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Abstract— This paper presents a novel approach to computing deviates from the prescribed path during execution. Fegdba
feedback laws in the presence of obstacles. Instead of computiag controllers, on the other hand, are much more robust. Becaus
trajectory between a pair of initial and goal states, our algorithms ey are defined as vector fields defined over the entire state

compute a vector field over the entire state space; all trajectoes th . dto b d with tracki
obtained from following this vector field are guaranteed to space, there IS no need 10 be concerned wi racking a

asymptotically reach the goal state. As a result, the vector field Particular path; the robot can simply follow the controfierm
globally solves the navigation problem and provides robustness to its current state and be guaranteed to reach the goal stae. T
diSthba(nCS? in ?GDS”:Q _an;i control. Th? VSCEOV fie'dc;s igt?gém fact that the current state of the system is used to determine
curves (system trajectories) are guaranteed to avoid obstacle ; ;
s e 0 oo e comui & vecor g i mese "o TP 0 SPRY makes i b conmbeen op
properties by partitioning the space into simple cells, defining . Ys > . . X '
local vector fields for each cell, and smoothly interpolating With the ability of combinatorial algorithms to efficiently
between them to obtain a global vector field. We present an take obstacles into account. The feedback law should pro-
algorithm thz;t computes these feedback controls for a kinematic vide global asymptotic convergence to the goal state while
point robot in an arbitrary dimensional space with piecewise g 5ranteeing obstacle avoidance. For any state, the vélue o
linear boundary; the algorithm requires minimal preprocessing
of the environment and is extremely fast during execution. For thg feedback Iayv should be ee_lsy to compute. The system
many practical applications in two-dimensional environments, trajectories obtained from following the feedback law dbou
full computation can be done in milliseconds. We also present an be smooth, in contrast to the jagged paths that motion phgnni
algorithm for computing feedback laws over cylindrical algebraic  algorithms often produce. The most popular way to address
decomp_osmor_ls, thereby sgIV|ng a smooth feedback version of thethiS problem (sometimes termesimultaneous planning and
generalized piano movers’ problem. - . .
control) is through potential fields. In this approach, a real-
valued function is computed, the gradient of which is used
|. INTRODUCTION as the control law for the robot. The biggest drawback with
Motion planning and feedback control are fundamentabtential field methods is that it is very difficult in praaic
and well-studied problems in robotics. They both address compute potential functions that will guarantee global
the problem of motion: how to control a system so thatonvergence. Theoretical methods exist [85] that make such
it safely arrives at a target location. A feedback law is guarantees, but are difficult to implement and apply to real
vector field which determines which input to apply fromworld environments.
any state; the trajectories described by the vector field allOur approach, on the other hand, builds on top of clas-
converge to the goal state. Feedback control techniques haical cell decomposition methods used for complete motion
been studied extensively for environments without obetacl planning. Once the cells are determined, we provide a simple
and they provide robust and effective solutions to the dloband efficient way to place smooth control laws over the
navigation problem in that setting. Nearly all practicabotics decomposition. Thus, exact, smooth feedback motion plans
problems, however, involve obstacles. Robots are requiregem to come for free, given the prepaid cost of classical pat
to operate in environments that are cluttered with obssaclglanning. Over the cell decomposition, it is easy to defimalo
and must solve tasks while avoiding them. Since traditionebntrollers that prevent obstacle collision and guide ffstesn
feedback control methods do not take obstacles into accountvard the goal state. Our methods place simple local vector
their usefulness for these problems is limited. fields over individual cells and smoothly blend them togethe
Traditional motion planning approaches, on the other hartd, form a global vector field that has the desired properties
use geometric algorithms to achieve obstacle avoidance- Hof global convergence and obstacle avoidance. By working
ever, they generally only compute individual trajectories directly with vector fields rather than computing them from
tween given initial and goal states. The computed trajeztorthe gradient of a potential function, our methods are able
are open loop that is, they are defined as a function ofo have a high degree of flexibility from a practical design
time only, which leaves the robot no way to recover if iperspective. In related work, we have also shown that our



methods extend to simple nonholonomic systems [66], [70], necessary). See Chapter 13 of [58]. It is assuniéds
which is quite difficult for potential field approaches. Alsoa differentiable manifold, and we define the semi-algebraic
the system trajectories produced by our control law @pré closedstate obstacle regiotX,,s; and openfree state space
smooth. Although this high degree of smoothness is not @wa¥ ,.. = X \ Xopst, Which are derived fronC,,,; and any
necessary, it is often advantageous. Smooth feedbackdeviadditional constraints on time derivatives @f
a greater level of robustness than non-smooth feedback; iSuppose that aell decompositionis given over some
is also more reliable to implement on a physical systersennected open regiol.; C Xy... (for a completemethod,
Smooth trajectories also tend to be visually appealingewhix,, = X/,..). The cell decomposition is a partition of
is important for applications such as computer animation. x_, into “nicely behaved” regions which can be computed
In this paper, we present algorithms for computing feedising many existing algorithms. The choice depends on the
back laws over two types of cell decompositions. First, wéimension of X and the particular models used fét, the
will address bounded, finite-dimensional state spaces widbot, and other constraints ox.
piecewise linear (PL) boundaries; these can be decomposedlet ;, be a desired goal point il ;. Our task is to compute
into _convex polytopes. Although our methods work easily smooth feedback plawhich is a vector field defined over
in high-dimensional spaces, they are especially pracéiodl x_, for which all integral curves (trajectories) af&°-smooth
fast for two-dimensional problems, which are common igng converge asymptotically to,. Note that even though
robotics applications. In this case, our algorithms effiie )| integral curves are smootfi] itself may only be smooth
compute feedback laws in complex polygonal environmenigmost everywherewhich is required because smooth vector
We also present algorithms to construct vector fields ovgg|ds that converge ta;, do not even exist wherX,, is
cylindrical algebraic decompositions. From the early geamyltiply connected.

of motion planning research, it has been known that theseHOW can the smooth feedback planhbe used in practice?

d_ecomp05|t|or’15 Cirll be ushe_zdhtp e;(actly so}!vi the generallggppose that a time-invariaabntrol systenis expressed over
piano movers’ problem, which is the one of the most genergli. i1 usual mannet; — f(z, ), in which u is aninput

formulations of the motion planning problem [91]. This isat time ¢, taken from a predefinethput space U. Suppose
possible because the cells of a cylindrical algebraic decomat for everyz € X.q there exists ar € U such that
position exactly partition the configuration space intoioag V(z) !

i X V(x) = f(z,u). In this case, if it is feasible to solVE(x) =
corresponding to free space or to obstacles. By working wwx u) for u at every step, thely immediately specifies what
local vector fields over cylindrical algebraic cells, we who? "

h lobal feedback | . d of | controls to apply to converge to,. The most common case
ow to compute global feedback laws, instead of open l0Qp,\hich 4, always exists is for 4ully actuatedcontrol system

pat?s;égls Ls a very b|a3|c_ resultaand the mokst gelngraltrewhh unbounded inputs. Such systems can follow any smooth
on feedback motion planning to date, to our knowledge. trajectory arising froml/.

If V is designed in a way that cannot be followed by a
Il. PROBLEM FORMULATION control system:: = f(x,u), then it may nevertheless be useful

This section gives the general problem formulation, which® 2 guide fOtacceIeratlon—t_)ased gontr,obvhu_:h attempts to
follows closely with standard motion planning and contrdf@ck V' as closely as possible using the difference between
theory notation (see [24], [56], [58] for more details). ben ¥ (#) @nd f(z,u) as an error term [28], [86]. Rather than
the world as W = R? or W = R3. The world contains a trac}qng a path, as in the use O.f classical path plannmgtsasu
given obstacle regionwhich is a closed semi-algebraic Se[he idea is generalized to tracking the vector field, whidbrsf

O C W. Therobotis a 2D or 3D closed semi-algebraic set thetdditional flexibility. If such control is not possible, of it

may be composed of one or more bodies. The configuratilﬁ]smcny req_wred that there exists € U S%JCh thaty'(z) —
spaceC is the smooth manifold corresponding to the space fou) at all times, then careful consideration must t_)e given to
transformations of the robot. Eache C embeds the robott e particular vectors chosen n. For example, special fields

in 1, yielding a subsetd(q) W, which is the closed set need to be designed in the case of nonholonomic systems,

of points occupied by the robot. Avoiding collision betweeM\’hICh we have done in .[66]’ [7.0]' AISO’ if a robot cannot
A(q) andO, aconfiguration space obstacle regidp,.; C C is follow V' due to bounded inputs, it mlght nevertheless be able
obtained. The opefree configuration spacé€y,.. is defined to move along the same path @i by simply slowing down.
as Cyree = C \ Copst. The classical path planning problem
involves computing a path : [0, 1] — C¢ye., Which connects
initial ¢; and goalg, configurationsr(0) = ¢; andr(1) = g,. [1l. RELATED WORK

Our task differs in two ways: 1) we will leavg unspecified,
and instead of computing a single path, we compute a vectoin this section, we describe related work in motion planning
field that upon integration encodes a family of paths thand control. We begin by outlining open loop motion planning
arrive atq, from any reachableg;; 2) we replaceC by the and continue by describing closed loop methods such as
more generaktate spaceX used in control theory. In many potential field techniques. Finally, we will describe work
cases, it can be assumed th¥t = C; however, we allow based on decomposing the environment into discrete calls an
the general case in which coordinatesXncorrespond ta; creating controllers for each cell, which is our approacthis
and its time derivativeg (or even higher order derivatives,paper.



