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Abstract— We introduce a method for constructing smooth ~ space-complexity is exponential in the dimension of th&esta
feedback laws for a nonholonomic robot in a 2-dimensional space, assuming that the sampling resolution remains fixed.
polygonal workspace. First, we compute a smooth feedback law ag mentioned above, open-loop motion planning algorithms
in the workspace without taking the nonholonomic constraints L : . .
into account. We then give a general technique for using this are excellent for finding feasible tra]ec’[or'es but do nat-pr
to construct a new smooth feedback law over the entire 3- duce global feedback plans. Some algorithms, such as RRTs
dimensional configuration space (consisting of position and [15] and PDST-EXPLORE [12], plan using system inputs
orientation). The trajectories of the resulting feedback law and directly return a suitable trajectory for the systenhedt
will be smooth and will stabilize the position of the robot in - methods such as PRMs [9] return kinematic paths which
the plane, neglecting the orientation. Our method is suitable . . . .
for real time implementation and can be applied to dynamic must be po;t—processed In prder to yield treyectone; fer th
environments. system. While most sampling-based algorithms give only

open-loop plans, this is not universally the case; one ntketho
. INTRODUCTION that builds a feedback plan over the configuration spaceeis th

Finding smooth feedback laws for global robot navigatiorsampling-based neighborhood graph [24]. The SNG covers
is a long-standing problem in mobile robotics. Traditionathe free space with balls, each of which is equipped with a
feedback control methods fail due to non-convex conssaintocal navigation function which is guaranteed to convey the
induced by obstacles in the environment. Algorithms derobot into a ball nearer to the goal state.
veloped in the motion planning community are extremely The most common approach to feedback motion planning
effective at computing open-loop plans in the midst of nonin the presence of obstacles is based on potential fields.
convex constraints [13], but generally cannot provideaibs Khatib [10] developed a method which utilized a potential
loop control. Some have tried to address this problem bijeld over the operational space to guide a manipulator or
constructing potential functions, the gradient of whictm camobile robot to the goal. This approach suffers from local
be used as the feedback plan. If the potential function has mainima, however, as do many potential field methods. Waydo
local minima other than the global minimum at the goal statgnd Murray give a stream function method for navigation
then the feedback plan solves the global navigation problein two-dimensional environments [23]. A highly influential
[10], [19]. Our approach is more direct. Instead of begignin potential field method is that of Rimon and Koditschek [19],
with a potential function and taking the gradient, we dikect who show how to develomavigation functions(potential
construct a vector field to use as the velocity command. Wenctions with a unique minimum at the goal and meeting
do this by smoothly combining locally-defined vector fieldscertain other criteria) using potential functions in a gahe
using bump functions, which guarantees that the resultinged sphere world.
integral curves are smooth. Finally, Conneret al.[6] and Lindemann and LaValle [16]

Stabilization of nonholonomic systems in obstacle-freeompute feedback plans over cell decompositions; the work
environments has been studied in depth [2], [4], [7], and aof [16] forms the basis for this work. Connet al. consider a
approach for computing optimal trajectories is presented icell complex environment id-dimensional Euclidean space.
[8]. When the environments are complex, however, the profF-hey then impose a potential field over each individual cell,
lem of global feedback control is difficult. Motion planning taking as the field the pullback of a potential function on a
problems in robotics typically involve non-convex constta  disk, which has a closed form solution. They require that the
resulting from obstacles in the environment, which presant gradients of the potential fields be perpendicular to thé cel
significant problem for traditional feedback control metho boundaries, so that adjoining potential fields can be easily
One solution is to use state space sampling along withieced together. Putting the individual “component cdntro
dynamic programming to achieve not only feedback, but agolicies” together guarantees that the global controlgyoli
proximately optimal trajectories [1], [14], [22]. This mdye brings the robot to the goal. In addition to specifying a
feasible for low-dimensional spaces, but both the time- ancbntrol policy for kinematic systems, they develop control



