicted actual time spent grading for a 20 hour per

week TA.

several factors to consider in trying to decide how much time is enough to allow
for reading and grading programs:

1. How long TAs need to spend reading each page to grade carefully, includ-
ing reading the programs to grade the important intangible factors,

2. How many pages of program text each student generates per week.
3. How many students the TA must grade for.

The difficulty of reading a given page of code, as noted before, varies with
the subject matter and with the thoroughness of the grading on the intangible
factors. Our empirical data of 2 minutes per page reflects a reading of programs
that is not careful and does not pay much attention to the intangible factors.
All of the undergraduate courses surveyed use a grading script to test program
code; only 1 of the 8 TAs for these courses seems to read the programs, and
none of these TAs seem to grade on the intangible factors.

We are not sure how much more time per page should be spent to give
careful attention to the intangible factors. An experienced TA and instructor,
Clyde Ruby, says that “most of the time needed for careful grading is needed to
write careful feedback” for the students about the intangible factors (personal
communication). The issue is how to explain what the student should do to
correct the problem; often this means giving an example of how to do it better,
and explaining the problems with the student’s way of doing things.

We estimate that if TAs spent about 4 minutes per page of program text,
then they would be able to also grade based on the intangible factors, and also
write feedback about them for the students. This estimate is also reasonable

Programming is Writing 8

because TAs will still have to do what they are currently doing to judge the
correctness of programs; and that they need to spend time reading the programs
to grade the intangible factors. However, more research is needed to determine
if 4 minutes per page is accurate.

It is unlikely that the number of pages of code an average student generates
per week is a constant, regardless of the level of the class. Studies by Boehm
and others [1, Section 26.5] show that, for example, language experience makes a
great deal of difference in the time needed to do coding and testing. This would
indicate that the practice of increasing the size of programs as the semester goes
on (or for later courses) is reasonable.

The number of pages students write per week, however, is only partly con-
trolled by the instructor in a course. Students seem to find ways to make even
short programs into long ones. Even professionals vary considerably in the
length of programs they produce for the same task; Boehm reports that size
of code for the same problem varies by individual with a factor of 5. He also
reports that the time needed to code the same problem varies by a factor of
18 [1, page 447]. It may be, however, that this can be somewhat alleviated
by teaching students the value of conciseness and basing part of their grade on
conciseness.

Nevertheless, we can use our estimate that a rate of 4 minutes per page
must be allowed to grade carefully, and the average size of programs in our
introductory level courses to estimate the amount of time needed per week for
careful grading. Since the average size of a program for these courses is 3.25
pages, assuming that one such program is due per week (or that if a program
is not due, a test with the same amount of code is given), then the TA needs
4 x 3.25 = 13 minutes per student per week. Using Equation (2), this means
that, for a 20 hour per week TA, we would recommend a maximum grading
responsibility of about 27 students.

For Tyya4er = 20, this number of pages of program per student per week that
can be graded carefully (at 4 minutes per page) is displayed in Figure 3. The
following are example data points, in terms of minutes per week that this model
predicts a 20-hour a week TA can grade:

e for 20 students, 4.5 pages per student per week,
e for 25 students, 3.6 pages per student per week,
e for 30 students, 3.0 pages per student per week,
e for 40 students, 2.3 pages per student per week,
e for 50 students, 1.8 pages per student per week.

Assuming that our average amount of code, 3.25 pages per week, is valid for
such introductory courses, one can use this to derive a useful rule of thumb. The
rule is that it takes about 15 minutes to carefully grade each student’s programs
per week. Hence we predict that a TA can carefully grade about 4 students per
hour.

3.4 Grading crises and possible responses

What happens when a TA has more pages of programs to read than he or
she has time to read carefully? The TA will either: do a less careful job of
reading programs, or, if required to read them carefully, will start to fall behind
in grading. Both situations lead to lack of feedback for students. Moreover,
because the semester has a definite end-point, TAs must finish grading by the

Grading at a rate of 4 minutes per page
for a 20 hour per week TA

10
o 9
b 8
o 7
2% ©
(/) N,
52 . R
o 3 RN
Ega 2 Ras S ——
o 1
0

10 15 20 25 30 35 40 45 50 55 60 65 70

Class Size

Figure 3: Class size vs. number of pages a 20 hour per week TA can carefully
grade, assuming that careful grading takes 4 minutes per page.