A. Open Loop Planning have a system withr = . If a potential fieldP can be defined

The development of algorithms that compute open |065at is uniformly maximal on the obstacle boundaries, maiim
trajectories is motivated by the difficulty of finding feedka &t the goal state, and whose gradient is non-zero excepéat th
plans in complex environments. The non-convex constraifiga! state, then setting = —V P yields convergence to the
induced by obstacles in the environment pose significarii-prd@©@l- Simple analysis shows that the potential fiéldis a
lems for classical feedback control techniques [18], [p4g], Suitable Lyapunov function. o
[89]. Due to the difficulty of finding closed loop feedback eon 1he use of potential fields for rol_)o’t navigation became
trollers in complex high dimensional spaces, motion plagni PoPUlar in the 1980s [49], [53]. Khatib’s foundational work
algorithms attempt to compute only a collision free operplodtilized a potential field over the operational space (wpake)
trajectory; even so, motion planning is PSPACE-hard [83P gwd_e a manipulator or mob_lle robot to the ggal. The _baS'C
Such algorithms have been extensively studied [24], [F].[ potential field approach combines a term 'that is attractive t
Most algorithms ignore differential constraints complgte e goal state with terms that are repulsive with respect to
assuming that the robot is a fully-actuated kinematic systéh® obstacles. Theory and experiments with different fiten
(called free-flying or holonomig. These algorithms include fi€lds are given in [110]. Many additional references for
classical motion planning algorithms and many samplin otential fields for robgt navigation can bg found in [4SH]L7
based algorithms, including the Randomized Path Plandét?]- The problem with these potential field methods is that
(RPP) [4] and Probabilistic Roadmaps (PRMs) [47]. If thghey.ty[.mcally h.a've !ocal minima other thgn the goal state.
robot is not actually kinematic and holonomic, then the patfi\nY initial condition in the region of attraction of thesect
produced by these algorithms need post-processing to BEIMa will fail to reach the goal state. Our algorithms, in
transformed into feasible trajectories for the systems ti Contrast, have global convergence guarantees.
generally referred to adecoupled trajectory planningPost-  Although it is not simple to find potential functions that
processing methods include time-scaling [10], [97], stepr &€ free of spurious local minima, it is sometimes possible.
[55], [79], or other transformations [25], [35], [57], [93] Harmonic functions (potential functions which are sologo
In contrast to decoupled trajectory planning, some sargplint© L_aplace’s equation) are guaranteed to be _free_ of sucl loca
based motion planning algorithms directly generate fémsitfinima, and can be used for global robot navigation. Cognoll
trajectories. Algorithms of this type include Rapidly-éxing €t al. devel_op numerical solutions gf Lap_Iaces equations for
Random Trees (RRTs) [60], [61], Expansive Space TreEé‘th plannlng [29]—[32]. For Iow—dlmenS|onaI. environment
(ESTSs) [45], [46], and PDST-Explore [54]. Other approaché%'s possible to discretize the space and consider each a®de
include the use of mixed integer programming, which conart of a resistive grid with obstacle boundaries as sources
putes optimal paths for problems with polygonal obstacRd the goal point as a sink [100], [104], [108]. Wang
constraints and piecewise-affine system dynamics [8],,[8 nd Chirikjlan simulate steady stat_e heat traqsfe_r in [111]
[90]. Both direct and decoupled planning algorithms retur .aydo gnd Murrgy use stream functions for navigation in two-
open loop trajectories rather than closed loop plans. dimensional environments [112]. o _ '

One way to improve robustness for open loop paths is toOne of the most influential potential field techniques is
use them as feedforward components in a feedback controlfg@t of Rimon and Koditschek [85]. They defimavigation
This has several disadvantages, however. First, pathsajede functions which are potential functions satisfying several
by motion planning algorithms often are of poor qua"tytechnical conditions, and which are guaranteed to be free of
having unnecessary sharp turns. This may result in théguripus local minima. They show how to construpt navigatio
being difficult to track for a dynamical system. Second, thisinctions for several types of environments, which they cal
approach still does not producegéobal feedback plan; only sphere v_vorlds, star qulds_, and fo_rest_s of stars. Following
a local feedback plan in a neighborhood of the nomindf€ gradient of the navigation function is guaranteed tal lea
trajectory is computed. As a result, it may be difficult td° the gqal_ state frpm almost every initial condition (that
maintain collision avoidance guarantees. Another apprasc 'S €vVery initial co'ndltllon except for a set of measure zero)
to use motion planning algorithms themselves as the fegdbdd'€oretically, navigation functions can be constructed &0
mechanism. In such a model, any time the system deviat@f@€ family of configuration spaces, although this can by ve
from the prescribed trajectory, the trajectory would be rdlifficult to implement in practice. N_awgatlon functlons\dw
planned (probably from scratch) based on the new state hgen extended to the case of multiple, nonholonomic robots
the system. This approach is problematic as well. First, [¥1], [72], [102], [103]. o
has a very high computational cost, even given the powerThere are a number of other local navigation approaches
of modern computers, and may not be suitable for regqlased on potential fields. These include the Virtual Force
time applications. Second, asymptotic convergence to daé gField (VFF) [12] and the Vector Field Histogram (VFH) [13]

state cannot be guaranteed, even though one might infgrmaNd their extensions, VFH [107] and VFH [106]. These
expect convergence to occur. methods build a potential field online, using range sensor

measurements. This online potential field can be used ta avoi

obstacles and move toward the goal, but convergence is not
B. Closed Loop Methods guaranteed. The Curvature Velocity Method [52], [98] and
The most common approach to obtaining feedback in tflee Dynamic Window Approach [36] choose controls at each
presence of obstacles is to use a potential field. Assume tivee step that are optimal over the set of admissible camtrol



(i.e., those for which the robot can always halt withoutih@it between them when certain conditions are met. Formal models
an obstacle). The optimality criteria can be chosen to causkehybrid systems have been defined and studied [1], [14]-
the robot to travel towards the goal, and the robots genera]l6], [65], [109]. One particular type of hybrid controllés
move quite rapidly while observing the safety constraiotge based on sequential composition of funnels [19], [73], [86]
again, however, convergence is not guaranteed. The dynamichis framework, a collection of controllers is developed
window approach is extended in [17], [82], [99]. each of which converges to a goal set that is either the actual

Potential field methods have also been integrated wigjoal state or in the domain of another controller. Followang
sampling-based motion planning algorithms in a variety slequence of these controllers will cause the system toearriv
ways. The sampling-based neighborhood graph (SNG) covatghe goal state.
the free space with balls, each of which is equipped with In the case where the environments are polygonal (a com-
a local navigation function that is guaranteed to convey timeon scenario), one approach is to divide the environmeat int
robot into a ball nearer to the goal state [115]. Bohliconvex cells and use local controllers on each cell. If the
used Green kernels to compose a workspace potential ustogtroller for each cell funnels the robot to an appropriate
samples fromSE(3) [11]. Elastic roadmaps build dynamicedge of the cell, then the controller for the next cell caretak
roadmaps using features in the workspace [116]. Conngctivover. When the goal cell is reached, the local controller eaus
between roadmap milestones is determined by local potentiae robot to converge to the goal state. The case of piecewise
functions. Elastic roadmaps have been successfully applefine hybrid systems has been studied extensively, canmsile
to challenging problems in dynamic environments, but theontrol on simplices [7], [38], [39], [87], rectangles [6],
lack completeness guarantees. Approaches like these carj3d¢, or general polytopes [40], [41] (see also references i
viewed as hybrid control systems, which are discussed mdhese works). Since affine functions over simplices aretgxac
fully below. determined by their value at the vertices of the simplices, i

Velocity field control is an alternative to potential fieldpossible to prove reachability and controllability resimply
methods. Velocity field control places a vector field over thiey solving linear inequalities. Fainekes al. show how to use
state space directly, rather than computing it as the gnadieontrollers such as these in an integrated approach capfble
of a potential field. One motivation for this approach is tiat satisfying complex linear temporal logic specificationd][3
allows task specification (e.g., trajectory or contourdafing) Conneret al. use local potential fields to define control
without time parameterization. It was introduced by Li angdolicies on individual polygonal cells [28]. To define the
Horowitz [62]-[64]; stability of the system is demonstriges- field, they use the pullback of a potential function on a
ing notions of passivity. Velocity field control has been kkgp  disk, which has a closed form solution. They require that the
frequently to robot manipulators [21], [78], with the veilyc gradients of the potential fields be perpendicular to thé cel
field specified over the operational space of the manipulatbbundaries, so that adjoining potential fields can be easily
Velocity fields have also been applied to wheeled mobifgeced together (i.e., the gradient of the potential fieltj a
robots [33], [113], [114]. Although stability and convergee thus the control policy, is continuous). Putting togethee t
results are obtained for systems with nontrivial dynamicsdividual “component control policies” guarantees thiaé t
velocity field methods do not consider environments witglobal control policy brings the robot to the goal. In aduitio
obstacles. specifying a control policy for kinematic systems, theyelep

Another approach is to use numerical techniques to computantrol policies for second order systems. They also use the
an approximate optimal value function on the space, whidomposition of funnels technique to deploy control pokcie
then serves as a potential field. In this case, not only is-feddr convex-bodied robots with nonholonomic constraintg][2
back achieved, but also approximately optimal trajectoj, Finally, our work can also be viewed as the sequential com-
[59], [77], [94], [95], [105]. The time and space complexityposition of funnels, in which the environment is decomposed
of these algorithms are exponential in the dimension of theto appropriate cells and local control policies define@rov
state space, for fixed sampling or discretization resahytioeach cell [67]-[69]. Our methods give stronger smoothness
therefore, the curse of dimensionality prevents the apfiic  results than the above methods, and have extended them to a
of this approach beyond a few dimensions. unicycle robot [66] and a car-like robot [70].

