
Real Time Feedback Control for Nonholonomic Mobile
Robots With Obstacles

Stephen R. Lindemann
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

slindema@uiuc.edu

Islam I. Hussein
Coordinated Science Laboratory

University of Illinois
Urbana, IL 61801 USA

ihussein@uiuc.edu

Steven M. LaValle
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

lavalle@uiuc.edu

Abstract— We introduce a method for constructing smooth
feedback laws for a nonholonomic robot in a 2-dimensional
polygonal workspace. First, we compute a smooth feedback law
in the workspace without taking the nonholonomic constraints
into account. We then give a general technique for using this
to construct a new smooth feedback law over the entire 3-
dimensional configuration space (consisting of position and
orientation). The trajectories of the resulting feedback law
will be smooth and will stabilize the position of the robot in
the plane, neglecting the orientation. Our method is suitable
for real time implementation and can be applied to dynamic
environments.

I. I NTRODUCTION

Finding smooth feedback laws for global robot navigation
is a long-standing problem in mobile robotics. Traditional
feedback control methods fail due to non-convex constraints
induced by obstacles in the environment. Algorithms de-
veloped in the motion planning community are extremely
effective at computing open-loop plans in the midst of non-
convex constraints [13], but generally cannot provide closed-
loop control. Some have tried to address this problem by
constructing potential functions, the gradient of which can
be used as the feedback plan. If the potential function has no
local minima other than the global minimum at the goal state,
then the feedback plan solves the global navigation problem
[10], [19]. Our approach is more direct. Instead of beginning
with a potential function and taking the gradient, we directly
construct a vector field to use as the velocity command. We
do this by smoothly combining locally-defined vector fields
using bump functions, which guarantees that the resulting
integral curves are smooth.

Stabilization of nonholonomic systems in obstacle-free
environments has been studied in depth [2], [4], [7], and an
approach for computing optimal trajectories is presented in
[8]. When the environments are complex, however, the prob-
lem of global feedback control is difficult. Motion planning
problems in robotics typically involve non-convex constraints
resulting from obstacles in the environment, which presents a
significant problem for traditional feedback control methods.
One solution is to use state space sampling along with
dynamic programming to achieve not only feedback, but ap-
proximately optimal trajectories [1], [14], [22]. This maybe
feasible for low-dimensional spaces, but both the time- and

space-complexity is exponential in the dimension of the state
space, assuming that the sampling resolution remains fixed.
As mentioned above, open-loop motion planning algorithms
are excellent for finding feasible trajectories but do not pro-
duce global feedback plans. Some algorithms, such as RRTs
[15] and PDST-EXPLORE [12], plan using system inputs
and directly return a suitable trajectory for the system. Other
methods such as PRMs [9] return kinematic paths which
must be post-processed in order to yield trajectories for the
system. While most sampling-based algorithms give only
open-loop plans, this is not universally the case; one method
that builds a feedback plan over the configuration space is the
sampling-based neighborhood graph [24]. The SNG covers
the free space with balls, each of which is equipped with a
local navigation function which is guaranteed to convey the
robot into a ball nearer to the goal state.

The most common approach to feedback motion planning
in the presence of obstacles is based on potential fields.
Khatib [10] developed a method which utilized a potential
field over the operational space to guide a manipulator or
mobile robot to the goal. This approach suffers from local
minima, however, as do many potential field methods. Waydo
and Murray give a stream function method for navigation
in two-dimensional environments [23]. A highly influential
potential field method is that of Rimon and Koditschek [19],
who show how to developnavigation functions(potential
functions with a unique minimum at the goal and meeting
certain other criteria) using potential functions in a general-
ized sphere world.

