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Abstract— Minimalist models have been studied for a broad which comparisons can be made. By mapping sensor-action
array of tasks in robotics. In this paper, we consider the task- hijstories from a variety of robots into the same derived

completing power of robots in terms of the sensors and actuators o rmation space, we can compare the abilities of thesetsob
with which the robot is equipped. Our goal is to understand the . ’
in a concrete, formal way.

relative power of different sets of sensors and actuators and Lo Y .
to determine which of these sets enable the robot to complete Our objective is to compare the power of robots with vary-
its task. We define robots as collections ofobotic primitives ing combinations of sensorimotor components. To formalize
and provide a formal method for comparing the sensing and the set of robots to which our analysis applies, we introduce
actuation power of robots constructed from these primitives. he idea of robotic primitives A single robotic primitive
This comparison, which is based on the how the robots progress - . ;)
through their information spaces, induces a partial order over reprgsents a self.-contaln.ed instruction set” for the .tdbat_
the set of robot systems. We prove some basic properties of thisMay involve sensing, motion, or both. A robot model is defined
partial order and then apply it to a limited-sensing version of by a set of primitives that the robot can use to complete its
the global localization problem. task.

The central idea is the notion of tld®@minanceof one robot
model over another. In informal terms:

Among many researchers in robotics, there is a movement A robot R, dominatesanother robotR; if R
towardminimalism The minimalist philosophy is to use robots can “simulate” R;, collecting at least as much
with very simple sensing and actuation capabilities. A give information asR;.

task will partition any sufficiently rich set of robots intwa T'](e meaning of this definition hinges on the idea of one

subsets, one containing robots that can complete the t%Isenved information state giving the robot “at least as niuch

and another containing robots that cannot. In this coniext,. . . .
) : ) : information as another. This leads us to augment the derived
is natural to identify thesimplestrobots that can complete.

the task. An alternative view of the same approach is tnformanon space with a partial order that indicates prefe

" Ences for some information states over others.
seeknecessary conditionsn robot systems that are able to
complete the task.

For concreteness, we apply these ideas to the task of
To this end, we ask two central questions in this wor

lglobal localization in which the robot must move from total
L in
What combinations of sensors and actuators enable a ro§P

I. INTRODUCTION

%ertainty to total certainty in its state. What sensor sets
e minimal for localization, in the sense that eliminatary

to complete a given task? What does it mean for one rObOtevents the robot from localizing itself? Using the domice

. . r
“ $1} l)

to be S|mplefr. than another? We address these questhns%ga described above, we give a partial answer to that questi

carefully defining a set of robot systems and presenting AN this paper we make three primary contributions: First,

formal method for comparlr)g th.G. robots in this set.. we present the idea of robotic primitives for modeling robot
we V\_/ant to study a robot S ability complete certain task:'s %?/stems as collections of independent components. Seaend,
determined by the “complexity” of the robot. To be precis ive a definition for dominance of one robot system over an-

we consider the capabilities of the robot in terms of the et ther that formalizes the imprecise definition above. Wer@ro

fhe nsotr)s f‘?d actfu ators to Wht'cth the rk;)tht has a(;cess:[Wetzi_ fhe basic properties of this relation. Third, we apply ¢hes
the :.O ot to periorm comlpu_zti 'O?St’h. ut we Wtet' 0 not restiifeas to a limited-sensing version of the global localtati

€ ime nor space compiexity of this computation. problem. We define a catalog of 4 robotic primitives and fully
A. Overview determine which of the 15 robotic systems induced by these

: : , ) primitives can solve the localization problem.
We are interested in problems for which sensing (or the

lack of sensing) is important. At the heart of the issue is te Related work

idea that the robot does not know its true state. Instead, itSeveral lines of research are closely related. The mingnali
must use its history of actions and sensor readings to drapproach has a long history, dating perhaps to Whitney [42].
conclusions about its state. Since different robot systeave Minimalist approaches have been used in manufacturing con-
distinct spaces of actions and sensor readings, the sensexts for part orientation [2], [3], [17], [18], [19], [31]40],
action histories cannot be directly compared. Therefore, W3] and in mobile robotics for navigation and exploratids, [
use aderived information spacas the meeting ground on[10], [25], [22], [30], [32], [39].