policies for systems with dynamical constraints. Simjlarl orientation of the robot and consider only its position.sThi
Lindemann and LaValle take a cell complex environmenis entirely reasonable; for the system we consider, Bra'sket
and define vector fields over the individual cells, which carondition [3] implies that no static, smooth vector field
be seen as component control policies. We describe thiedback control) can stabilize the complete state of the
approach in detail below. Both [6] and [16] can be seen isystem. Additionally, it is often sufficient from a practica
the context of the sequential composition of funnels apgroa point of view to stabilize only the position of the robot. @nc
[17], in which a collection of controllers is developed, kac in the neighborhood of the goal statg, the orientation may
of which converges to a goal set which is either the actudlle stabilized independently.
goal state or in the domain of another controller. Followéng
sequence of these controllers will cause the system toearriv I1l.” CONSTRUCTING SMOOTH FEEDBACK PLANS
at the goal state. This idea was further developed in [5].[20 In this section, we describe how to construct smooth
In the next section, we will describe and formulate oufeedback plans which satisfy the nonholonomic motion con-
problem precisely. In Section Ill, we will describe ourstraints while taking the robot to the goal region from any
algorithm and prove that it solves the global navigatiooint in the environment. We begin by describing how to
problem. Finally, we will discuss our algorithm and showconstruct a smooth feedback plan oeas in [16]. We then

examples in Section IV and conclude with Section V. use this in the construction of our smooth feedback plan over
C. The method of [16] is applicable in arbitrary dimensions;
Il. PROBLEM FORMULATION however, we will describe the two-dimensional case, since

We consider the problem of a nonholonomic point robothat is what we need for our problem.

navigating in a polygonal environment. We use a simple ) h K Pl
nonholonomic model given by A. Computing a Smooth Feedback Plan ofer

The feedback plan is computed as a plan for a point

"P? _ vs Cf)sg 1 robot moving in a 2-dimensional cell complex in which each
g = | vrsme @ cellis a convex polygon. In our case, the complex results
Vg

from the convex decomposition of the general polygonal
In addition to being a simple example of a system witlenvironment. Denote theyoal stateby x4, and thegoal cell
nonholonomic constraints, this is a very natural model focontainingz, by C,. Using the connectivity of the convex
the ubiquitous differential drive robot. The environmest i cells, construct a graph and use a graph search algorithm
a two-dimensional general polygonal environmehtwhich  (such as Dijkstra’s algorithm) to determine a path from each
is a bounded open subset &f. By generalwe mean that cell to Cy. For each cell other thafi, there is a “successor”
the polygon may be nonconvex and may contain holes (i.ghat represents the next cell on the path to the goal cell.
be multiply-connected). The configuration spdtés three- Every cell with a successor is called amermediatecell.
dimensional, consisting of position and orientation; faly The global feedback plan is built by constructing vector
C = & x S', in which S = [0, 27]/~, in which ~ is an fields over each cell, ensuring that they each have the desire
equivalence relation witlh ~ 27. While we will use this properties, and guaranteeing that they match at the faces
three-dimensional model for the purposes of discussian, tlseparating adjacent cells. The vector field of each cell must
controls are actually acceleration controls. In other wotde  be smooth in the interior of the cell, and all integral curves
system can be viewed as a five-dimensional system satisfyingust be smooth and exit the cell at the face shared with the
the additional equations; = u; andvg = u,. The nonholo- cell's successor (except in the case of the goal cell; in this
nomic constraint can be expressediasn § — ¢ cosf = 0. case, the integral curves must converge to the goal state).
The goal pointis defined to be the point, € £. Our Given a particular cell, define a vector field for each face
task is to construct a smooth feedback plan which solves tioé the cell (in the 2D case, each face is simply a one-
planar navigation problem, which will stabilize the systentimensional edge). Denote these face vector fieldd/hy
to the goal point while ignoring the orientation. Given aFace vector fields must have two properties:
dynamical system, amooth feedback plais a vector field 1) A face vector field corresponding to an obstacle face