Finally, Conneret al. [6] and Lindemann and LaValle [16]
compute feedback plans over cell decompositions; the work
of [16] forms the basis for this work. Conneret al.consider a
cell complex environment ind-dimensional Euclidean space.
They then impose a potential field over each individual cell,
taking as the field the pullback of a potential function on a
disk, which has a closed form solution. They require that the
gradients of the potential fields be perpendicular to the cell
boundaries, so that adjoining potential fields can be easily
pieced together. Putting the individual “component control
policies” together guarantees that the global control policy
brings the robot to the goal. In addition to specifying a
control policy for kinematic systems, they develop control

policies for systems with dynamical constraints. Similarly,
Lindemann and LaValle take a cell complex environment
and define vector fields over the individual cells, which can
be seen as component control policies. We describe this
approach in detail below. Both [6] and [16] can be seen in
the context of the sequential composition of funnels approach
[17], in which a collection of controllers is developed, each
of which converges to a goal set which is either the actual
goal state or in the domain of another controller. Followinga
sequence of these controllers will cause the system to arrive
at the goal state. This idea was further developed in [5], [20].

In the next section, we will describe and formulate our
problem precisely. In Section III, we will describe our
algorithm and prove that it solves the global navigation
problem. Finally, we will discuss our algorithm and show
examples in Section IV and conclude with Section V.

II. PROBLEM FORMULATION

We consider the problem of a nonholonomic point robot
navigating in a polygonal environment. We use a simple
nonholonomic model given by





ẋ
ẏ

θ̇



 =





vf cos θ
vf sin θ

vθ



 . (1)

In addition to being a simple example of a system with
nonholonomic constraints, this is a very natural model for
the ubiquitous differential drive robot. The environment is
a two-dimensional general polygonal environment,E , which
is a bounded open subset ofR

2. By generalwe mean that
the polygon may be nonconvex and may contain holes (i.e.,
be multiply-connected). The configuration spaceC is three-
dimensional, consisting of position and orientation; formally,
C = E × S1, in which S1 = [0, 2π]/∼, in which ∼ is an
equivalence relation with0 ∼ 2π. While we will use this
three-dimensional model for the purposes of discussion, the
controls are actually acceleration controls. In other words, the
system can be viewed as a five-dimensional system satisfying
the additional equationṡvf = u1 andv̇θ = u2. The nonholo-
nomic constraint can be expressed asẋ sin θ − ẏ cos θ = 0.

The goal point is defined to be the pointxg ∈ E . Our
task is to construct a smooth feedback plan which solves the
planar navigation problem, which will stabilize the system
to the goal point while ignoring the orientation. Given a
dynamical system, asmooth feedback planis a vector field
V on C which satisfies the following properties:

1) At every point,V is admissible (i.e., it satisfies the
differential constraints of the system).

2) V is smooth except for a set of measure zero.
3) The integral curves ofV are smooth.

By smoothwe mean infinitely differentiable, i.e.,C∞. The
vector field induces a mappingπ : C → U , in which U
is the input space; since the vector field is admissible, this
is guaranteed to be well-defined. A smooth feedback plan
solves a navigation problem if all integral curves of the vector
field converge to the goal region. In this work, the goal region
is xg × S1, for somexg ∈ E . In other words, we ignore the

orientation of the robot and consider only its position. This
is entirely reasonable; for the system we consider, Brockett’s
condition [3] implies that no static, smooth vector field
(feedback control) can stabilize the complete state of the
system. Additionally, it is often sufficient from a practical
point of view to stabilize only the position of the robot. Once
in the neighborhood of the goal statexg, the orientation may
be stabilized independently.

III. C ONSTRUCTINGSMOOTH FEEDBACK PLANS

In this section, we describe how to construct smooth
feedback plans which satisfy the nonholonomic motion con-
straints while taking the robot to the goal region from any
point in the environment. We begin by describing how to
construct a smooth feedback plan overE as in [16]. We then
use this in the construction of our smooth feedback plan over
C. The method of [16] is applicable in arbitrary dimensions;
however, we will describe the two-dimensional case, since
that is what we need for our problem.

A. Computing a Smooth Feedback Plan overE

The feedback plan is computed as a plan for a point
robot moving in a 2-dimensional cell complex in which each
cell is a convex polygon. In our case, the complex results
from the convex decomposition of the general polygonal
environmentE . Denote thegoal stateby xg, and thegoal cell
containingxg by Cg. Using the connectivity of the convex
cells, construct a graph and use a graph search algorithm
(such as Dijkstra’s algorithm) to determine a path from each
cell to Cg. For each cell other thanCg there is a “successor”
that represents the next cell on the path to the goal cell.
Every cell with a successor is called anintermediatecell.