More directly, a few works have attempted to identify
sensing requirements of tasks. Brafman et al. [9] consider
very similar issues for distributed teams of physicallyritieal
robots in discrete state spaces. Donald [14] also performs
a similar analysis, characterizing tasks according torthei
complexity measured in bit-seconds. Erdmann [16] applies
preimage backchaining to the problem of sensor design. Al-
though we are StriCtly interested in the phySicaI abilibéshe Fig. 1. A robotin a planar environmefl'. Its state space iX = W x St.
robot, other work has explored the computation power needed
for various tasks [7], [8], [21]. Our work is distinguished
from these antecedents in at least two important ways.,Firgh equivalence relation identifying and 27, represents the
rather than holding the robot’s motor capabilities fixed, w&dbot’s orientation.
allow interactions between sensing and motion to be exiglici  Time proceeds in variable-lenggtagesindexed by consec-
modeled with robotic primitives. Second, by considering thutive integers starting with. In each stage, the robot selects
problem in the robot’s information space, we can, in a gdne@n actionu from its action spaceé/ and moves to a new
way, explicitly reason about the robot’s state uncertainty ~state according a state transition functipn X x U — X.
Since we consider a global localization task in some detafif the conclusion of each stage, the robot's sensors provide
it is worth mentioning the enormous body of work on localiza@n observatiory from an observation spacg, according to
tion methods for robots with many different kinds of sensing : X x U — Y. Call h the robot'sobservation function
systems. Some methods [5], [6], [11], [12], [13], [20], [37]L€t zx, ux, andy, denote respectively the state, action, and
[26], [41] passively observe the motions of the robot in ord@bservation at stagé. These sequences are related to each
to draw conclusions about the robot’s state. Others [15], [2 Other by f and k!
[24], [3:_3], [34], [35], [36] actively drive the robot to rede Tt = [ () 1)
uncertainty.

While the examples in this paper use nondeterministic Yr = M@k, Yr)- 2
uncertainty, which is. based on set ’.“emberSh.‘Pv Fhe ba,’;ic'SIrFor convenience, we also define an iterated versioyfi tfat
ture of our analysis is compatible with propgb!llstlc urtagrty appliesk actions in succession:
models like those of [38]. Many probabilistic methods (for
example, [4], [28]) can be characterized as operating in an f*(z,u1,...,ux) = f(--- f(f(z,w1),u2) -+ ) up).  (3)
information space whose members are probability distiobst
over state space. In this sense, the model of uncertainty
use is orthogonal to the questions we address in this work

The robot’s capabilities are modeled in the action and ebser
Vition sets/ and Y and in the mapg’ and h that interpret
these sets.

C. Organization Although we are assuming in this paper that both state

: : : . transitions and observations are deterministic, we beltbat
This paper is organized as follows. Section Il lays a

foundation of basic definitions for robotic planning prabke M a broader context, managing unpredictability in motiod a

Section Il introduces the concept of a robotic rimitivedanSenSingl IS a crucial issue. We omit such uncertainty here
. X P primitiv ?nly because it would unnecessarily complicate the arglysi
defines the set of robots induced by a catalog of primitives.

Section IV we describe the information preference relatén without providing many new insights. A discussion of the
. . . . on p 'a extensions needed to allow this kind of uncertainty appears
partial ordering over derived information space that fdines

the idea that some information states are better than othelzrr]sSeCtlon VIFA.

The definition of dominance and some basic properties theré Information spaces

appear in Section V. In Section VI, we apply the results aithough the robot does not know its state, it does have
from Sections Ill, IV, and V to the global localization taskaccess to the history of actions it has selected and ob&ersat
Section VIl contains discussion and conclusions. it has made. The space of such histories is the rothig®ry
information space(history I-space), denoted},; ;. After k
stages, the robot'distory information statghistory |-state)

In this section we present some general definitions f@f 5 2k-dimensional vectorn = (u1,y1,-.., Uk, Yk). We
robotic planning problems. occasionally abuse notation by writiig, w1, yx+1) for the
history I-state formed by appending.;; andyy; to 7.