V on C which satisfies the foIIowing properties: must point away from the obstacle.
1) At every point,V is admissible (i.e., it satisfies the 2) A face vector field corresponding to a face between
differential constraints of the system). adjacent cells must be consistent with the successor
2) V is smooth except for a set of measure zero. relation given above.
3) The integral curves o¥” are smooth. See Figure 1 for an illustration of an environment, the face

By smoothwe mean infinitely differentiable, i.e¢’>°. The vector fields, and a directed graph giving the cell path to the
vector field induces a mapping : C — U, in which{ goal cell.

is the input space; since the vector field is admissible, this The vector field for the particular cell (denote this 1d$

is guaranteed to be well-defined. A smooth feedback plamust match the face vector field$/;,} at their respective
solves a navigation problem if all integral curves of thetsec faces and must smoothly interpolate between them in the
field converge to the goal region. In this work, the goal ragiointerior of the cell. This is accomplished using attractor

is z, x S*, for somez, € £. In other words, we ignore the vector field V,, which is defined over the entire cell. The



Fig. 1. An environment, corresponding face vector fields, #gredgraph
showing how to reach the goal cell from any other cell.

Fig. 2.
diagram.

An individual cell, partitioned using the generabiz Voronoi
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Fig. 3. A bump function. If we let\(s) = (1/s)e~ /%, thenb(s) =
1—=X(s)/(A(s) + A(1 — s)).

of analytic switches built using distances to the faces ef th
GVD. Formally, for any poinp in the region corresponding
to face f,

s =1 1;[1 d(p, fi) +d(p, fz)’
in which { f;}7 are the faces of the GVD antlp, f;) is the
distance fromp to face f;. This function is smooth (except
at the vertices of the cell), and has the desired property of
being identically equal to one on the face of the cell and
zero on the GVD faces.

Since the bump function smoothly blends the face and
attractor vector fields together, a vector field is obtained
which is smooth over the interior of the cell. With small
modifications, this approach can be used in the goal cell as

)

cell is partitioned into regions corresponding to each fac#vell; piecing the cells together results in a smooth feekibac
in the region corresponding to a particular face, the vectdfan. Using the shorthanti(p) = b(s(p)), we define the

field V interpolates between the face vector figlg and the

global vector field/” at pointp asV (p) = norm(b(p)Vy(p)+

attractor vector field/,. On the faces of the partition itself, (1—b(p))Va(p)), in which V; is the face vector field for that

V = V,; as we have already said, on the face of the ceRoint, V, the attractor vector field; the bump function, and

V = sz The partitioning method used is the generaiize@lorm is the normalization fUnCtion, so th&t is a unit vector

Voronoi diagram, or GVD. See Figure 2 for an illustration. field. Figure 4 shows an environment and a depiction of the
In order to smoothly interpolate between the face anfiomputed smooth feedback plan. This method is extremely

attractor vector fields in the different partition regionge

usebump functionswhich are defined as follows:
Definition 3.1: Let X be a smooth manifold, and lét’

be a closed set andf an open setK C U C X. Then

a bump function oveU is a smooth, real-valued function

p: X —[0,1] such that:
1) p has support contained iii.
2) p(z) =1foreveryz € K.

fast and can be computed in real time. While there is some
extra overhead associated with dynamic environments, the
algorithm is fast enough that it can be re-initialized inlrea
time should the environment change.

B. A Smooth Feedback Plan Satisfying Nonholonomic Con-
straints

Using the vector field produced by the algorithm described

For our purposes, we will use a bump function on th@bove, we now construct a smooth feedback plan over the
real line which transitions smoothly from 1 to 0 on the unitentire configuration space which will converge to the goal
interval. An illustration of such a bump function is given inregion while satisfying the constraints.

Figure 3.