The global feedback plan is built by constructing vector
fields over each cell, ensuring that they each have the desired
properties, and guaranteeing that they match at the faces
separating adjacent cells. The vector field of each cell must
be smooth in the interior of the cell, and all integral curves
must be smooth and exit the cell at the face shared with the
cell’s successor (except in the case of the goal cell; in this
case, the integral curves must converge to the goal state).

Given a particular cell, define a vector field for each face
of the cell (in the 2D case, each face is simply a one-
dimensional edge). Denote these face vector fields byVfi

.
Face vector fields must have two properties:

1) A face vector field corresponding to an obstacle face
must point away from the obstacle.

2) A face vector field corresponding to a face between
adjacent cells must be consistent with the successor
relation given above.

See Figure 1 for an illustration of an environment, the face
vector fields, and a directed graph giving the cell path to the
goal cell.

The vector field for the particular cell (denote this asV)
must match the face vector fields{Vfi

} at their respective
faces and must smoothly interpolate between them in the
interior of the cell. This is accomplished using anattractor
vector field Va, which is defined over the entire cell. The

xg

C

D B

E

A
A

B C

D

E

Fig. 1. An environment, corresponding face vector fields, andthe graph
showing how to reach the goal cell from any other cell.

V = Va

V = Vf

Fig. 2. An individual cell, partitioned using the generalized Voronoi
diagram.

cell is partitioned into regions corresponding to each face;
in the region corresponding to a particular face, the vector
field V interpolates between the face vector fieldVfi

and the
attractor vector fieldVa. On the faces of the partition itself,
V = Va; as we have already said, on the face of the cell
V = Vfi

. The partitioning method used is the generalized
Voronoi diagram, or GVD. See Figure 2 for an illustration.

In order to smoothly interpolate between the face and
attractor vector fields in the different partition regions,we
usebump functions, which are defined as follows:

Definition 3.1: Let X be a smooth manifold, and letK
be a closed set andU an open set,K ⊂ U ⊆ X. Then
a bump function overU is a smooth, real-valued function
ρ : X → [0, 1] such that:

1) ρ has support contained inU .
2) ρ(x) = 1 for everyx ∈ K.
For our purposes, we will use a bump function on the

real line which transitions smoothly from 1 to 0 on the unit
interval. An illustration of such a bump function is given in
Figure 3.

The parameter used for the bump function is a product

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

b(
t)

Fig. 3. A bump function. If we letλ(s) = (1/s)e−1/s, then b(s) =
1 − λ(s)/(λ(s) + λ(1 − s)).

of analytic switches built using distances to the faces of the
GVD. Formally, for any pointp in the region corresponding
to facefx,

s(p) = 1 −
n

∏

i=1

d(p, fi)

d(p, fi) + d(p, fx)
, (2)

in which {fi}
n
1 are the faces of the GVD andd(p, fi) is the

distance fromp to facefi. This function is smooth (except
at the vertices of the cell), and has the desired property of
being identically equal to one on the face of the cell and
zero on the GVD faces.

Since the bump function smoothly blends the face and
attractor vector fields together, a vector field is obtained
which is smooth over the interior of the cell. With small
modifications, this approach can be used in the goal cell as
well; piecing the cells together results in a smooth feedback
plan. Using the shorthandb(p) = b(s(p)), we define the
global vector fieldV at pointp asV (p) = norm(b(p)Vf (p)+
(1−b(p))Va(p)), in whichVf is the face vector field for that
point, Va the attractor vector field,b the bump function, and
norm is the normalization function, so thatV is a unit vector
field. Figure 4 shows an environment and a depiction of the
computed smooth feedback plan. This method is extremely
fast and can be computed in real time. While there is some
extra overhead associated with dynamic environments, the
algorithm is fast enough that it can be re-initialized in real
time should the environment change.

B. A Smooth Feedback Plan Satisfying Nonholonomic Con-
straints

Using the vector field produced by the algorithm described
above, we now construct a smooth feedback plan over the
entire configuration space which will converge to the goal
region while satisfying the constraints.