As we have seen, the basic problem with these methods
is that they generally either do not have formal convergence
and obstacle avoidance guarantees, or they are not simple to
implement and use for robots operating in complex real-avorl
environments. Our goal is to do better than this: to construc In this section, we describe how to construct a smooth
feedback laws which have strong convergence and safé@gdback plan on al-dimensional cell complex embedded
properties and which are also highly efficient and practical in R?, in which each cell is an open convex polytope. An
earlier version of this work appeared in [67]. As we have
already discussed, this might result from a decompositfan o
d-dimensional space with a piecewise linear boundary. If the

A hybrid control system is one that incorporates botipace is described using an arrangement of hyperplanes, an
discrete and continuous dynamics. The control system tgseraacceptable decomposition is simply to use the complement of
in one of a distinct number of modes, and switches or jumgise arrangement. An alternative decomposition with paént

IV. SMOOTH FEEDBACK ON CONVEX CELL
DECOMPOSITIONS

C. Hybrid Control Systems and Sequential Composition
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fewer cells is vertical decomposition [42], [92]. The ingot
our algorithm is the cell complex and a goal statg As / .
discussed in Section Il, the task is to construct a vectod fiel / [/ G/\
on the cell complex such that the integral curves are smooth, i - P

avoid obstacles, and converge to the goal state. ¢ \ \17 |

A. Description e T\ .

To compute the desired smooth feedback plan, our algorithm 3
performs the following steps: q /

1) Given the cell decomposition, compute a discrete plan
over the cells.
2) Design local controllers (vector fields) that avoid obst
cles and are consistent with the discrete plan. _ _ _ _
3) Smoothly combine the local controllers to obtain 5|g. 1. An environment decomposed into convex cells, and thesponding
. . connectivity graph and discrete plan.
global controller that has the desired properties.

We discuss these each in turn.
Discrete plan computationiet a d-dimensional cell in
a cell complex be called d-cell. Suppose that a connected
cell complex is given in which a collection of convex
cells are specified along witfid — 1) convex cells at the
boundaries between pairs of adjacéntells. Under the con-
vention thatX ., is open, these cells are sufficient for motion
planning because all paths between ti#oells go through a
shared(d — 1)-cell. Since we do not need to consider lower
dimensional cells, we will henceforth use the teoall to
refer to ad-cell andface to refer to a(d — 1)-cell. Define
the connectivity graph to be the graph that has a vertex for
each cell {-cell) and an edge between two vertices if and
only if the corresponding cells share a fadel ¢ 1)-cell)
on their boundaries. Compute a discrete plan over this graph
such that following the plan from any vertex leads to vertex
corresponding to the cell containing the goal state. A WarieFig. 2. Vector fields assigned to the faces.
of graph search algorithms can be used for this purpose,
with or without optimality criteria. For example, breaditst
search can be used, with a corresponding linear boundfage corresponding to th&.; boundary or an improper cell
execution time. Alternatively, edge weights can be assign&ansition, instead causing the robot to cross the exit face
using distance between cell centroids, and Dijkstra’sritlym into the successor cell. For the sake of clarity, we will gela
or dynamic programming can be used to find cell paths th@iscussing the formal requirements for these vector fidtds.
induce shorter paths through the environment. The resultinow, consider the face vector fields to be normal to their
directed graph defines successoffor every cell except the corresponding faces and oriented in the appropriate dres;t
goal cell. The successor of a cell is the next cell on the paand the cell vector fields to always point toward the exit face
to the goal cell; the shared face is called thét faceof the In the case of the goal cell, all face vector fields point irdvar
first cell. Each cell with a successor is termedirtermediate and the cell vector field always points at the goal state. See
cell, in distinction with the goal cell, which has no sucaess Figure 2 for an illustration of face vector fields.
See Figure 1 for an illustration. Smooth interpolation:Now we proceed to the third task
Local vector fields:The directed graph and correspondef our algorithm, which is to interpolate between these lloca
ing successor relations define a high-level discrete planv,N vector fields to obtain a global vector field that has the @elsir
we define local vector fields that are consistent with themoothness and convergence properties. Consider a single
plan. To do so, we define two types of vector fields: thosell; we then have a single cell vector field. and a set
corresponding to cells in the decomposition, which we calf face vector fields{V},}. We will form a vector fieldV/
cell vector fieldsand those corresponding to faces, which why interpolating between these vector fields; we will do this
call face vector fieldsIntuitively, the purpose of a cell vectorin such a way thal’ equals the face vector fields on their
field is to guide the robot through the cell to the exit facesorresponding faces. This guarantees that the vector fidld w
which leads to the successor cell. The purpose of the fdoe continuous across cell boundaries (we will see laterathat
vector fields is to guarantee avoidance of tkig; boundary derivatives will match across cell boundaries as well,djied
and to guarantee adherence to the discrete plan; in otheisywosmoothness). Interpolation is greatly simplified if it ishon
the face vector fields prevent the robot from crossing a c@lhirwise, rather than interpolating between all of the loca
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vector fields simultaneously. A natural choice for this is t .l

use the generalized Voronoi diagram (GVD) of the cell [81 o1y
[88]. The GVD is formed by partitioning the cell inédoronoi 0
regions of which there are one per face. The Voronoi region ¢

each face is defined to be the set of points inside the polytope
that are closer to that face than to any other face; we refag. 4. A plot of the bump function given in (1), which is usedsimoothly
to the Voronoi region of a face as itsgion of influenceThe interpolate between vector fields.

GVD surfaceis the set of points which are equidistant from

two or more faces of the cell. Since the faces aie- 1)- , ) , L -
dimensional hyperplanes, the GVD surface is the union ép |Ilustrat|<_)n of this b“fnp function is given in Figure 4 é-.h
subsets of hyperplanes, each of which is equidistant fromPymp function has the Important property that all deriiv
pair of faces. See Figure 3. equal zero at the endpoints of the unit interval.

For any point in the region of influence of facg, V'
will be an interpolation ofV;, and V.. On the face itself,
V' = Vy,; the rest of the boundary of the region of influence  Proof: By inspection of (2), it is clear that'b/ds*(0~) =
is contained in the GVD surface, and we assign= V.. dip/ds'(1*t) = 0, sinceb is identically 0 for s < 0 and
In order to smoothly interpolate over an individual regia/® identically 1 for s > 1. Therefore, consider the derivatives
need a smooth function which is uniformly zero on the fgce in the open unit interval. From Equation 1, straightforward
and uniformly one on the GVD surface. This function shoulgdpplication of L'Hopital’s rule yields
be smooth, except on thel — 2)-dimensional intersection d\(s) d
of f; and the GVD surface. Lack of smoothness at these lim = lim —(A(1-s))=0.
points will not adversely affect our method, because we have s—0*  ds s—1- ds
already indicated that all system trajectories move froth cé\ll higher derivatives of\ are likewise zero, by successive
to cell through(d — 1)-dimensional faces, not throughi —2)-  applications of L'tbpital’'s rule. Equation 2 yields
dimensional ones. We construct smooth interpolating fanst dx _ -~ d\ | d _
using bump functionsa common construction in differential dZ(S) = ds Als) + )\(1)\ s) )\)\1(8) (ds; (1= 9)
geometry, which are defined as follows: 5 (A(s) +A(1 = 5)

BN = 5) = A(s)EA(1 =)
. )
Definition 1 Let X be a smooth manifold, and Ik be a (Als) + A - 3))

closed set and/ an open setK C U C X. A bump function As s — 0T, both A(s) and % go to zero; hence% — 0.
overU is a smooth, real-valued functiop: X — [0,1] such Similarly, ass — 1~, both A(1 — s) and LA(1 — s) go to

Proposition 1 For anyi, d'b/ds*(0) = d'b/ds’(1) = 0.