end of the semester. A TA who falls behind in reading students programs must
therefore, at some point catch up. Inevitably, to catch up, the TA must read the
programs less carefully. So in either case programs will not be read carefully.
There are several responses to the crisis that happens in a course when the
TAs cannot keep up with doing a careful job of reading student programs.

e The amount of programming homework can be reduced for students. How-
ever, this leads to lack of skills on the part of the students. (On the other
hand, this may be better than the alternative of automatic grading, which
we consider at length below.)

e Some of the assigned homework can be left ungraded. The idea here is to
not tell the students which of their homework will be left ungraded. How-
ever, since a typical programming course has only 10 to 12 programs that
constitute the homework for a class, this is not a viable option. Leaving
some of the homework ungraded also leads to poor satisfaction levels on
the part of students, lack of feedback, and poor teaching evaluations.

Some of us have tried giving “suggested practice” problems to students,
but students are overworked and tend to just ignore anything that is not

graded.

e Group programming projects can be used instead of individual assign-
ments. While this is a good idea in upper-level courses, it does not always
work in introductory courses. (Some of us have tried that, but the pro-
grams in introductory courses are typically too small for group work.)
Furthermore, group projects require more effort on the part of the staff,
and tend to generate the same amount of code as would be generated for
individual programs, which does not realistically lessen the reading bur-
den. So, while group assignments may be good for other reasons, they do

Programming is Writing 10

not themselves solve the grading crisis.?

e Programs can be automatically graded by running test cases. The idea is
that students electronically submit their programs, and the TA can have
the machine run test cases over these programs. The scores (how many test
cases pass), can be used to generate a grade, without a human ever reading
the program. However because machines cannot automatically grade on
the intangible factors of writing programs, these factors are completely
ignored. We consider the problems caused by this at length below.

e Some programs can be carefully graded, such as those early in the course,
and automatic grading can be used later in the course. This would avoid
some of the problems with automatic grading discussed below, but by
assumption it would be difficult to get students timely feedback on the
hand graded programs in the case we are considering.

Automatic grading of student homeworks is an attractive option to both TAs
and professors when there are more than about 25 students per TA in a class.
This is because, according to our model, the TA will be willing to spend less
than 15 minutes per student per week to spend grading. At 50 students, the TA
will be willing to spend about 7 minutes per week per student grading, which
does not allow time for careful reading to grade on intangible factors. Indeed, it
barely allows enough time for automatic grading (at 2 minutes per page) for our
average program at this level. Furthermore, the work tends to become tedious
with so many students.

Automatic grading does not seem to suffer the disadvantages of the other
responses to the grading crisis. It promises to relieve the tedium of checking
programs for correctness, and to do a more thorough job of checking for correct-
ness than most TAs [8]. If (some of) the test cases used in automatic grading
are made available to students, then students can also get immediate feedback
on their programs, by running the test cases themselves, which is good.

Automatic grading also seems to promise reduced costs for teaching students.
Once designed, it would seem that an automatic grading system would allow
virtually unlimited ratios of students to TAs. Unfortunately, our experience
is that automated test systems for computer programs require a great deal of
effort in designing test cases. Furthermore, errors in student programs often
lead to problems in testing of their programs; hence, in our experience, a TA
must constantly attend the running of an automated testing program. When a
student’s program has a problem in automated testing, often the program must
be read to assign a grade; according to our survey, this will take as long if not
longer than the automatic grading procedure for that program.

Another problem with programs that do automated grading is that they
work best with highly constrained, batch-mode programming problems. If one
wishes to teach students about how to design to incomplete requirements, larger
systems, or graphical user-interfaces, then automated grading systems become
impractical.

Finally, even advocates of automated testing systems in programming courses
only advocate the use of such systems to help decide the part of a program’s
grade that is based on correctness.

10ne alternative to group programming is a “pairwise exchange,” in which two students
each write a program, exchange the code, and edit the other person’s code to make some
change or enhancement. This would tend to emphasize the ideas of readabilty in programming.
However, it would not solve the grading problems, as each student would still be writing each
program. Furthermore, it could easily lead to more time spent grading, because grading would
have to weigh both the original programs exchanged and the relative merits of the maintenance
efforts.

Programming is Writing 11

“We emphasize, however, that this testing tool does not neces-
sarily compute scores or grades, nor does it reduce the human judge-
ment involved in evaluating students’ work (which includes not only
the program’s correctness, but also its adherence to the principles
of good design, its documentation, and perhaps its user interface or
the student’s own choice of test data)” [8, page 382].