Recall that the free workspace is denofednd the vector

The parameter used for the bump function is a produdield V' defines a smooth feedback plan overin standard
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robot to hit an obstacle. In contrast, our method guarantees
safety by constructing a vector field over the configuration
space which points away from the obstacles at the obstacle
boundaries (or, at least, tangent to the obstacle boursjarie
~Z|  We accomplish this by smoothly interpolating between a
nominal vector fieldV;, and two orienting vector field¥

and V_, which guide the robot to the target manifold.

The nominal vector fieldV,,, is defined using the pro-
jection of V' onto the constraint distribution, together with
the angular rate of change 6&f induced by the direction
of travel. Formally, for the constraint distributidn (defined
locally as the span of the tangent vectors to the manifold
in which the system can move), the projection m@&p:

TQ — D is defined locally for some tangent vectigip) =
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Fig. 4. An environment and a corresponding smooth feedback pla

coordinates, for any = (z,y) € £, we have Up g + Uya% + g 5 @s:
0
Vp) = Va5 + ’Uya—y. Va(p) =PV (p)) = vy cos&aa + vy sm@aay + U@%
We use this to define the mafy : TE — [—m,7) as in which v; = /2 + 12 and v, = %EP(V)V- Note that

0:(V(p)) = tan=*(v,,v,), in which tan™! returns the four-
quadrant arctangent af, and v,. We can now define the
target manifoldas M; = {(p,0) | 0 = 6,(V(p)),p € E}.
Note that from any point on the target manifold, the non- V. — 0 - 0
holonomic system can follow the integral curves to the goal. +=7+ -

on the target manifold},, = V. We define our orienting
vector fields in the obvious way:

09’ 00’

Consider a time-parametrized integral cht*Qe). Recall that  \we now define the global vector field which avoids the
by definition, the tangent vectdr(t) = Zc(t) = V(c(f)).  opstacles, satisfies the nonholonomic constraints, angavho
Then the angular velocity of an oriented particle followingniegral curves are smooth and converge to the goal region:
the path is simplyL6,(T'(t)) = £0(V(c(t))), which is

smooth since the vector field, integral curve, and function

0, are smooth. The tangent space can be parametrized in =b(s)Va(p) + (1 —b(s))V4(p),

terms of forward velocityv; and angular velocityvy; to (p) +7/2<0<0:(p)+
follow this integral curve with the nonholonomic system, b(s)V,(p) + (1 — b(s))V_(p),

simply setvy =1 (since the curve is parametrized with unit 0,(p) < 0 < 0:(p) + 7/2
speed) andyy = Z60(V(c(t))). It should be apparent that W(p) = ’
40(v(c(t))) = fém () = 4Ly V(c(t)), in which bs)Val®) + (1= () V2 (),

L denotes the Lie derivative. As a result, we can write an Or(p) — /2 < 6 < 6:(p),
equivalentV as a vector field ot: =b(8)Va(p) + (1 — b(s))V_(p),

o d o 01(p) —m <0 < Ou(p) — /2,

V(p) = ve(p) - +vy(p) 5~ +vo(p) 5
Oz dy 90 in which b(s) is the bump function in Figure 3. We also need

If the robot is not on the target manifold, then the vectoto defines = 6,1 x min{|0 — 6], |0 — (6; +)|}. We define
field V is clearly not admissible (i.e., it does not satisfyf,,;, below.
the nonholonomic constraints); however, if we design an The vector fieldi¥ blends between the nominal vector
admissible vector field such that the target manifold iéield and the orienting vector fields. It respects both the
attractive and such that it equals the origifvabn the target original target manifold and a copy of the target manifold
manifold, then we will be able to conclude that all integrakhifted by« in the # dimension. This is because the robot
curves reach the goal. can follow the nominal vector field driving backwards from