that: zero; again, 22 — 0. All higher derivatives go to zero in the
1) ¢ has support contained ify. same way. o u
2) ¢(x) =1 for everyz € K. The parametes we use for the bump function is the product

of a number of analytic switches, which is smooth over the
Numerous bump functions are known. We will introducéterpolation region (the region of influence of the facejr F
one that transitions smoothly from 0 to 1 on the unit interva@ny pointp in the Voronoi region of face;, let

and is simple to express. First, define f) = p(p, fi
A(s) = (1/s)e”1/". @) i PP
in which p is the Euclidean distance metric #i*. This func-

tion is smooth (except on thg: — 2)-dimensional boundary
of the cell), and has the desired property of being idenyical

The bump function is then defined as

0 A(s) s<0 equal to zero on the cell face. The rest of the boundary of the
b(s) = X +A(1—s) 0<s<1 @) region of influence is the GVD surface, on which the equation
1 1<s p(p, f;) = p(p, fi) is satisfied for somg. Therefore, (3) is



identically equal to one on this boundary. Note that explici

computation of the GVD isiot required for this construction;

it is simple to determine which face’s Voronoi region any

particular point is in, by computing the distance to eacle faic

the cell. The pointis in the Voronoi region (region of infleeh ‘

of the face which is closest to it. L
Putting the pieces together, the overall vector figldis

defined as:

Fig. 5. Three possible cell vector fields. Each points tovithedexit face at
V(p) = unit (b(p)Vy(p) + (1 — b(p))Ve(p)),  (4) the bottom of the cell

in which V; is the face vector field for that poini;. is the
cell vector field,b is the bump function withb(p) shorthand Proof: Each integral curve o/, is a straight line; it is
for b(s(p)), andunit is a normalization function, ensuring thatsimple to see that each integral curve crosses the exit face,
V' is a unit vector field. hence, the first condition is satisfied. For the second ciamgit
The approach needs only slight modifications for the goabte that each face of the GVD is a portion of the hyperplane
cell. In this case, the GVD is not used to partition the Ce|§eparating two faces af'. If V. is constant, then the second
instead, the region of influence of a face is defined to be tBendition is clearly satisfied. IF, is otherwise, then for some
(interior of) the convex hull of the face together with theajo GVD face with normak, the sign ofV,.-n is fixed for anyz on
point. This clearly results in a subdivision of the cell. Thgne GVD face; this can be easily verified from the definition
interpolating function, then, goes from zero on the facerte oof V. above. For the third property, we have already stated
on the rest of the boundary of the cell. Since the boundatiyat each integral curve is a straight line that crosges
consists of a number of hyperplanes (as in the previous casggether with the second property, this directly implies th
it is easy to compute the necessary distances and the valugn@ti property. ™
the interpolating bump function. The definition for a face vector field is simple. Again, let
By showing how to construct the vector field on botlty be an intermediate cell with exit facg. For any facef,
the goal cell and intermediate cells, we have constructeded the associated normal vectorbe inward pointing iff #
vector field over the entire cell decomposition. Next, wel wilf, and outward pointing fof = f,. For any facef # f.,
formally specify sufficient conditions for the face and Ceujenote the hyperplane of points equidistantftand f, (the
vector fields and prove that the resulting vector figldatisfies pisecting hyperplane) by,. Denote the unit normal vector
the requirements of a smooth feedback plan. of this hyperplane to bey,, and let it be oriented so that
nys - ng > 0, for n, the normal of the exit face.
B. Theoretical Results

We begin by formally defining cell vector fields for inter-Definition 3 A face vector fieldcorresponding to a facef
mediate cells. Note that the GVD surface is the union of a geta smooth unit vector field; such that for every < f,
of faces, each of which is a subset of &— 1)-dimensional Vy(p)-n > 0. If f # f,, the conditionV(p) - nyy > 0 must
hyperplane equidistant between two cell faces. hold for everyp in the closure of the region of influence ff

if f= fz, V¢(p)-n >0 must hold.

Definition 2 Let C' be a convex cell with exit facg,, and N
consider the GVD of”. A cell vector fieldV, is a smooth ~ We now show that these broad conditions on the cell and

unit vector field onC' that satisfies the following: face vector fields are sufficient for the integral curved/ofo

1) For each pointz € C, there exists & € f, anda € R reach the exit face of the cell in finite time.

such thatV.(z) = a(y — ). N .
2) Let h be a GVD face, with normat. If V,(z)-n =0 Theorem 1 Under Definitions 2 and 3 above, all integral
for somez € h, thenV,(z) -n = 0 for all = € h. curves ofV reach the exit face in finite time.

3) The directed transition graph induced by this choice of

vector fields is acyclic and every path through this grap
terminates at the node corresponding to the exit edg

Proof: Take any poinp in a region of influence of some
# f.. It is clear from the definition o¥/,. that there exists
somee; such thatV,(p) - nyy > €;. With respect to the face

Although this definition permits many different types oflcelvector field, we know thaVy -n, is bounded away from zero
vector fields, we will consider a more narrow class of cefin a closed set, which implies that there exists semsuch
vector fields in practice. Consider a convex d@llwith exit that V.(p) - nyy > ez. Therefore, the overall vector fieltl
face f, with outward pointing normah,, and letC' be the will satisfy V(p)-nys > € for € = min(ey, €2), everywhere on
(possibly unbounded) cell resulting from the removal fof that region of influence. This implies that the integral eurv
from C. Let V.(z) = unit(p—x), in whichp € C\ C is fixed. containingp will reach the bisecting hyperplarig in finite
A variety of similar constructions are possible. See Fighiretime, unless it first reaches a GVD face. If it reaches a GVD
for an illustration. face, then it crosses into the region of influence of another

cell, and will never return to the first region of influence, by

Proposition 2 As defined abové/. is a cell vector field. property (3) of Definition 2. Applying this property repedig



we see that the integral curve will reach the region of infagen “sufficient progress” (e.g., satisfy an inner product coaist)
of the exit face in finite time. in each intermediate cell, and will converge to the goalestat
Assume that the integral curve has reached the regionarfce the goal cell is reached.
influence of the exit face. The integral curve then either Having fully described the construction &f and shown
reaches the exit face or some GVD face in finite time, becau$at the integral curves converge to the goal state, we now
the distance to the exit face is decreasing at a rate that hasreve the following:
positive lower bound. The integral curve cannot reach aroth
GVD face by the third condition of Definition 2; therefore, ittheorem 4 All integral curves ofV are smooth.
reaches the exit face in finite time after entering the regibn
influence of the exit face. Therefore, all integral curveshia Proof: As we have defined them, all local face and cell
cell reach the exit face in finite time. B vector fields are smooth. We have already argued that the bump
We have shown that for every intermediate (non-goal) cefunction b(s) is smooth. The parameter functignis smooth
every integral curve of the generated vector field will reaabn every Voronoi region, except on a set of measure zero (the
the exit face of that cell, and hence continue to the nefd —2)-dimensional boundary of the cell face). Integral curves
cell. Consequently, we have shown that all integral curvils wnever pass through these points, because every integrad cur
reach the goal cell. However, it remains to be shown that &l a particular cell passes to the successor cell through the
integral curves in the goal cell will reach the goal pointeThopen (d — 1)-dimensional face between them. The fact that
argument is much the same. all derivatives of the bump function equal zero fox= 0 and
In the goal cell, we use a different definition of the celk = 1 guarantees that the vector field (and, correspondingly, its
vector field. Formally, we require that for any pont4 z, in  integral curves) are smooth across cell boundaries andgscro
the goal cellV.(p)-(z4—p) > 0; also, we requird/.(z,) = 0. the GVD surface within each cell. Therefore, the integral
Practically, we use a cell vector field that is always oridntecurves ofV are smooth. [ ]
toward x,

Velp) = bl — pllumit(zy — p). (5) C. Efficiency

to satisfy this condition. This is smooth, satisfies the inne W€ have claimed that our method is extremely fast to
product requirement, and decays to zero at the goal point. compute. There are two primary computational costs. First,
there is the cost to compute the component vector fields given

an environment and a goal state; this is ffrecomputation
cost. Second, there is the problem of computing the value of
the vector field at a given point; this is thexecutioncost.
Proof: This statement is proven similarly to Theoren¥ hese can both be done quickly. We will give the asymptotic
1. Both the face and cell vector fields satisfy an inngomplexity of these algorithms, but we emphasize that the
product constraint guaranteeing that at any p(pn& Zg, constants in the asymptot_ic ana|¥SiS are quite -Sma”; these
V(p) - (x4 — p)> ¢ for somee > 0. The only place where methods are very efficient in practice as well as in theory.
V(p) - (z, —p)= 0 is at the goal point,; therefore, every First, consider the precomputation phase. If breadth-first

Theorem 2 All integral curves in the goal cell’, asymptot-
ically converge to the goal point.

integral curve asymptotically converges:tg. m Search is done on the graph corresponding to the cell complex
Given the previous theorems, the following theorem holdge successor of each cell can be foundim) time, in which
true: n is the number ofl-dimensional cells in the decomposition.