Recall that the free workspace is denotedE , and the vector
field V defines a smooth feedback plan overE . In standard

Fig. 4. An environment and a corresponding smooth feedback plan.

coordinates, for anyp = (x, y) ∈ E , we have

V (p) = vx

∂

∂x
+ vy

∂

∂y
.

We use this to define the mapθt : TE → [−π, π) as
θt(V (p)) = tan−1(vy, vx), in which tan−1 returns the four-
quadrant arctangent ofvy and vx. We can now define the
target manifoldas Mt = {(p, θ) | θ = θt(V (p)), p ∈ E}.
Note that from any point on the target manifold, the non-
holonomic system can follow the integral curves to the goal.
Consider a time-parametrized integral curvec(t). Recall that
by definition, the tangent vectorT (t) = d

dt
c(t) = V (c(t)).

Then the angular velocity of an oriented particle following
the path is simply d

dt
θt(T (t)) = d

dt
θ(V (c(t))), which is

smooth since the vector field, integral curve, and function
θt are smooth. The tangent space can be parametrized in
terms of forward velocityvf and angular velocityvθ; to
follow this integral curve with the nonholonomic system,
simply setvf = 1 (since the curve is parametrized with unit
speed) andvθ = d

dt
θ(V (c(t))). It should be apparent that

d
dt

θ(V (c(t))) = dθ
dV

d
dt

V (c(t)) = dθ
dV

LV V (c(t)), in which
L denotes the Lie derivative. As a result, we can write an
equivalentV as a vector field onC:

V (p) = vx(p)
∂

∂x
+ vy(p)

∂

∂y
+ vθ(p)

∂

∂θ

If the robot is not on the target manifold, then the vector
field V is clearly not admissible (i.e., it does not satisfy
the nonholonomic constraints); however, if we design an
admissible vector field such that the target manifold is
attractive and such that it equals the originalV on the target
manifold, then we will be able to conclude that all integral
curves reach the goal.

It is well-known that a simple controller can be designed
that will cause the system to converge to the target manifold.
For example, one can use a controller of the formθ̇ =
θ̇t−K(θ−θt) for some gainK, in which θ̇t is the derivative
of θt while moving at the current velocity and heading.
The most significant problem with this approach is that
there are no guarantees that the obstacles will be avoided as
the robot converges to the target manifold. In fact, forany
predefined gainK, one can find configurations (positions
and orientations) from which the controller would cause the

robot to hit an obstacle. In contrast, our method guarantees
safety by constructing a vector field over the configuration
space which points away from the obstacles at the obstacle
boundaries (or, at least, tangent to the obstacle boundaries).
We accomplish this by smoothly interpolating between a
nominal vector fieldVn and two orienting vector fieldsV+

andV−, which guide the robot to the target manifold.
The nominal vector field, Vn, is defined using the pro-

jection of V onto the constraint distribution, together with
the angular rate of change ofV induced by the direction
of travel. Formally, for the constraint distributionD (defined
locally as the span of the tangent vectors to the manifold
in which the system can move), the projection mapP :
TQ → D is defined locally for some tangent vectorV (p) =
vx

∂
∂x

+ vy
∂
∂y

+ vθ
∂
∂θ

as:

Vn(p) := P(V (p)) = vf cos θ
∂

∂x
+ vf sin θ

∂

∂y
+ vθ

∂

∂θ

in which vf =
√

v2
x + v2

y and vθ = dθ
dV

LP(V)V . Note that
on the target manifold,Vn = V . We define our orienting
vector fields in the obvious way:

V+ = +
∂

∂θ
, V− = −

∂

∂θ
.

We now define the global vector field which avoids the
obstacles, satisfies the nonholonomic constraints, and whose
integral curves are smooth and converge to the goal region:

W (p) =



























































−b(s)Vn(p) + (1 − b(s))V+(p),

θt(p) + π/2 < θ ≤ θt(p) + π,

b(s)Vn(p) + (1 − b(s))V−(p),

θt(p) ≤ θ ≤ θt(p) + π/2,

b(s)Vn(p) + (1 − b(s))V+(p),

θt(p) − π/2 ≤ θ < θt(p),

−b(s)Vn(p) + (1 − b(s))V−(p),

θt(p) − π < θ < θt(p) − π/2,

in which b(s) is the bump function in Figure 3. We also need
to defines = θ−1

min×min{|θ−θt|, |θ− (θt +π)|}. We define
θmin below.