It is well-known that a simple controller can be designedhe orientation implied by the nominal vector field. Notettha
that will cause the system to converge to the target manifoldl” = V,, when the robot is on the target manifold, because
For example, one can use a controller of the fofm=  b(s) = 0; also, we see that eith& = V. or W = V_ when
0, — K (0—6,) for some gaink, in which, is the derivative |0 — ;| = 6,.:,. This means that if the angular difference
of #; while moving at the current velocity and heading.between the actual and target orientations is large enough,
The most significant problem with this approach is thathe vector field acts solely to orient the robot and does not
there are no guarantees that the obstacles will be avoidedteanslate it at all.
the robot converges to the target manifold. In fact, oy There are some requirements for the paramgter. First,
predefined gaink’, one can find configurations (positionsf,,;, < /2. At this point, V,, = 0 because the original
and orientations) from which the controller would cause theector field is orthogonal to the orientation of the robot.



Second, the method of [16] guarantees that at the obstacle
boundary, the computed vector field will satisfy the dot
product constraintl’ - n, > ¢ > 0, in which n, is a

unit normal vector pointing away from the obstacle face.
For V also having unit length, this implies thé&t,,;, <

7/2 — cos™1(e) in order for safety criteria to be satisfied.
Since it is shown in [16] thal can be constructed so that

e = 1, this means that if such a vector field is used as the
target vector field, then it is possible to &, = /2.
Finally, it is obvious that,,;, must be greater than zero. -
Apart from these restrictions, the choice &f;,, is free. A M,
choice of smalb,,;,, corresponds to an emphasis on actually
following the original vector field; in the limit a&,,;,, — 0,

we have the case where if the robot is initialized at an angle
different from 0;, it performs an orientation maneuver and
then switches to following the target vector field. A choice
of large 6,,;, corresponds to only following the nominal
vector field as much as necessary to reach the goal eventually
We favor the philosophy behind this approach, because it is
decidedly not important to follow the original vector fiekl|

that matters is that the robot reaches the goal. The original Fig. 5. An illustration of convergence to the target manifdid;.
vector field or€ is simply an intermediate step which enables

us to achieve the goal of building a smooth feedback plan

over the configuration space. Proof: The integral curves of the original vector field
_ _ never lead to obstacle collision; moreovér,is guaranteed
C. Theoretical Properties to satisfy the obstacle constrailt - n, > ¢ > 0 at the

It remains to verify that the vector fieldi’ possesses obstacle faces, as discussed above. Since we cliggse<
all the properties we desire. We do this in the followingT/2 — cos™*(¢), we conclude thab(t) = 0 whenever the

theorems. projected vector field/, points into an obstacle face. This
Theorem 3.2:The vector fieldiW is smooth except for a means that for any such poiil/ = V. or W = V_, neither
set of measure zero and has smooth integral curves. of which can cause collision since they induce rotation only

Proof: The base vector fieldl” is smooth except on the Consequently, if moving forward would cause a collision,
vertices of the convex cells and some edges that are neyge robot will rotate without translation until it is safe to
crossed by integral curves; so is its projection onto the cofanslate once again. n
straint distribution,V,,. Similarly, the orienting vector fields  The final result is that the integral curveslbf converge to
V, andV_ are smooth. These vector fields are interpolatethe goal state. This is a fairly obvious conclusion, giveat th
using a smooth bump functidn the parametes is smooth the target manifold is attractive and that the integral earv
except wheref — ;| = +7/2, a zero measure set. Similarly, on the target manifold converge to the goal region. However,
the bump functions ensure th&’ is smooth except for the proof of this fact requires some work. We first prove two
|6—0;| = 47 /2. This simply corresponds to the initial choicelemmas.
of whether the robot will converge to the nominal vector field Lemma 3.5:The integral curves of¥ converge to the
moving forward or backward (with an appropriate angulatarget manifold. In other words, for ary> 0, 3T such that
shift of 7 if moving in reverse). Therefore, the non-smootHor all ¢t > T', [0(t) — 0:(t)| < e.
portions of W are a set of measure zero, and all integral  Proof: Consider only thef coordinate, and use a
curves flow away from the non-smooth portions and arkyapunov functionL(p) = 1/2(6 — 6,)%. This has a unique

consequently smooth. E  minimum on the target manifold, wher@® — 6;,) = 0.
Theorem 3.3:The vector fieldIW satisfies the nonholo- From the construction ofi¥, one can derive the result
nomic constraints of the robot at every point. L = —(1-b(s))|60—0:|, which is everywhere positive except