We may define golicy 7 : Zr;s+ — U over history I-space.
We allow a robot to move in a state spafe GenerallyX as a shorthand, we define a functidghthat applies a policy

will be the configuration space [29] of the robot. The exarsplgeyeral times in succession, starting with some state
in this paper are for a point robot with orientation in thera@a

In these examples, we usé = W x S!, in which W c R2 Fo(n,m,x) =n (4)
is the robot’'s environment anfl' = [0, 27}/ ~, where~ is FFn,mx) = (-1, m(k—1), bz, m(nk—1))),  (5)

Il. BASIC DEFINITIONS

A. States, actions, and observations



in which n,_; = F*~!(n,7,z). Note that F* depends on Py @ >
the true stater (which is unknown to the robot) because ) @
u =

influences the observation sequence that the robot receives 2 vy=
The history I-space is not particularly useful by itself.rFo Po ® :> @

pairs of robots whose action or observation spaces differ, [J‘

the history I-spaces also differ, making the history I-gpac -2 .

unhelpful for comparing robots. For these reasons, we selec =3 ¥y=72

a derived information spacélerived I-spaceY and aninfor-
mation mappingl-map) « : Z,;s: — Z. If the history I-spaces Fig. 2. Sample executions of the primitives of Examples 2 andop] [P4
of several robot models are mapped to the same derived!|ows the robot rotate relative to its current orientatifpottom] P allows
. the robot to rotate relative to a globally defined “north”edition.
spaceZ, then the robots can be compared by examining their

progression througf.

_An important special case is the value offor an eémpty  yiing an action set/;, an observation saf;, a state transition
history, i.e.x( ). This value gives ainitial condition for the function f; : X x U; — X, and an observation functioh :
robot, reflecting any knowledge the robot may have befo& Y U, J Y. ! '

its execution begins. In principle, we may seléctand <
arbitrarily. The usefulness of a derived I-space lies imkgity
to fully capture the information relevant to the task of net.

We now give several examples to illustrate the idea. Exam-
ples 3-7 apply to a point robot with orientation in the plane,
so X = R? x S!. lllustrations of these primitives appear in

Example 1:We define thenondeterministic I-spac&,q.:, Figures 2-4. We will revisit these examples in Sections V and
in which derived |-states are nonempty subsetsXof The VI.
interpretation is that the robot's derived I-state is a miali Example 2:Let Py = (S, {0}, f.h4). Let f4 compute

set guaranteed tobcogt?m éhe true'st?te. The I-map; : relative rotations, so that from a state= (x1, 2, 6), we have
Znist = Inaer CaN be defined recursively fa(z,u) = (x1,22,0 + u). SinceY, = {0} contains only a

Fonaer() = X (6) dummy elementp 4 is a trivial function always returning.
( _ This primitive can be implemented with an angular odometer
Kndet (1, U, Y) = on a mobile robot capable of rotating in place. O

{f(x,u) | VS Hndet(n),y = h(x,u)} (7)
_ o _ ~ Example 3:Let Po = (S' U {0},5, fe,he). The U
In Equation 6, we assume the robot initially has no inforovati notation indicates a disjoint union operation, under which

about its state. U identical elements from different source sets remain ruisti
Define fo(z,u) to set the rotation coordinate afto equalu
C. Tasks and solutions if u € S! or to leaver unchanged if. € {0}. The observation

We define aask for the robot as a goal region ifi; C 7 functionhc returns the robot's final orientation. This primitive
that the robot must reach. golutionis a policyx under which, @mounts to allowing the robot to orient itself with respext t

for any = € X, there existd such thatF!(n,, ,z) € Z. a global reference frame, or to sense its current oriemtatio
without rotating. This primitive can be implemented using a

[1l. DEFINING A SET OF ROBOT SYSTEMS compass on a robot that can rotate in place. a

In this section we discuss how a set of robots can be definedexample 4:Let P = ({0}, {0}, fr, hy). Define fr to
in terms of a set of independent components. compute a forward translation to the obstacle boundarys Thi
primitive can be implemented with a contact sensor on a

A. Robotic primitives mobile robot that can reliably move forward. |

At the most concrete level, a robot is a conglomeration
of motors and sensors connected to some sort of computeEXa@mple 5:Let P, = ([0,00),[0,00), f1, hr). Forz € X
Between these components there may be interactions @Rfu € U, definefy,(z, u) to compute a forward translation of
open- or closed-loop controls. We abstract this complexiffStance at most, stopping short only if the robot reaches an
by defining the notion of aobotic primitive Each robotic Obstacle first. The observatidn, (z, u) is the actual distance
primitive defines a “mode of operation” for the robot. Wheffaveled. This primitive can be implemented with a linear
primitives are implemented, they may draw on one or more 8flometer. Depending on implementation issues, a contact
the robot’s physical sensors or actuators. Every kind ofenot S€nsor may be needed as well. 0
or.sgr)sing available to the _robot must be: quele_d as a rObOti‘Example 6:let Pr = ({0},[0,00), fr, hr). Again
primitive. Formally, we define robotic primitives in terms$ of(
the action and observation abilities they provide.