The vector fieldW blends between the nominal vector
field and the orienting vector fields. It respects both the
original target manifold and a copy of the target manifold
shifted byπ in the θ dimension. This is because the robot
can follow the nominal vector field driving backwards from
the orientation implied by the nominal vector field. Note that
W = Vn when the robot is on the target manifold, because
b(s) = 0; also, we see that eitherW = V+ or W = V− when
|θ − θt| = θmin. This means that if the angular difference
between the actual and target orientations is large enough,
the vector field acts solely to orient the robot and does not
translate it at all.

There are some requirements for the parameterθmin. First,
θmin ≤ π/2. At this point, Vn = 0 because the original
vector field is orthogonal to the orientation of the robot.

Second, the method of [16] guarantees that at the obstacle
boundary, the computed vector field will satisfy the dot
product constraintV · no ≥ ε > 0, in which no is a
unit normal vector pointing away from the obstacle face.
For V also having unit length, this implies thatθmin ≤
π/2 − cos−1(ε) in order for safety criteria to be satisfied.
Since it is shown in [16] thatV can be constructed so that
ε = 1, this means that if such a vector field is used as the
target vector field, then it is possible to setθmin = π/2.
Finally, it is obvious thatθmin must be greater than zero.
Apart from these restrictions, the choice ofθmin is free. A
choice of smallθmin corresponds to an emphasis on actually
following the original vector field; in the limit asθmin → 0,
we have the case where if the robot is initialized at an angle
different from θt, it performs an orientation maneuver and
then switches to following the target vector field. A choice
of large θmin corresponds to only following the nominal
vector field as much as necessary to reach the goal eventually.
We favor the philosophy behind this approach, because it is
decidedly not important to follow the original vector field;all
that matters is that the robot reaches the goal. The original
vector field onE is simply an intermediate step which enables
us to achieve the goal of building a smooth feedback plan
over the configuration space.

C. Theoretical Properties

It remains to verify that the vector fieldW possesses
all the properties we desire. We do this in the following
theorems.

Theorem 3.2:The vector fieldW is smooth except for a
set of measure zero and has smooth integral curves.

Proof: The base vector fieldV is smooth except on the
vertices of the convex cells and some edges that are never
crossed by integral curves; so is its projection onto the con-
straint distribution,Vn. Similarly, the orienting vector fields
V+ andV− are smooth. These vector fields are interpolated
using a smooth bump functionb; the parameters is smooth
except where|θ−θt| = ±π/2, a zero measure set. Similarly,
the bump functions ensure thatW is smooth except for
|θ−θt| = ±π/2. This simply corresponds to the initial choice
of whether the robot will converge to the nominal vector field
moving forward or backward (with an appropriate angular
shift of π if moving in reverse). Therefore, the non-smooth
portions of W are a set of measure zero, and all integral
curves flow away from the non-smooth portions and are
consequently smooth.

Theorem 3.3:The vector fieldW satisfies the nonholo-
nomic constraints of the robot at every point.

Proof: The vector fieldW is constructed via the smooth
interpolation of the three vector fieldsVn, V+, andV−. Each
of these vector fields satisfies the nonholonomic constraints:
Vn since it is generated by the projectionP; V+ and V−

directly by construction, asP(V+) = V+ andP(V−) = V−.
Hence, the linear sum of these vector fields (through the
interpolation) also satisfies the constraints.

Theorem 3.4:The integral curves ofW never lead to
obstacle collision.

Mt

Fig. 5. An illustration of convergence to the target manifold, Mt.

Proof: The integral curves of the original vector fieldV
never lead to obstacle collision; moreover,V is guaranteed
to satisfy the obstacle constraintV · no ≥ ε > 0 at the
obstacle faces, as discussed above. Since we chooseθmin ≤
π/2 − cos−1(ε), we conclude thatb(t) = 0 whenever the
projected vector fieldVn points into an obstacle face. This
means that for any such point,W = V+ or W = V−, neither
of which can cause collision since they induce rotation only.
Consequently, if moving forward would cause a collision,
the robot will rotate without translation until it is safe to
translate once again.