Proof: The vector field/V is constructed via the smooth on the target manifold. Hena® is globally asymptotically
interpolation of the three vector field$,, V., andV_. Each stable (the integral curves converge to the target manifold
of these vector fields satisfies the nonholonomic conssaintTo be precise, it will converge to one of the target manifolds
V,, since it is generated by the projectid?y V, and V_  (recall that there was one target manifold corresponding
directly by construction, a®(V,) =V, andP(V_) =V_. to moving forward and another corresponding to moving
Hence, the linear sum of these vector fields (through theackward). Figure 5 illustrates this. [ |
interpolation) also satisfies the constraints. [ | Lemma 3.6:Consider two maximal integral curves(t)

Theorem 3.4:The integral curves ofi¥ never lead to andcs(t) restricted to a cell other than the goal cell, with
obstacle collision. c1 lying in the target manifold. Then there is at most one



t > T. Together with the corresponding fact th#t/ (¢)||
- 4wy converges to 1, this implies that there is also some fife
such thatW(t) - ns > e > 0 for all ¢ > Ty. Hence, by
the same reasoning as in [16], the integral curve cannot be
trapped and must exit the cell by the exit face.
We have shown that all integral curves 16f must reach
g € the goal cell. A similar argument shows that all integral
curves in the goal cell converge to the goal regignx St
The original vector fieldl” satisfies the conditioV (z, —
p) > € > 0 at every pointp. Exactly as argued above, we
~—0<0 know that there exists a timE such thatV'(¢)-V(t) > 1—¢
for all t > T. This leads to the conclusion that there exists
a timeT; such that (t)2 (z, —p) > e >0 forall t > T}.
Since for all non-goal cells the integral curves all properl
Fig. 6. An impossible situation. The integral curwe partitions the cell exit via the exit face (after sufficient time), and all intebr
into two halves; crossing from one side to the other at a gb@nt implies  cyryes in the goal cell converge to the goal region, the
a relationship between the relative orientations at thattpo . .
integral curves globally converge to the goal region. =

to such that the coordinate projectionée; (¢9)) = x(c2(to) V. ANALYSIS AND EXAMPLES

andy(c1(to)) = y(ea(to)). From a practical standpoint, our method is highly advan-
Proof: Essentially, this lemma means that if the curvesageous. In addition to the desirable attributes of theesyst
in a cell are projected into ther, y)-plane, they can cross at trajectories our feedback strategy induces, the vectod fiel
most once. In the plane, the curve partitions the cell into is extremely fast to compute at any point. Our extension to
two halves; denote these “left” and “right” (see Figure 6 fohonholonomic systems in this work has the same algorithmic
an illustration). Crossing; from left to right corresponds to complexity and practical time requirements as the previous
¢ < 0, and crossing from right to left té > ¢;. This means work in [16]. First, the component vector fields must be
that if the curves cross twice, they must cross at one timgomputed for the given polygon. If the environment is given
with 6§ > ¢, and one time witld < ¢;. This can only happen as a general polygon, then it must first be decomposed into
if at some point the curve, crosses the target manifold. But convex pieces. In two dimensions, this is algorithmically
by construction, no curve crosses the target manifold esingtraightforward and extremely fast. Using a modified versio
the vector field is identically equal to the nominal vectoldfie of Seidel’s algorithm [18], [21], this can be done in expecte
on the target manifold. In fact, no curve ever actually reach O(nlog* n) time, in whichn is the geometric complexity of
the target manifold, although all integral curves approich the polygon (i.e., the number of vertices). After decompgsi

tangentially. Henceg, can cross:; at most once. B the polygon into convex pieces, the cell connectivity graph
Theorem 3.7:The integral curves oiV converge to the must be explored to generate the successor of each cell.
goal region. Using simple breadth first search, this can be don@(n)