If a Dijkstra-like approach is used, the complexity becomes

Theorem 3 The integral curves of the vector field, defined O(nlogn). The face vector fields can be assigned in linear

over X,y C Xye., asymptotically converge to the goal statdime if perpendicular face vector fields are used. The cell
vector fields likewise require only linear time, since thenc

be assigned to point to the centroids of the exit faces. Hence
Proof: From Theorem 1, any integral curve in ardetermining the component vector fields, given a cell comple
intermediate cell proceeds to the exit edge and thus caginand its connectivity graph, can be done in linear time.
to the successor cell. All integral curves consequentigged Second, consider the execution cost. If the cell in which
to the goal cell in finite time. Theorem 2 then implies that thihe query point lies is unknown, then a point location query
integral curves asymptotically converge to the goal stam. must be performed to determine in which cell the point
We emphasize that the conditions we have given on the fdees. This can clearly be done in linear time, and may be
and cell vector fields are not necessary, but sufficient. IOtrenswered in logarithmic time if some preprocessing of the
than those we have outlined, there are many combinationscefl decomposition is done. In two dimensions, the optimal
face and cell vector fields that will yield the same result. fireprocessing bound i©(n) time, but practical algorithms
a choice of vector fields is made that does not satisfy thetgpically require O(nlogn). Also, only linear space is re-
sufficient conditions, it may still be possible to show thaguired in two dimensions. A good algorithm for this purpcse i
convergence follows. Arguments like those made above woWddrkpatrick’s triangulation refinement method [50]. In higr
likely be sufficient to verify convergence: ensuring tha¢ thdimensions, the results are not as good: logarithmic quiery t
combination of face and cell vector fields will always makémore preciselyO(dlogn), in which d is the dimension) can

Lg.



be attained, but only at the cost of exponential spélieﬂd)
[37].

If the cell of the query point is known, it requires linear
time (in the number of faces of the cell) to compute the vector
field value, because computing the bump function parametef
requires computing the distance to each face of the cell. In
practice, the number of faces of any cell is so small that
the cost of computing the vector field value is practically
negligible. If there is no error in following the vector fieknly
a single point location query must be performed to compute an
entire trajectory. Consider two successive query poiritsy t Fig. 6. A computed example; the left figure shows several sys@ectories,
must either lie in the same cell, or the second one lies in tAg the right figure illustrates the entire vector field.
cell that is the successor to the first one. This is guarantee
to hold as long as we assume that the vector field is queried
at a high enough rate, which is a weak assumption. The most
reasonable assumption is that the vector field is queriedstim
continuously (as in real time control), which will result tilme
condition holding true. In the presence of error, this may no
always be the case; however, we expect that it should typical
hold in practice, assuming that the error is small.

We may also assume that the cell complex is not given to us
directly, but that it must be computed by decomposing a gen-
eral polygonal environment. We can do this for any dimension
using vertical decomposition (an arbitrary-dimensionsi@r Fig. 7. A second computed example.
of trapezoidal decomposition); see [42] for details. If we
restrict ourselves to the two-dimensional case, there amym
ways to decompose polygon into convex pieces. One optiﬂ’ﬁﬂ we want to allow as much room as possible for flexibility
is Keil's algorithm for computing a convex decompositiort the point of implementation, while still maintaining pedle
with a minimal number of pieces. Keil's algorithm requireguarantees. Choice of cell decomposition and selectionasf f
O(nr?logn) time, in whichn is the number of vertices and and cell vector fields are important for our algorithm, but
the number of reflex vertices. Triangulation can be donenin limay be driven by application-specific concerns in a pasicul
ear time [22], and a practical implementation based on $gidecontext. We will outline some issues we have encountered
algorithm is available, which requireg(nlog* n) time [80]. in our preliminary experiments, and comment on reasonable
In practice, these algorithms can decompose even large @pdions for other implementations and applications.
complicated environments in milliseconds, on modern agskt Designing face and cell vector field$n Section IV-B, we
computers. Shewchuk’s Triangle library [96] is extremedgu Stated fairly general conditions on the face and cell vector
ful for this; it produces high-quality Delaunay triangudats ~fields under which convergence is guaranteed. This permits a
from general polygonal environments. The output can be usgigat deal of application-level design flexibility. To tresd,
directly, or post-processed using an algorithm such aseHertwe will outline several approaches for designing face and
Mehlhorn [44] to obtain larger and fewer convex cells. cell vector fields. We also give several concrete examples to
illustrate the impact of the choice of convex decomposition
and face and cell vector fields on the “quality” of the resgti
paths.

Thus far, we have focused almost exclusively on theoreticalConsider a face vector field for some face other than the
considerations. While the algorithm and its theoreticappre exit face of a cell. To satisfy the necessary conditions for
ties are the primary focus of this work, we also wish to préseconvergence, such a vector field must be directed inward at
several computed examples. We consider these examplesht face itself and must satisfy an inner product constraint
be proof of concept; they have been chosen to illustrate auith the normal of the face that is equidistant from the face
approach and, we hope, to convey intuition about the feddbamnd the exit face. Although these requirements are quitgeloo
controllers computed by it. We do not attempt to make precise will consider only the class of constant vector fields hwit
statements about performance, or to “push the limits” oftwhthe goals of simplicity and practical performance. A gressld
is practically feasible in a hard or soft real time settingof design freedom still remains under the constant vectt fie
Computed examples are given in Figures 6-8. restriction.

We will also briefly discuss some issues associated withFirst, consider the case of a constant face vector field with
using our approach to compute “good” feedback plans fonly the restriction that it must be inward-pointing on thed
practical mobile robot applications. In the discussionhefdry itself. In other words, we have only the constralifyt-ny > 0,
above, we attempted to make the formal conditions for cenvém which n; is the inward-pointing normal of the face. With
gence guarantees as broad as possible. The reason for thtkissmuch freedom, there are several obvious ways to choose

D. Discussion and Computed Examples
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ward to take a broad concept such as “point away from the exit
face as much as possible” and translate it into an admissible
Fig. 8. A third computed example. face vector field. If the desired direction of travel viokte

dot product constraint, simply project that vector ontoheac
violated constraint. The result is the direction that moies

V; that might be advantageous in terms of generating higfie desired direction as much as possible while satisfyihg a
quality paths. Different applications might choose anyt® t ¢4nsiraints necessary to make convergence guarantees.
following, depending on their specific requirements: Cell vector fields can also have a significant impact on

« Choose the vector field to point toward the exit face gsath quality. As we discussed above, the cell vector fields ca
much as possible, to promote short paths. sometimes be constant vector fields; otherwise, we gewperall

« Choose it to pointas far away fromthe exit face as choose a poinp and letV,(z) = unit(p — z). We described
possible, to avoid the sharp turns that the first approagbove the conditions on the placemenpoThe distance from

might induce. the exit face top has a significant impact on the resulting
« For simplicity, just make each face vector field perperpaths; the closep is to the exit face, the more the integral
dicular to its face. curves tend to bunch together when leaving the exit face. An

« Incorporate additional information. For example, computextreme choice is to plageon the exit face itself; this strongly
the centroid of the cell or of the exit face, and direct thinfluences the integral curves to leave the cell pe&hoosing
vector field toward it. p near the centroid of the exit face can be beneficial. Caution

In different situations, each of these approaches couler offnust be exercised, however, because improper placement of
advantages; this greatly depends on the particular apipiica ©n the exit face can lead to undesirably sharp turns.
The first will tend to induce short paths, but with high curva- Finally, the choice of convex decomposition can greatly
ture. The second takes longer paths, but has fewer sham tugifect the quality of the resulting paths, especially ndw t
Note, however, thaany fixed vector field will have integral goal cell. This is particularly important when the face eect
curves with sharp turns; this is an inescapable consequancdields are chosen to be perpendicular to the edges. See Figure
the uniqueness of solutions to differential equationse¢jral 9 for an illustration of this point.
curves are solutions to the differential equations cooadmg Dynamic Environments:As we have described it, our
to the vector field). This is a fundamental difference betwealgorithm applies to static, known environments. For prac-
feedback approaches and open loop motion planning. Tl applications, however, this will not necessarily e t
third approach is simple enough to be used as a defadidse. Environments can change continuously over time, as
“out of the box” method before attempting improvements dn the case of moving obstacles, or discretely, as when a
optimizations. Its weakness, however, is high sensititdtthe door opens or closes in a building environment. We do not
underlying decomposition; this can be seen in the computetish to explicitly integrate environment uncertainty irdar
examples, for which perpendicular vector fields were uskd. Talgorithm; we assume, then, that we have complete knowledge
fourth approach also tends to increase separation fronXthe of the environment at all times, even though it may change
boundary, but is less extreme than the second approach. Wpredictably. A practical application can easily intégraur
have not performed sufficient experiments to make definitig@proach with sensor-based map updates and higher level
comparisons between these methods (and there are mexgloration behavior; therefore, this assumption is seffic
others, to be sure); we leave that for future work. for our interests.