Automatic grading, as opposed to automatic testing as a supplement to
careful reading, would ignore the intangible factors in programs. As we explain
in the next section, it is our experience that this causes very severe problems for
student learning. Unfortunately, these problems are not immediately apparent.

4 Automatic Grading and Lack of Understand-
ing

What is the response of a rational and often overworked, busy student to au-
tomatic grading of his or her programs? First, such a student quite sensibly
focuses on doing the minimum needed to get the desired grade in the class. In
a class with totally automatic grading, no (other) human will look at the stu-
dent’s programs; hence the student just focuses on the program’s correctness.
This focus on correctness means that the intangible factors are ignored. After
all; why put effort into writing clear, concise, well documented programs if no
one is going read them? Thus the first effect of automatic grading is that stu-
dents do not learn how to write programs for human readers; they ignore the
economically important intangible factors.

The second effect of automatic grading is more subtle. Because the student
does not have to worry about clarity, organization, and documentation in his or
her programs, the student spends less time planning and organizing. The lack of
up-front organization and planning in particular is evident from our experience
with students in classes where TAs do not have time to carefully read programs
and grade on the intangible factors. Typically, a student writing a program sits
down in front of a computer, and begins typing with minimal planning. Then
the student tries to test the program, discovers errors (“bugs”), and starts to
try to fix them (“debugging”). The process of debugging, however, is hampered
by the lack of clarity and good organization in the program. (We have seen this
problem almost every time we try to aid students in debugging. While they are
focused on fixing minor bugs, there are major problems with the overall clarity
and organization of the program that, in addition to being the source of as yet
undiscovered errors, make debugging nearly impossible.)

As the deadline for when a program is due nears, the typical student response
is not to question their method of writing programs. On the contrary, it is often
a desperate attempt to fix the program by a process of almost random changes.
We have all had the experience with students doing this, and for many students,
this is their normal way of writing programs. The complaint “I tried everything
I could think of and it still doesn’t work” means that the student has tried a
large number of minor changes to the details of the program, without trying
to alter its basic structure. In essence, the student is using a “generate and
test” method of programming, where he or she generates programs, and then
tests them to see if they happen to work.? Eventually the student gives up
in frustration, seeks help from the TA or professor, or in some cases, copies a
working program from a classmate.

2Writing a program to generate programs by such methods is a different matter; this is
similar to genetic programming.

Programming is Writing 12

While it may be possible for students to learn small nuggets of information
using the “generate and test” method of programming, continued use of this
method spells their doom as programmers. In addition to the frustration and the
time needed to use the “generate and test” method, there are two fundamental
problems with it. First, the “generate and test” method does not help students
learn how to write programs well, because the students never learn how to
generate correct programs in the way that experts do: by forming a plan, and
mentally checking the plan, revising it as needed, and only then writing the
program. When an expert finds a bug, he or she is likely to go back and
question the overall plan. This process of refining plans, and learning how to
write programs quickly and correctly is the opposite of the “generate and test”
method. It engenders deep learning of concepts, tactics, and strategies. By
contrast, the “generate and test” method is more like playing a video game, in
which the student notices what happens to work. Often students do not even
stop to find out why their program works when it does. Because they are not
directly refining their mental models, students who use the “generate and test”
method of programming only learn how to write programs slowly, if at all.

Second, and more importantly, the “generate and test” method does not
scale; that is, it just does not work for programs that are larger than a page
or two in length. Oversimplifying, and ignoring feedback gathered from testing
small segments of code3, we can see this as follows. Suppose that in a program
of 10 statements, each may have 2 “sensible” variants; in this way one can
generate 10? (100) programs. Assuming it takes a minute to test each generated
program, and assuming that only one of these is correct, then it would take the
student, on the average about an hour (10?/2 minutes) to find a correct solution.
(This estimate matches our experience with students who use this method, and
complain about how long even short programs take to write.) However, in a
program of 100 statements, if each has 2 “sensible” variants, students would
average about 83 hours (100?/2 minutes) to find a correct solution. There is
not enough time in a semester to do the same thing with 1000 statements (which
would take a year). (There is barely enough time in a lifetime to write a 10000
statement program in this way.) Because it does not scale, the “generate and
test” method is not practical. Students who attempt to use it in industry will
soon be out of a job.