Proof: First, consider the case of an integral curve ovetime. Additionally, the point location data structure stibloe
some cell in€ other than the goal cell. Using argumentatiorbuilt, which requiresO(n) time [11]. The face and attractor
similar to [16], we show that the integral curve will exit vector fields can also be computed in linear time. Second,
that cell via the exit face of the cell. Recall that the celwhen a new initial state is given to the algorithm, then a
is partitioned into different regions using the GVD. Thepoint location query must be performed. This can be done
construction ofl guarantees that if an integral curve Bf in O(logn) time, since the preprocessing has already been
crosses a face separating two regions of the cell, thenlit wiperformed. Finally, after the initialization is completanly
not cross that face again. Since we know that a flow fiém linear time is required to compute the vector field value (in
cannot cross any flow frol more than once (Lemma 3.6), the complexity of the cell along with one neighboring cell).
this implies that the flow froni¥ cannot cross a separating This implies that the vector field is extremely fast to
face more than once. Therefore, there are no cycles thampute, even for very large environments. A large environ-
cross the GVD; integral curves must either exit the cell oment requires more preprocessing than a small one, but the
gets trapped in a region corresponding to a particular facexecution in real time is no different. Our method is entirel
However, we know that the flows froii do not get trapped suitable for real time feedback control. If the environmisnt
because they satisfy a dot product constrdintn, > ¢ > 0  dynamic, not static, our method is still efficient in praetic
with the normal vector of the hyperplane separating th# the change to the environment is sufficiently local tha th
face from the exit face (note that this statement is a sliglgnvironment polygon and connectivity graph do not have to
modification of the one given in [16]). The convergence obe recomputed, then our method incurs no extra cost. In the
the anglef as shown in Lemma 3.5 implies that for any worst case, the convex decomposition must be re-performed;
there exists a tim& such thatiW(¢) - V(¢) > 1 — e for all  however, even this operation is fast enough that it can be



done with no noticable drop in performance for reasonable
environments.

For the sake of illustration, we have included several
examples of the system trajectories of our algorithm. As we
have said earlier, there is a fair amount design freedom in
choosing how aggressively to approach the target manifold.
Figures 7 shows several trajectories produced by our algo-
rithm. Starting from an initial point in the plane, the iaiti
orientation of the robot is set t©0.5 radians from the angle
of the original vector field at that point. The trajectoridshe
aligned system are shown by dashed lines, and trajectories
corresponding to more or less aggressive tracking stesgegi
are shown in the solid lines. Another example is given in
Figure 8, which indicates the orientation of the robot at
different points along its trajectory. Figure 9 shows a &Emi
trajectory; the orientation annotations indicate therggaéon
of the nominal (not actual) vector field at those points.
The accompanying plot shows the convergence to the target
manifold, i.e.,d — 6,.

V. CONCLUSION

In conclusion, we have presented an algorithm for con-
structing a smooth feedback plan for a nonholonomic point
robot in a polygonal environment. The integral curves of the
corresponding vector field are smooth, satisfy the nonholo-
nomic constraints, and stabilize the robot to the goal regio
z,xSt. We construct the feedback plan using a nominal plan
computed as in [16], which defines a target manifold in the
configuration space. We guarantee that the the integraésurv
converge to the target manifold by smoothly interpolating
between trying to follow the nominal vector field (after pro-
jecting them onto the nonholonomic constraint distribuitio
and reorienting the robot to improve alignment with it. By
guaranteeing that the integral curves converge to thettarge
manifold, we prove that the integral curves converge to the
goal region as well. Our method is extremely fast to compute
and is suitable for real-time application.

In the future, we intend to address systems with more
complex nonholonomic constraints. While the differentiaFig. 7. Two environments, with goal stateg and trajectories from an
drive model is extremely common and thereby importantnitial point with initial angular deviation.
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