Definition 1: A robotic primitive (or simply aprimitive) is
a tuple

z,u) = z for all x and u. The observationi(z,u) is
the distance to the nearest obstacle directly in front of the
robot. This primitive models the capabilities of a forward-

facing unidirectional range sensor. |
(Ui, Y, fis hi)



if we allow noise to affect state transitions or observation
Py I:,'> B. A catalog of primitives

Let RP = {Pa4,...,Px} denote a catalog of primitives.
A robot model(or simply arobot) is a nonempty subset of
RP. A robot R = {P,,,...,P, } € RP has action set
Ur = U;,U---UU;,, and observation séfp = Y; U---UY;, .
The state transition functiorfp : X x Ug — X, and
:> observation functiomhyp : X x U — Yg, are formed by
Py, @/( o unioning thef andh maps from the relevant primitives. Since
Al robots are defined by sets of primitives, it is meaningful to
u=d y=d apply standard set operations such as union or intersection
directly to robots. It is also helpful to define tiy®bal history

I-spacestt, which contains all sensor-action histories that
may be encountered by any robot constructed from primitives
P / > in RP.
O ©)

As we have already discussed, different types of robots have
distinct action and observation sets. Therefore the hésor
cannot be directly compared. Instead, choose a derived I-

! ) o spaceZ and an I-maps : Zp;s; — Z in which to make the
Fig. 3. Sample executions of the primitives of Examples 4-][fé allows . Si he d Lo includ . d
the robot to translate forward until it reaches an obstdoiéddle] Pr, allows companspns. Ince t e _‘?ma'” Bfist 'r'c udes actions an
a robot to specify a distance to translate. [bottaRy] allows the robot to Observations for any primitives fully defines a map from the
measure the distance forward to the nearest obstacle, bsitndde&hange the history I-space of any robot model info The choice of and
robot’s state. . . o . .

Z is crucial because our definition of dominance (Definition 4)
is parameterized by andZ. Our analysis is task-independent
only to the extent thal can encode the tasks (that is, the goal
regions) in which we are interested.

u=20 y = da

- =
Pe @4 () IV. THE INFORMATION PREFERENCE RELATION

u=0 y=(z,y) Our goal is a dominance relation under which we can
declare one robot “better than” another. To do so, we need
. . . a formal notion of one I-state being “more informed than”
Fig. 4. A sample execution of the primitive of Example 7. The todEnses . .
its position, but its state does not change. another. To that end, equip with a partial order we call an
information preference relatioWrite n; < 7, to indicate that
12 is a refinement of);. We require< to have the property
Example 7:Let Ps = ({0},R2, f&, hg). For allz € X, thatforanyn.,ns € Iy, and for anyu € U andy €Y,
fo(z,0) = x, so that this primitive never changes the robot’s
sta(te. Izor a state = (z1,x2,60), let h(z,0) = (z1,z2). This rm) 2 k() = K0, wy) = K0, 1, y). ©)
primitive roughly corresponds to a GPS device that the robphis is a consistency property requiring preference for lene
can periodically poll to determine its location in the plaié state over another to be preserved across transitionspades

Others possibilities for primitives include landmark senss ~ Example 8:Regardless off or x, it is well-defined (but
wall followers, visibility sensors, etc. A more completstli perhaps unhelpful) to use a trivial relation under which
ing of sensors suitable for adaptation into robotic privesi x(n;,) < k(1) if and only if k(1) = k(n2). O
appears in Section 11.5.1 of [27]. o ]

We believe there are several benefits to modeling robot sysEX@mple 9:Under nondeterministic uncertainty, we can
tems as collections of primitives. First, we claim that repo 9€fine x(m) = «(n2) if and only if x(ns) C s(m). Itis
primitives represent roughly the right level of abstractiat straightforward to show that Equation 9 is satisfied. O
which planning problems are interesting but manageable. If The information preference relation we choose affects the
we consider sensors at too fine a level of detail, the problegnal regions that are sensible to consider. We should salect
takes on the character of a closed-loop control system.elf thegion in which, for every I-state in the region, we also it
primitives are too sophisticated, we risk trivializing thlan- any |-states preferable to it. Definition 2 codifies this idda
ning problem while creating an unbearable modeling burdea rational goal region.