We would like to think that when students are faced with the failure of the
“generate and test” method would learn better methods for writing programs.
Surely some students do learn better methods. However, teaching students
better programming methods requires two things:

e having sufficient staff with enough time available to help students in the
critical moments when they are both frustrated enough to learn a better
way of programming and not so frustrated that they give up, and

e reinforcement of the lessons of planning and organization by grading pro-
grams partly on issues other than correctness.

In the end, it is less time consuming to teach students how to design and organize
programs clearly as a class than to do it one-on-one with each student. Teaching
these lessons one-on-one is very time consuming, because it involves reading
programs carefully, getting students to see the value of advance planning, and
correcting the problems with the intangible factors in their writing.
Furthermore, for such lessons to sink in, they must be reinforced by grading,
which means that TAs have to carefully read student programs to grade on

30f course, students should be encouraged to get feedback from small segments of code;
doing so is the basis for good modular design of a program.

Programming is Writing 13

these factors. In a class with totally automatic grading, however, there is little
incentive for students to make a fundamental change in their writing method;
instead, it is all too easy for them to learn (and for professors and TAs to
teach) a quick technical nugget of information, which lets them generate fewer
programs (by lowering the average number of variants they have to generate
and test) while keeping their “generate and test” method of writing programs.

By contrast, when students know that their programs will be read carefully
by a TA, and graded on the intangible factors that reflect advance planning
(clarity, organization, documentation, and test or verification plans) they are
forced to think and plan (to some extent) before they program. In such a
situation correcting students who fall into the “generate and test” pattern is
much easier, because the grading system emphasizes and reinforces the value of
advance planning. In addition, because the students are more involved with the
writing of their programs, they learn more and increase their understanding as
the programming assignments become more complex.

In summary, the lack of planning fostered by totally automatic grading leads
to student frustration and ultimately to lack of learning even how to write
correct programs. Since totally automated grading of student work causes such
problems, we agree with Kay, et al., that automatic testing should be used only
as a supplement to human judgement [8]. Such human judgement, of course,
comes from carefully reading programs.

5 Conclusions

As a department, we first looked for problems with our teaching of program-
ming when we began to see evidence that our students were not learning how
to program well. One piece of evidence was that our students seemed to be less
capable programmers when they reached our upper-division courses. Other evi-
dence came from selective employers (such as Microsoft), who began to question
the programming skills of some of our seniors.

In investigating these problems, we have come to believe that a major reason
for these problems is that student programs are not being read carefully during
grading. Because of this, too much emphasis has been placed on correctness
issues, which, although they are of first importance, should not completely dis-
place the other intangible factors. This seems to be the reason why so many of
our students have been using the “generate and test” method of programming.
As we described, this method of programming simply does not work.

Our first recommendation, therefore, is that the teaching programming, es-
pecially in introductory classes, must emphasize and grade based on the intan-
gible factors (clarity, organization, etc.). While automatic testing of programs
is useful, it must be used as a supplement to careful reading of programs. As
we described above, heavy reliance on automatic testing to assign grades leads
to all the problems we have experienced.

Our second recommendation is that, at least in introductory programming
courses, class sizes should be limited to about 25 students per TA. This assumes
that the TA is hired for 20 hours per week. (A TA hired for 10 hours per week,
can handle 10 students if they do not teach a discussion section, or 5 students if
they do teach a discussion section. For such a TA, the number of students that
can be taught is quite sensitive to the fixed overhead.) Based on our survey and
analysis, this would allow TAs time to spend about 4 minutes per page reading
programs, which would allow them to grade both correctness and the intangible
factors carefully. Automatic testing can be used, but will not reduce the time
needed to grade a page of program text at this level. If more homework (or

Programming is Writing 14

tests) than about 3.25 pages per week were assigned, then fewer students would
be able to be graded carefully by a single TA.

More research needs to be done to estimate acceptable ratios of students to
TAs in higher-level undergraduate and in graduate courses.

More research is also needed to estimate acceptable ratios for instructors
or professors who handle an entire course, both teaching and grading. It may
be that our basic model of 4 minutes per page holds even for instructors or
professors who are grading courses. However, one should note that the fixed
time demands on an instructor or professor who is both grading and lecturing
in a course are much higher than for a TA. Clearly, such a person would not be
able to teach and grade 25 students with 20 hours per week. If the fixed time
needed for overhead involves 6 hours of course preparation work, the number
would work out to more like 1 student! This is in accord with our own experience
that just teaching a programming course, without grading, takes up about 20
hours per week. To ensure adequate time for grading 12 students, such a person
would have to spend about 23 hours per week on a course, or about 26 hours
for 25 students. While more data are needed for such situations, administrators
need to recognize that they cannot just increase the number of students per
instructor or professor without affecting quality.