The final result is that the integral curves ofW converge to
the goal state. This is a fairly obvious conclusion, given that
the target manifold is attractive and that the integral curves
on the target manifold converge to the goal region. However,
the proof of this fact requires some work. We first prove two
lemmas.

Lemma 3.5:The integral curves ofW converge to the
target manifold. In other words, for anyε > 0, ∃T such that
for all t > T , |θ(t) − θt(t)| < ε.

Proof: Consider only theθ coordinate, and use a
Lyapunov functionL(p) = 1/2(θ − θt)

2. This has a unique
minimum on the target manifold, where(θ − θt) = 0.
From the construction ofW , one can derive the result
L̇ = −(1−b(s))|θ−θt|, which is everywhere positive except
on the target manifold. Henceθt is globally asymptotically
stable (the integral curves converge to the target manifold).
To be precise, it will converge to one of the target manifolds
(recall that there was one target manifold corresponding
to moving forward and another corresponding to moving
backward). Figure 5 illustrates this.

Lemma 3.6:Consider two maximal integral curvesc1(t)
and c2(t) restricted to a cell other than the goal cell, with
c1 lying in the target manifold. Then there is at most one

c2c1

θ < θt

θ > θt

Fig. 6. An impossible situation. The integral curvec1 partitions the cell
into two halves; crossing from one side to the other at a givenpoint implies
a relationship between the relative orientations at that point.

t0 such that the coordinate projectionsx(c1(t0)) = x(c2(t0)
andy(c1(t0)) = y(c2(t0)).

Proof: Essentially, this lemma means that if the curves
in a cell are projected into the(x, y)-plane, they can cross at
most once. In the plane, the curvec1 partitions the cell into
two halves; denote these “left” and “right” (see Figure 6 for
an illustration). Crossingc1 from left to right corresponds to
θ < θt, and crossing from right to left toθ > θt. This means
that if the curves cross twice, they must cross at one time
with θ > θt and one time withθ < θt. This can only happen
if at some point the curvec2 crosses the target manifold. But
by construction, no curve crosses the target manifold, since
the vector field is identically equal to the nominal vector field
on the target manifold. In fact, no curve ever actually reaches
the target manifold, although all integral curves approachit
tangentially. Hence,c2 can crossc1 at most once.

Theorem 3.7:The integral curves ofW converge to the
goal region.

Proof: First, consider the case of an integral curve over
some cell inE other than the goal cell. Using argumentation
similar to [16], we show that the integral curve will exit
that cell via the exit face of the cell. Recall that the cell
is partitioned into different regions using the GVD. The
construction ofV guarantees that if an integral curve ofV
crosses a face separating two regions of the cell, then it will
not cross that face again. Since we know that a flow fromW
cannot cross any flow fromV more than once (Lemma 3.6),
this implies that the flow fromW cannot cross a separating
face more than once. Therefore, there are no cycles that
cross the GVD; integral curves must either exit the cell or
gets trapped in a region corresponding to a particular face.
However, we know that the flows fromV do not get trapped
because they satisfy a dot product constraintV · ns ≥ ε > 0
with the normal vector of the hyperplane separating the
face from the exit face (note that this statement is a slight
modification of the one given in [16]). The convergence of
the angleθ as shown in Lemma 3.5 implies that for anyε,
there exists a timeT such thatW (t) · V (t) ≥ 1 − ε for all

t ≥ T . Together with the corresponding fact that||W (t)||
converges to 1, this implies that there is also some timeT1

such thatW (t) · ns ≥ ε > 0 for all t ≥ T1. Hence, by
the same reasoning as in [16], the integral curve cannot be
trapped and must exit the cell by the exit face.

We have shown that all integral curves ofW must reach
the goal cell. A similar argument shows that all integral
curves in the goal cell converge to the goal regionxg × S1.
The original vector fieldV satisfies the conditionV (̇xg −
p) ≥ ε > 0 at every pointp. Exactly as argued above, we
know that there exists a timeT such thatW (t) ·V (t) ≥ 1−ε
for all t ≥ T . This leads to the conclusion that there exists
a timeT1 such thatW (t) d

dt
(xg − p) ≥ ε > 0 for all t > T1.