Convergence can be guaranteed for any of the above apWe will consider two types of changes to the environment.
proaches. The constraints for guaranteeing convergercallar First, take the case of discrete changes in the environnrent;
simple inner product constraints (i.e., each constraiqtires our model, this takes the form of new faces being introduced
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or removed that change the topology of the environmentélf ti\. Cylindrical Algebraic Decomposition

face under consideration corresponds to a face in the convex, generate a smooth feedback plan over the entire cell
decomposition, then the decomposition remains U”Changﬁgbomposition, our algorithm will make use of the cells’
the only change is that an open face has become an facecpfhdrical structure. Therefore, we will describe cyliiwl
the X ., boundary, or vice versa. Hence, the most our algorithg]gebraiC decompositions as a preliminary to the presentat
has to do is update the connectivity graph and search it to -qyr algorithm.

tain a new directed graph defining updated successor nefatio cylindrical algebraic decompositiofCAD), also known

If the edge introduced does not correspond to a face in the 3 collins Decomposition[26], of R™ is defined in the

decomposition, then the decomposition must be recompuigfowing inductive way (see [5] for a more formal definitin
such that this is the case. As before, the connectivity graph

must then be searched to generate the successor relatioss. hefinition 4

possibility indicates that if there is prior knowledge abahat

faces can be removed or introduced into the environmerst, thi 1) A cylindrical algebraic cellC;
should be incorporated into the initial decomposition. interval (a,b) or a pointa.

Seco”‘?‘- the environm_ent can change in a more genera&) A cell C,, of leveln has one of the two forms: it is either
way; entire obstacles might move, or gross changes to the the set of pairs{(z,y) : # € Co1, f(z) < y < g(z)}
environment could be made (as in the case of sensor-based . o <ot of pairsz{(x Y) : x 2707 Ly = f(@)}, in

map updates). These changes can be either large or small, and which f,g € Qla1, 2,1 are polynomials over the field
may or may not affect the topology of the space. If the changes of rational numbers.
are local, then it may be possible to repair the decompasitio
by recomputing the cells in the neighborhood of the change.The cells’ cylindrical structure is apparent from the def-
If the change is large, then the entire decomposition mayjition. For a set of polynomialsP taken from the set
have to be recomputed. In small environments, it is likeBtthQ|x1, ..., z,], a CAD adapted t@ is one in which each cell
recomputing the entire decomposition from scratch will bia the decomposition is sign-invariant undBr The number
more efficient than attempting to make local repairs; indargf cells in the decomposition is polynomial in the carditali
environments, this may not be the case. As we have alreagfyP, as well as in the algebraic degree of the memberB;of
mentioned, there are efficient algorithms to perform thezegn however, it is doubly exponential in the dimension.
decomposition; in two dimensions, it can be done for many In addition to proposing the decomposition, Collins gave
environments in just milliseconds. This indicates thatreire an algorithm to compute it [26]. This algorithm (which we
dynamic environments, real time performance can be aathieveiill refer to as the CAD algorithm) has two phases. In the
first phase, the polynomials oP are projected down one
V. SMOOTH FEEDBACK ON CYLINDRICAL ALGEBRAIC dimension at a time, using a projection that preserves the
DECOMPOSITIONS zeros of P as well as the intersections of the members of
Up to now, we have discussed how to construct smoofh Once the polynomials have been projected it the
feedback plans on cell complexes in which each cell is aitical points are located; these points, and the cornedipg
convex polytope, and we have shown how our methods capen intervals, become the cells ©f. In the second phase,
be applied effectively in practice. An earlier version ofsth the cells of C; are lifted into R?, becoming cylinders that
work appeared in [68]. In this section, we consider the samaee partitioned based on the critical points of the polyradsni
problem on a different type of decomposition. We descriltbat are now iQ[x1, z5]. This is repeated, each time lifting up
the construction of smooth feedback plans on cylindriogéal and partitioning the resulting cylinders, urfii* is reached. At
braic decompositions, which greatly extends the resulth@f that point, a sign-invariant partition &" has been obtained.
previous section. Since cylindrical algebraic decompmsit As noted in [5], [91], the unbounded cells can be treated as
can be used to solve a very general class of motion plannithg others by considering the set of polynomials to include
problems, our algorithm demonstrates how to compute smoath= +oc, fori = 1,...,n. More details can be found in [5],
feedback for the same class of problems. In addition, tf®8], [76]. A (very) simple illustration can be seen in Figur
feedback laws can be computedficiently precisely, they 10. Additionally, the algorithm can compute a single poimt i
can be computed irO(n), in which n is the complexity each cell of any dimensioh 1 < i < n; such points are called
of the decomposition (the number d@ftdimensional cells in algebraic points.
the decomposition). Since the number of cells in a generalSchwartz and Sharir showed how to use the CAD algo-
cylindrical algebraic decomposition can be doubly-expuia¢ rithm to solve the generalized piano movers’ problem. I thi
in the dimension of the space, efficient computation of simooproblem, the roboR and the obstacle regio®? are specified
feedback with respect to the decompositions still implies & semi-algebraic sets; a collision-free path must be found
very pessimistic overall time bound. However, there exiftom an initial configuration to a goal configuration, if one
problems that admit cylindrical decompositions that hawxists. Additionally, there may be more than one robot, &ed t
much better complexity bounds (e.g., planning for the laddebots may be connected in a kinematic tree. For this proplem
[3] or a polygon translating and rotating in the plane [2). [C¢... andC,,,: are semi-algebraic in the configuration space,
cases such as these, our algorithm has potential for pahctiand each cell in the cylindrical algebraic decompositiothef
implementation and use. configuration space is either completely contained jj.. or

of level one is either an
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root separation/gap theorems. See [5], [20].

C. Algorithm Description

We will now present our algorithm for generating smooth
feedback plans over CADs. As in Section IV, we will construct
smooth feedback over individual cells and then guarantee
that smoothness is preserved across the boundaries crossed
by the resulting integral curves. We assume that the input
to our algorithm is the entire cylindrical algebraic decom-
position, consisting of cells of all levels, together witheir
corresponding algebraic descriptions, and a connectivaph
corresponding to the connectivity of thedimensional cells in
the decomposition. In the construction of a CAD, it is poksib
to generate a point in each cell (of any level); these aredall
Fig. 10. Two polynomials projected int', preserving the critical points algebraic pomts_ and We assume that we are. glve_n the.se as
and intersections. After the projection, each intervaified into R2 where Well (note that it is trivial to compute algebraic points gjiv
it becomes a cylinder of cells. Each new 2-cell is sign-irmatriunder the the full algebraic descriptions of each cell). As we pregigu
polynomials. described, the connectivity graph can be searched to dieterm
the cell path to the goal cell from any cell in the connected

letel tained id Using th vt h fcomponent of the goal; this determines the successor of each
completely contained 1loys:. USING the connectivity graph of .o “we will construct a vector field over the closure of each

the d-dimensional CAD cells, it is possible to find a coII|S|0n-CeII such that all integral curves are guaranteed to reaeh th

free cell path from the cell containing the initial state @ace between the cell and its successor, without reachigg an

the one containing the goal state, if one exists. SChwagE:er face. We require all integral curves to be smooth, and

?nd ?r? ar.'r.tt.h?': SITIOWEd |hO\tNttotr?pteC|fy afcontlnuli)ltjs Palthoothness must be preserved across the faces separating a
rom the nitial to the goal state that goes irom Cel 10 C&La ) fom its successor. We will discuss our algorithm imter

in the solution cell path without entering any other cellsof an openn-dimensional cellC' (and its closure”) and its

The computed path moves from one full-dimensional cell t’éjuccessoS, both full-dimensional cells of level. These cells

another, through a connecting cell of one lower dimensiogy .. ar(n — 1)-dimensional face, which we denofe;

as we discussed above, this is always the case when th . .

. : . . We know thatC' is bounded by upper and lower bounding
free configuration space is taken to be an open set, which S . -
) . . . polynomials in each dimension; let andi; be these polyno-
is the standard convention. To determine the connecuwn){

relations efficiently, Schwartz and Sharir make a strongerIaIS in dimensioni. For simplicity, assume that there are no

assumption on the set of polynomiaisthan is required for tnbounded cells; after describing the algorithm it will bexe

the basic CAD algorithm. The assumption of “WeII-basedhesglear that the algorithm works for unbounded cells as well. |

eliminates local pathology, but local connectivity carll &t is intuitive that each:; andl; should correspond to exactly one

. : : (n — 1)-cell (face) in the decomposition, separatifigirom a
quite complicated. See [91] for more details. neighboringn-cell. However, this is not the case. There may be

many faces that correspond to a single bounding polynomial,
B. Algorithm assumptions or none at all. This is illustrated in Figure 11. Denote By