Second, by dividing time into stages, we avoid the technical Definition 2: Consider a sef c Z of derived I-states. If,
difficulties of describing the robot's progression througlin for anyn; € I andn, € Z with n; < 12, we havens € I,
continuous time. This consideration is increasingly ini@or then! is preference closed



R4 : Rp

r(na) i K(nB) >
§ d %

uA B R1 = {Pr} Ry = {Pa, P}
: Fig. 6. Anillustration of Example 10. The rob& = { P4, P} dominates
. . the robot Ry = {Pr} because the former can simulate the latter. [left]
k((na,ua, h(z,ua))) = K(Fl (B, 7B)) A distance measurement made directly By. [right] Distance is measured

indirectly by Ry using its linear odometer.

Fig. 5. An illustration of Definition 4. IfR2 can always reach an I-state . _ _

better than the one reached By, then Ry < Rs. Exa”?p_'? 10:Let Ry = {]_DR]_’ _and Ry = {Pa, P}. Recall
the definitions of these primitives from Examples 3, 5, and
6. We argue under nondeterministic uncertainty tRatd R,

Alternatively, we can view preference closure as a congtraPy showing thati, can S|mulateR1 in the precise sense of
on <. Fixing a space& of potential goal regions, we admit aDefinition 4. Letn, € I;mt andn, € Ihm with k(1) =
partial order=< only if every region inG is preference closed (12). SinceU; = {0}, there is only one choice fou;. Let
under <. The trivial definition of < in Example 8 always ! = 4 and definer; so thatR, starting froms,, executes
passes this test, regardlessgof these actions in succession:

(1) Use P with a very large input to move forward to
the nearest obstacle. Lét= h(z,u) denote the distance

Now we turn our attention to a definition of dominance moved.
of one robot system over another. This dominance relatioq?) Use P, with u = 180° to perform a half turn.

induces a partial order over robot systems according to thep) Use P, with « = d to return the robot to its initial
sensing and actuation abilities. We begin with a technica position.

V. A DOMINANCE RELATION OVER ROBOT SYSTEMS

definition. _ , , _ (4) UseP, with u = 180° to perform a half turn, returning
Definition 3: A state x € X is consistentwith a his- the robot to its original orientation

tory I-staten = JY1,--.,uk, y) If there exists some _ . L - ' .
y 4 (uy y17 ,qfk ) _ This policy is illustrated in Figure 6. From here it is easy to

z1 € X such thatz = f"(zi,u1,...,ux) and y; = i that f X h n =
h(fI (1,1, .., uj_1),u;) for eachj = 1,... k. venfyt at from anyz € X, we havex(n,u1, h(z,u1)) =
We can now define the dominance relatlon The intuition f%( (2, m2, ).

that dominance is based on one robot's ability to “simulate” pxample 11:Let R, = {Pr} and R, = {Pr}. We show

anotht.er_.- _ _ under nondeterministic uncertainty th&; < R,. Let n; €
Definition 4 (Robot dominance)Consider two  robots I,(th andn, € Ii(jit with ;1 =< 1. There is only one choice

Ry, Ry € RP. If, for all for u,. Choosel = 1 and definer, to choose an input foP;,
N € I,(”zt, larger than the diameter of the environment. This causes the
o€ I}(mt with (1) < K(n2), and motions of R; and R, to be identical. The resulting derived
o u €U, I-statesn) and n, for R; and R, are be the same, except

that R, receives a meaningful sensor reading that may cause
one or more candidates to be pruned. This sensor information
only makesy, smaller, so the prefereneg < 7} is preserved.
k(1 ur, h(z, 1)) < K(F (1, ma, z)) (10) Conclude that?; < Rs. O

It bears emphasis that the relation induced by Definition 4
depends ork. The next two examples illustrate this.

there exists a policyrs : hfit — U and a positive integer

such that for allz consistent with bothy; and s,

then Ry dominatesRk; underZ andk, denotedR; < R».
Informally, the definition says thak, can always select

actions that take it to an I-state at least as good as the on&xample 12:Let Ry = {P4} and Ry = {Pc}. We argue

reached byRR;. See Figure 5. Definition 4 enables us to defindat R, < R, under the usual nondeterministic I-map with

robot equivalence in the natural way. the initial condition of total uncertainty. Lef; € Z,(”lt and
Definition 5 (Robot equivalencefor any Ry, Ry C RP, 1, ¢ I}(zzt with 71 < 0. Letuy € U; = S'. Choosel = 2

if R1<R; andRy<R; thenR; and R, areequivalentdenoted and definer, to select the following two actions:

Ry = R,. The set of robots equivalent #, is denotedR1]. (1) yse . with u = 0 to sense the robot's orientation

without changing the state. Létdenote this orientation.