Since for all non-goal cells the integral curves all properly
exit via the exit face (after sufficient time), and all integral
curves in the goal cell converge to the goal region, the
integral curves globally converge to the goal region.

IV. A NALYSIS AND EXAMPLES

From a practical standpoint, our method is highly advan-
tageous. In addition to the desirable attributes of the system
trajectories our feedback strategy induces, the vector field
is extremely fast to compute at any point. Our extension to
nonholonomic systems in this work has the same algorithmic
complexity and practical time requirements as the previous
work in [16]. First, the component vector fields must be
computed for the given polygon. If the environment is given
as a general polygon, then it must first be decomposed into
convex pieces. In two dimensions, this is algorithmically
straightforward and extremely fast. Using a modified version
of Seidel’s algorithm [18], [21], this can be done in expected
O(n log∗ n) time, in whichn is the geometric complexity of
the polygon (i.e., the number of vertices). After decomposing
the polygon into convex pieces, the cell connectivity graph
must be explored to generate the successor of each cell.
Using simple breadth first search, this can be done inO(n)
time. Additionally, the point location data structure should be
built, which requiresO(n) time [11]. The face and attractor
vector fields can also be computed in linear time. Second,
when a new initial state is given to the algorithm, then a
point location query must be performed. This can be done
in O(log n) time, since the preprocessing has already been
performed. Finally, after the initialization is complete,only
linear time is required to compute the vector field value (in
the complexity of the cell along with one neighboring cell).

This implies that the vector field is extremely fast to
compute, even for very large environments. A large environ-
ment requires more preprocessing than a small one, but the
execution in real time is no different. Our method is entirely
suitable for real time feedback control. If the environmentis
dynamic, not static, our method is still efficient in practice.
If the change to the environment is sufficiently local that the
environment polygon and connectivity graph do not have to
be recomputed, then our method incurs no extra cost. In the
worst case, the convex decomposition must be re-performed;
however, even this operation is fast enough that it can be

done with no noticable drop in performance for reasonable
environments.

For the sake of illustration, we have included several
examples of the system trajectories of our algorithm. As we
have said earlier, there is a fair amount design freedom in
choosing how aggressively to approach the target manifold.
Figures 7 shows several trajectories produced by our algo-
rithm. Starting from an initial point in the plane, the initial
orientation of the robot is set to±0.5 radians from the angle
of the original vector field at that point. The trajectories of the
aligned system are shown by dashed lines, and trajectories
corresponding to more or less aggressive tracking strategies
are shown in the solid lines. Another example is given in
Figure 8, which indicates the orientation of the robot at
different points along its trajectory. Figure 9 shows a similar
trajectory; the orientation annotations indicate the orientation
of the nominal (not actual) vector field at those points.
The accompanying plot shows the convergence to the target
manifold, i.e.,θ → θt.

V. CONCLUSION

In conclusion, we have presented an algorithm for con-
structing a smooth feedback plan for a nonholonomic point
robot in a polygonal environment. The integral curves of the
corresponding vector field are smooth, satisfy the nonholo-
nomic constraints, and stabilize the robot to the goal region
xg×S1. We construct the feedback plan using a nominal plan
computed as in [16], which defines a target manifold in the
configuration space. We guarantee that the the integral curves
converge to the target manifold by smoothly interpolating
between trying to follow the nominal vector field (after pro-
jecting them onto the nonholonomic constraint distribution)
and reorienting the robot to improve alignment with it. By
guaranteeing that the integral curves converge to the target
manifold, we prove that the integral curves converge to the
goal region as well. Our method is extremely fast to compute
and is suitable for real-time application.

In the future, we intend to address systems with more
complex nonholonomic constraints. While the differential
drive model is extremely common and thereby important,
there are many other systems of interest which we would
like to develop smooth feedback plans for, such as car-like
robots with path curvature constraints. We would also like
to create feedback plans for systems modeled as polygonal
robots in addition to point robot models.

ACKNOWLEDGMENTS

This work was funded in part by NSF Awards 9875304,
0118146, and 0208891.