To compute smooth vector fields over cylindrical deconihe union of all upper bounding faces 6f corresponding to
positions, our algorithm makes specific input assumptiorfimension:, and by~ the union of all lower bounding faces
First, our algorithm assumes the entire cylindrical algebr ©f C' corresponding to dimension We use the bar notation
decomposition is specified as input, consisting of all celf§ indicate that the logical “face” is the union of a number of
(of all levels), together with their corresponding algabraactual faces in the decomposition. Note ti#t corresponds
descriptions. We also assume that the connectivity grahthe zeros ofu; and F;~ corresponds to the zeros gt If
of the decomposition is provided. The CAD algorithm caff'e exit faceFs is an upper face corresponding to dimension
compute algebraic points for every cell; these will be used & then Fs C F;". The two will not generally be equak’s
well. Finally, we assume the existence of exact root strecty™ay form a hole in the larger facE;". See Figure 12
functions for each cell in each level of the decompositidme T~ We will construct a vector field ovet’ in much the same
root structure functiom : R x Z* maps any point € R” to way as we did for convex polytopes. We will define appro-
the set of roots of the polynomials in tlie + 1)-dimensional priate smooth distance functions representing the distamc
lifted cylinder above it (for convenience, considero to be €ach face of the cell, as well as face vector fields for eadh fac
roots). This is a standard part of the CAD algorithm (see,[75nd a cell vector field for the cell. Face vector fields arelgasi
[101]), although it is a computationally expensive operati defined; any face” C F;" will be assigned a vector field of
For some applications, it is possible to improve efficiengy b—= and any faceF” C F; will be assigned a vector field
identifying only rootintervals rather than exact roots, usingof +a%7~' This is the case except fdfg; for any x € Fg, the

| Lo | |
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Fig. 11. Adjacent cylinders in a cylindrical algebraic deqmsition. CellC;
has no adjacent cells corresponding to one of its upper bhiogmblynomials,

r : Ri=! x Z* be the root function corresponding ®_;x,
and assume that(P;_ix,1) < z; < r(P;_1z,l + 1). Define
the relative height; : C — [0, 1] as
T — T(Pi_ll‘, l)

: : : (6)
r(Piciz, L+ 1) — r(Pi—1z,1)
This is a smooth mapping, since both the upper and lower
bounding polynomials are smooth. Again, even in the case
where there are no actual faces corresponding;t@and /;,
as in Figure 11, the bounding polynomials are well-defined.
Also, we can arbitrarily definé,;(z) to be zero ifu;(z) =
l;(x); this can only occur when faces corresponding to certain
dimensions are missing, again as in Figure 11. The lack of
smoothness at these points is not problematic because no
integral curves of the vector field pass through these points

hi(x) =

and cell C> has two adjacent cells corresponding to a lower boundinfhis is the case because these points are always part of cells

polynomial (the cells above and belat# ).

—

/@.
v

b

(:q

—
/
\

/

|

that are less thafm — 1)-dimensional; we have already stated
that all integral curves will go from full-dimensional celb
full-dimensional cell through faces of only one dimension
less. We can now define theelative coordinatesof x as
h(z) = (hi(x),...,ho(x)) € [0,1]™. We can intuitively
define the cell vector fieldV, as the vector field which
induces a straight line path towapd, in relative coordinates
Formally, this can be computed using the Jacobiah, efhich

is guaranteed to have full rank sinéeis a diffeomorphism
on C: V.(z) := (Jh(z)) 1 (h(pa) — h(z)).

Now, all we need is to define acceptable distance functions
to each face. Then, we can blend the component vector fields
together as in Section IV, and we will show that the integral
curves of the resulting vector field always reach the goaé Th
distance function is easy to define, using the relative heigh
functions. Assume that the exit fadey C Fii; for any face
Ff, j # 14, define the scaled perpendicular distance function
d, as follows:

b wrery
di(z,F) = hy(@) if FC ﬁf %
hj(pa) - J

As required, the distance function equals zero on the fae# it

Fig. 12. A cellC, its successo, and the shared facEs. The shared face and is greater than zero elsewhere. Also, at any point trsat ha
is a hole in the larger facé’ of C. Lifting these cells into higher dimensions the same relative height as the algebraic point in a paaticul

could continue to restrict the face they share.

face vector fieldV; is defined as

Vf(ﬂ?):{ O

_Bixi if Fg C Ff

dimension, the upper and lower faces will be equidistant.
Also, multiple faces that correspond to the same bounding
polynomial will have the same distance; this is acceptable,
because such faces will have the same face vector field.

In the case of the upper and lower faces in the dimension
corresponding to the exit face, a small change must be made.
In this case, simply letd, (x,F) = |h;(x) — h;(p)|. We

This definition ensures that the face vector fields point mwawill also need to define another distance function to use to
on all faces ofC except the exit facel’s; this implies that no distinguish Fs from the remainder oiFii, to use when the

integral curves leav€' except by the exit face, as desired.

point = is in the region of the cell closest 6.

Recall that through the construction of the CAD, algebraic Understanding cell connectivity is important for compgtin
points have been computed that lie in the interior of each cehe distance td's, becausd’s can be a hole in the larger face

we will use the algebraic points in the cells of level- 1,

F*, as discussed above. It is useful to note thagfC FF,

which connect the full-dimensional cells. Denote the atgib then bothC' and S were lifted from the same full-dimensional

point in F's asp,. We now define theelative height which

cell in a lower level. This means that the “parents”@fand

is a diffeomorphism fromC' to the unit cube. For any point S in the lower level were adjacentdimensional cells in the

z = (z1,...,2,) € C and dimensioni, let P;_,z be the

same cylinder, separated by &n— 1)-dimensional cell. The

projection from the point to its firsi — 1 components, let parent cells shared a complete face at that level; lifting th
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cells into higher dimensions may have restricted the areaRfoposition 3 The following properties hold:
the face that they share until they share a face which is a holey) For all j such thati +1 < j < n, (jj is well-defined.

in the larger face. An example of this is in Figure 12. 2) The functiond,, is smooth, identically equal to one on
Keeping in mind that each successive lifted dimension adds F,i\Fs. and identically equal to zero on an open subset
constraints that may restrict the shared face betweand S, OfL Fs.

consider some point € Fii. It is simple to verify whether
or not z lies in Fs (simply check to see if it satisfies the Proof: We prove the first property by induction. As we
constraints of the bounding polynomials 6k). In addition have already indicatedy;(z) is only guaranteed to be well-
to this, we need a smooth function defined over alliof defined if the polynomial constraint§ andu! are satisfied
that can serve as a distance function, indicating howafarfor all k € i +1,...,5 — 1. For1 < k < i, the constraints
is from Fg even ifz ¢ Fs. One option that seems obviousare always satisfied because the célland.S are in the same
but which is incorrect would be to compute the distance wylinder in the projection intdR?. Therefore, we know that
each of the bounding polynomials dfs that is unsatisfied, the base caséiH is well-defined. Now assume tha?g» is
smooth them using a bump function if necessary, and add thevell-defined and consided; . The functiond;,, will be
together. This is incorrect because the bounding polyniemigvell-defined if Jj = 1 for any pointz such thatw,; is
of Fg are not necessarily well-defined for any pointe not well-defined (since the term containing;; will then
F;*. Similarly, the bounding polynomiala!” and " are not vanish). But this fact is apparent from the definitiondyf if
guaranteed to be well-defined unle£,§ and l,f are satisfied, some constrairﬁ,f or ukF is not satisfied, then we hamé =1
forall k€ i+1,...,7 —1; this happens when the boundingfor all # < I < j. Therefored; = 1 over any point where
polynomials of F's coincide with those of5 rather than those wj 1 is not well-defined, and séj+1 is well-defined over all
of C'. Consequently, our distance function will only depengs Ri_
onu} andlf if all lower bounding polynomials are satisfied. For the second property, the above proof also yields the
We will construct a function that is uniformly equal to ongact thatd,, is identically equal to zero o F \ Fg. It is
outside Fis, uniformly zero on some subséty C Fs, and aiso readily apparent that if all polynomial constraintg ar
smoothly transitions between the two @y \ F§. We need gaiisfied by a factor of1 — «), then we havei, = 0. So
to make several definitions in order to construct this fwrtti \ye simply need to verify thad,, is smooth. It is constructed
Recalling that the cell faces are zeros of polynomials, @efiysing smooth functions, so all we need to verify is that the
2/ (z) andz; (z) as the zeros ofij" and /] that correspond gerivatives exist on the constraint polynomials, whichtis t
to x: namely, z; (z) and z; () are identical tox in all poundary where the satisfaction functions become ill-gefin
coordinates except for coordinafe which is chosen so that This can be argued inductively, as above. The base dasg,

uf (2 () = I (25 (x)) = 0. For somen € (0,1) define the s clearly smooth. Now assume thdj is smooth. Just as
satisfaction functionu; : F;~ — [0,1] as guaranteeing thai; = 1 whereverw;; is not well-defined
1 hi(x) — hj(pa) is sufficient to makeijﬂ well-defined, we use the property
wi(z) =b| — — 2 —(1-a) that all derivatives of the bump functidiis) are zero outside
a \ hy(z () = hj(pa) 8) the unit interval. This implies that anywhere the function
1 hj(x) — h;(pa) w;+1 is not well-defined, the derivatives df all equal zero.
e hi(z; () = hy(pa) L) Consequently, all derivatives df , , exist and are well-defined