As the number of students per TA increases, something has to give. With
large enough ratios, considerations of giving a quality education to students
take second place to administrative tasks, such as simply assigning grades to
students. As we described above, the use of automatic grading, while it seems to
solve the short term problem of assigning grades, leads to lack of understanding,
as students focus on correctness issues only, ignore the intangible factors that
are important in programming, and use the “generate and test” method. All of
this leads to student frustration, and eventually to students leaving computing.
(Or, perhaps worse, to poorly trained students who get jobs and make a bad
impression on employers.)

As teachers, we believe strongly in student learning and in maintaining the
quality of our instruction. Like others [3, pages 41-42] [7], we have noted the
high correlation between quality instruction in programming and sufficient hu-
man resources. Both our experience and the analysis described show that quality
instruction suffers when the ratio of students to TAs begins to exceed 25. When
the ratio reaches the point where automatic grading must be used the student
learning suffers greatly. These problems are compounded if they are found in
the introductory courses, which should lay a foundation for skills in writing
programs [4].

We therefore recommend that a limit of 25 students per TA be enforced,
at least in introductory programming courses. We believe it is better to teach
fewer students well, if need be, than to not teach any students well, and to cause
so much frustration, wasted time, and lack of understanding.

Acknowledgements

Thanks to Harry Brearley, Mary Jo Brearley, Don Heller, Janet Leavens, Clyde
Ruby, and Akhilesh Tyagi for their ideas and comments on an earlier draft.

References

[1] B. W. Boehm. Software Engineering Economics. Prentice-Hall, Inc., En-
glewood Cliffs, N.J., 1981.

Programming is Writing 15

2]

[3]

[4]

[12]

[13]

[14]

F. P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley Publishing
Co., Reading, Mass., 1975.

R. Dawson and R. Newsham. Introducing software engineers to the real

world. IEEE Software, 14(6):37-43, Nov/Dec 1997.

N. E. Gibbs. The SEI education program: The challenge of teaching future
software engineers. Communications of the ACM, 32(5):594-605, May 1989.

D. R. Hofstadter. Godel, Escher, Bach : an Eternal Golden Braid. Basic
Books, New York, N.Y., 1979.

P. Jalote. An Integrated Approach to Software Engineering. Springer-
Verlag, New York, N.Y., 1991.

D. G. Kay, J. Carrasquel, M. J. Clancy, E. Roberts, and J. Zachary. Manag-
ing large introductory courses. SIGSE Bulletin: The Proceedings of the 25th
SIGCSE Technical Symposium on Computer Science Education, 29(1):386—
387, Mar. 1997.

D. G. Kay, P. Isaacson, T. Scott, and K. A. Reek. Automated grad-
ing assistance for student programs. SIGSE Bulletin: The Papers of the
Twenty-Fifth SIGCSE Technical Symposium on Computer Science Fduca-
tion, 26(1):381-382, Mar. 1994.

H. D. Mills, M. Dyer, and R. Linger. Cleanroom software engineering.
IEEE Software, 4(5):19-25, Sept. 1987.

E. Roberts, J. Lilly, and B. Rollins. Using undergraduates as teaching as-
sistants in introductory courses: An update on the Stanford experience.
SIGSE Bulletin: Papers of the 26th SIGCSE Technical Symposium on
Computer Science Education, 27(1):48-52, Mar. 1995.

S. Shum and C. Cook. Using literate programming to teach good program-
ming practices. SIGSE Bulletin: The Papers of the Twenty-Fifth SIGCSE
Technical Symposium on Computer Science Education, 26(1):66-70, Mar.
1995.

T. Standish. An essay on software reuse. IEEFFE Transactions on Software

Engineering, SE-10(5):494-497, Sept. 1984.

A. Turing. Computability and A-definability. Journal of Symbolic Logic,
2:153-163, 1937.

Y. Wu and T. Baker. A source code documentation system for Ada. ACM
Ada Letters, 9(5):84-88, Jul/Aug 1989.