REFERENCES

[1] D. Bertsekas.Dynamic Programming and Optimal Control: Volume
I. Athena Scientific, Belmont, MA, USA, 2000.

[2] A. Bloch, J. Baillieul, P. Crouch, and J. Marsden.Nonholonomic
Mechanics and Control. Springer-Verlag, New York, NY, 2003.

[3] R. W. Brockett. Asymptotic stability and feedback stabilization.
In R. W. Brockett, R. S. Millman, and H. J. Sussmann, editors,
Differential Geometric Control Theory. Birkhäuser, Boston, MA, 1983.

xg

xg

Fig. 7. Two environments, with goal statesxg and trajectories from an
initial point with initial angular deviation.

[4] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems.
Springer-Verlag, New York, NY, 2004.

[5] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
composition of dynamically dexterous robot behaviors.Int. J. Robot.
Res., 18(6):534–555, 1999.

[6] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local
potential functions for global robot control and navigation. In
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages 3546–
3551, 2003.

[7] J. Cort́es, S. Mart́ınez, J. P. Ostrowski, and H. Zhang. Simple
mechanical control systems with constraints and symmetry.SIAM
Journal on Control and Optimization, 41(3):851–874, 2002.

[8] I. I. Hussein and A. M. Bloch. Optimal control of underactuated
nonholonomic mechanical systems. InProceedings of the 2006
American Control Conference, 2006. To appear, preprint available
at http://arxiv.org/abs/math/0510009 .

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces.IEEE Trans. Robot. & Autom., 12(4):566–580, June 1996.

[10] O. Khatib. Real-time obstacle avoidance for manipulators and mobile

xg

Fig. 8. Two trajectories from an initial point, with indications of robot
orientation.

robots. Int. J. Robot. Res., 5(1):90–98, 1986.
[11] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.

Computing, 12:28–35, 1983.
[12] A. M. Ladd and L. E. Kavraki. Fast exploration for robotswith

dynamics. InProc. Workshop on Algorithmic Foundation of Robotics,
pages 313–328, 2004.

[13] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006. (Also available at http://msl.cs.uiuc.edu/planning/).

[14] S. M. LaValle and P. Konkimalla. Algorithms for computing numerical
optimal feedback motion strategies.International Journal of Robotics
Research, 20(9):729–752, September 2001.

[15] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions,
pages 293–308. A K Peters, Wellesley, MA, 2001.

[16] S. R. Lindemann and S. M. LaValle. Smoothly blending vector fields
for global robot navigation. InProc. IEEE Conference on Decision
and Control, pages 3553–3559, 2005.

[17] T. Lozano-Ṕerez, M. T. Mason, and R. H. Taylor. Automatic systhesis
of fine-motion strategies for robots.Int. J. Robot. Res., 3(1):3–24,
1984.

[18] A. Narkhede and D. Manocha. Fast polygon triangulationbased on
seidel’s algorithm. In A. Paeth, editor,Graphics Gems V. Academic
Press, Boston, 1995.

[19] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential fields.IEEE Trans. Robot. & Autom., 8(5):501–518, October
1992.

[20] A. A. Rizzi. Hybrid control as a method for robot motion program-
ming. In IEEE Int. Conf. Robot. & Autom., pages 832–837, 1998.

[21] R. Seidel. Small-dimensional linear programming and convex hulls
made easy.Discrete Comp. Geom., 6:423–434, 1991.

[22] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Trans. Autom. Control, 40(9):1528–1538, September 1995.

[23] S. Waydo and R. M Murray. Vehicle motion planning using stream
functions. In IEEE Int. Conf. Robot. & Autom., pages 2484–2491,
2003.

[24] L. Yang and S. M. LaValle. The sampling-based neighborhood graph:
A framework for planning and executing feedback motion strategies.
IEEE Transactions on Robotics and Automation, 2003.

xg

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

θ
−

 θ
t

Fig. 9. An illustration of convergence to the nominal vector field. The
annotations indicate the difference between the actual vector field and the
nominal one. The angular error decreases monotonically; the trajectory ends
when the robot reaches a small neighborhood of the goal region.