H Sfaction functi ders the bound i Over F*, and the functioni,, is smooth. ]
The satisfaction functiom; considers the bounding polyno- Using these distance functions, for any poire C' we can

mials of Fs corresponding to dimensiof and is identically determine the face in whose region of influence it lies (i.e.,

one for points above the upper bounding polynomial or beIO\Which face it is closest to in relative coordinates). There a
the lower bounding polynomial in that dimension. It equalﬁ1ree different cases. Assume as before hat— F=. First
zero_for any v Sth _that th(_a difference in rela_tlve heighty some facer* with j # 4, we say that: lies in?helregion of
from z to p, (in directionz;) is less than(l — «) times the influence ofF.ijif o(z, FE) < p(z, F£), for all k. Second, we
difference in relative height fronp, to the boundary ofs, y thatz Iiesj in the ,reéion_of inf’lugnée oFs if plz Fi)’<
again in directionz;. These can be used to construct the find® — 4 e s s P ”’ " lies
distance functiond,,, which for any pointz € F* indicates pla, k) for all k and if dn (z) < 1 —dn(x). Finally, « lies
. w : y pointr € & in the region of influence of =\ Fs if p(x, F) < p(z, FY)
the “distance” from that point tds, and does so smoothly. i i) =P Tk

The definition is inductive, as follows: for all k and if 1 — dy(2) < dn(2).
. The final step is to define a function for each face that

dit1(z) = wit1(z) interpolates between a value of zero on the face itself and
g) a value of one on the boundaries of its region of attraction

. t . (loosely, the “faces” of the GVD). As in Section IV, we use
dj(z) =dj_1(x) + (1 — dj_1)w;(x) a product of analytic switches. For any fag& with j # 4,

The final distance functiond,(z), is a smooth distance YS€ the following:

function that can be used to guide the robot through the exit di(p,F) —dy(p, F5)
face Fs, which is a “window” in the larger face”*. The sp)=1- 1 10T —, (10
important results are summarized in the proposition below: FAFE L5
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in which F' € F are the faces of’. Also, additional product the successor cefl. Recall that the cell vector field is defined
terms need to be added for facEsthat share a larger faceasV.(x) := (Jh(x))~t(h(ps) — h(z)), in which p, is the al-
C Fii with the exit face Fs. These product terms usé gebraic point in the exit fac&s. Hence following the integral
rather thand, . This function is smooth (except where facesurves of this vector field will cause the relative coordésatio
meet), and has the desired property of being identicallyakqwwonverge to those gf,: namely,h;(z) — h;(pa), 1 < j < n.
to zero on the face of the cell and one on the boundary ©he face vector fields corresponding to ﬁ_lf, j # i also
the region of influence. Using the shorthabig) = b(s(p)), cause the relative coordinates to converge. The only exrept
we again define the global vector field at point p as is h;, which must be considered separately because the vector
V(p) = unit(b(p)Vy(p) + (1 — b(p))Ve(p)), in which V; is field corresponding td \ Fis points away fronp,. Consider
the face vector field for the face in whose region of influenaal dimensions except dimensianWe know that the relative
p lies, V.. the cell vector fieldp the bump function, andnit coordinates will converge to a neighborhood of thoseoin
is the normalization function that forcés to be a unit vector some finite timel’ (again, not considering dimensiah This
field. implies that for a suitably chosen neighborhood, the region
We must also define the vector field on the goal cell sofluence of i\ Fis cannot be entered after tinfe because
that the integral curves converge to the goal paiptinside it lies entirely outside this neighborhood. Consequenitg,
the goal cell. All face vector fields point inward in this casecan guarantee the convergence /gf after time 7', and all
the cell vector field is the vector that points fromto z,, relative coordinates are guaranteed to converge. Oncénveith
in relative coordinates. As before, this is definediage) := neighborhood of, (in relative coordinates) in all dimensions,
(Jh(z))"*(h(z4) — h(z)). Similarly, thed, function should it is simple to observe that the integral curves reach the exi
be modified to consider coordinates relative to the goaltpoiface Fs in finite time, since the face vector field dfs is

x4 rather thanp,. outward-pointing.
The case of the goal cell is similar. In this case, the
D. Formal Analysis cell vector field and face vector fields all cause the relative

We need to establish that the feedback plan associated V\ﬁﬂprdinatgs to converge to those O_f the gqal state. Thf“*efor
our constructed vector field has all of the required properti OF @1y neighborhood of the goal point, the integral curvés w
the proofs are similar to those in Section IV. converge in finite time. Since the integral curvedofeach the

exit face of any cell in finite time, and reach any neighborhoo

Theorem 5 The vector fieldV is smooth except for a set ofof the goal state in finite time, we have the global result that
measure zero and has smooth integral curves. all integral curves ofi” asymptotically converge to the goal
state. ]
Proof: Consider the functions used in the construction
of V in a particular cell. The perpendicular distance function
d, is smooth since the bounding polynomials of the cell are
smooth, and the satisfaction functions and distance fomsti We have presented algorithms that construct smooth feed-
d; are likewise smooth. The parameter functioms smooth back plans on two different types of cell decompositions of
except on thgn — 2) dimensional surfaces where faces meeany finite dimension. A smooth feedback plan defines a feed-
and the integral curves never go through these places. ldeck law, which smoothly stabilizes the system to a selected
we know, the bump functions are smooth. They guarantgeal state from anywhere in the state space, while avoiding
smoothness across cell boundaries and between regionsladtacles. To accomplish this, we construct a vector field on
influence within a cell because all derivatives equal zeeveth the state space that is smooth except for a set of measure zero
(see Section 1V). Hence all integral curveslofare smooth. and which has integral curves that are smooth and converge
W to the goal. Feedback (i.e., closed loop control) is impurta
because it provides a measure of robustness to uncertainty
Theorem 6 The integral curves o¥’ remain in X.,. in sensing and control. Using feedback, inputs are computed
s (typically simple) functions of the current state, andsit
herefore possible to compute them at a very high rate, darth
to the boundary ofX.; will be inward pointing, because it Canimprqving performance. Smooth feedback also contribmes t
. NS . practical robustness because the control changes smanothly
never be the exit face. The vector fidldis identically equal . . o
response to small perturbations in the state. This imphas t

to the face vector field on the face itself, due to the bum hen using smooth feedback a practical svstem is likelv to
function and its parameter function. Hence, the vector field g - anp Y Y

: ; perform better when errors occur. Although smooth controls
always points away from th& ., boundary and the integral . Lo L .
can still have arbitrarily high derivatives (any contingaurve
curves never leaveX ..

has a smooth approximation that can be arbitrarily close),
they tend to avoid rapid input changes whenever possitde, al
leading to more reliable operations.
We first described how to construct smooth feedback plans
Proof: First, we show that for any non-goal céll, all for a point robot moving in a state space with a piecewise lin-
the integral curves of’ reach the exit facé’s and thus enter ear boundary. We did this by first computing a decomposition

VI. CONCLUSION AND FUTURE WORK

Proof: This property is obvious from the construction o
the vector field. In any cell, the face vector field correspogd

Theorem 7 The integral curves of asymptotically converge
to the goal state.
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of the state space into convex polytopes, and then conistguct [4] J. Barraquand and J.-C. Latombe. Robot motion planningisaiduted
local feedback laws over individual cells and smoothly tran
sitioning between them. We also described how to construcis

smooth feedback plans over the cells of a cylindrical algiebr

decomposition. The important work of Schwartz and Sharirl€l
demonstrated how to solve the general piano movers’ problem

using the Collins decomposition, a type of cylindrical dlggc

decomposition [91]. Our work extends this, showing that not[7]
only can these decompositions solve single motion planning
queries, but can also be used to compute a global smootfy)
feedback plan. Moreover, this feedback can be computed
essentially for free, given the complexity of the CAD cells. 9]
Hence, our work proves the existence of smooth feedbagkg
plans for a very general class of motion planning problems.

To our knowledge, this is the most general result to date.

S ) ) X . 11
Although this is an interesting theoretical result, it has[ ]
limited practical utility because the number of cells in a[12]

Collins decomposition is doubly exponential in the dimensi

of the space. Since our algorithm is applicable to any typai3)
of cylindrical algebraic decomposition, our method may be

practical for problems that use CADs but do not require the
full complexity of Collins decompositions. For example,rou

(14]

approach applies to the specific decompositions produaed fo
a ladder robot [3] and a robot translating and rotating in théldl

plane [2].

In conclusion, we have presented algorithms that effigientl[16)
solve the feedback motion planning problem, once a cell de-

composition has been computed. This result builds on egisti [17

complete path planning methods and obtains a smooth vector

field for virtually no additional cost. However, two shorice

ings of the method remain as topics of future research.,FirétlS]
there is no explicit way to induce a preference toward ttajec [19]
ries that have lower curvature. We simply provide smootbnes

which in the worst case could be arbitrarily close to a non-
smooth point. Second, our methods produce trajectorigs tha

are sensitive to the particular cell decomposition, rathan

focusing on the quality of the overall trajectories. Conipgit
vector fields that optimize quality measures while maintejn

(20]
[21]

[22]

smoothness would be ideal; however, this seems intractable

given our present understanding of the state of the art.
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