(2) Use P¢ to rotate the robot to orientatiof + v in the

global frame.

A. Dominance examples
Several examples will clarify the definition.



As in Example 11, the resulting states f& and R, are Lemma 4 might be misleading. Certainly, hardware com-
identical but, sinceR, knows its orientation, it may be ableponents can be made to interact in interesting ways. For
to eliminate some candidates thiat cannot. This establishesexample, a control system might combine information from
that Ry < Rs. linear and angular odometers to execute circular arc mgtion
Are R, and R, equivalent under this I-map? No, becaus&his apparent contradiction is an artifact of the selectibthe
R, can, with a single action, sense its orientation, but thiimitive catalog. To be considered in this framework, low-
information can never be gathered By. ThereforeR, 4 R; level interactions should be modeled as member®R&f in
and Ry # R». O their own right.
Finally, we connect the idea of dominance to the ability of
robots to complete tasks.
Lemma 6 (Solution by imitation)Consider two robots?;
d R, with R; < Ry and a preference-closed goal region

Example 13:Consider a situation identical to that of Ex-
ample 12, but modify for a different initial conditions() =
R2x {r/2}. That is, the robot begins its execution knowing it
initial orientation. Then at every steR; knows its orientation
in the global frame, and can simulal® using angle addition.
Therefore we havd, < R;. But using the same reasoning as
in Example 12, we knowR; < R,. Therefore, for thiss, we

(a) If Ry can reachZs then Ry can reachZs.
(b) If Ry cannot reaclf then R, cannot reacti.
Proof: For part (a) use the policyr, implied by

have Ry = R». _— : .
! 2 Definition 4 to complete the task witlR,. Part (b) is the
B. Properties of the dominance relation contrapositive of part (a). O
We conclude this section with some basic properties that VI. EXTENDED EXAMPLE: GLOBAL LOCALIZATION
follow from Definition 4. o _ _ In this section we present a detailed example illustrating
‘Lemma 1:The dominance relatio! is partial order. Like- {he definitions of Sections IV and V. We considemgbal
wise = is indeed an equivalence relation. localization task, in which the robot has an accurate map of
Lemma 2 (Adding primitives can only helpyor any jts environment but has no knowledge of its position within
Ri,R3 CRP, Ri IRy U Rs. that environment.

Proof: Letn, € I,(th ms € I}(ifz andu; € U;. Assume o
K(m) < k(n13). Choosd = 1 andmi3(n) = uy for all 5. Then A. Task definition
we have Let W C R? denote a planar environment in which a point
robot moves. Assume that is polygonal, bounded, closed,
= . :
(., ua, hl(x’ u1)) 2 #(ms, un, bz, u1)) and simply-connected and that the rotational symmetrygrou
= K(F'(ms, T3, 1)), (11) of W is trivial. The robot's state space & = W x S!,
completing the proof. [ accounting for its position withit?” and its orientation.
Lemma 3 (Redundancy doesn't helt): R, <I R,, then e consider a catalo®P = {Pa, FPc, Pr, P} of four
R, =R, UR, primitives from Examples 2-4. From these primitives we can
Proof: Since Ry U Ry = R, it follows from Lemma 2 form 15 distinct robots. For brevity, we use concatenation t
that Ry <l Ry U R,. It remains to s'how thaRy U Ry < R,. Let indicate the primitives a robot is equipped with, so that CT
M € I,Sg_)f, s € I}(L;zz' andus € Us. Assumen(ng)_j k(. refers to a robot with primitive sefP-, Pr}; similar names
Choosel = 1 andy2(n) = us for all . Then we have apply to the other 14 robot models. L
SelectZ = pow(X) — . For , use the nondeterministic

k(np,up, h(z,up)) X k(Mm2,us, h(z,up)) map defined in Example 1. The initial condition is total
= k(F (12, T12, ), (12) uncertainty, sox( ) = X. For < use the definition from
) Example 9. The goal region for the localization task is
completing the proof.
0 Ic={nel]|n=1} (14)
Lemma 4 (No unexpected interactions)): 21 < Ry, then gt s, we want to command the robot so that only a single
R1URs S 1y U Rs. final state is consistent with its history I-state. If the gbban

. (13) (23) . i .
Proof: Letms € I, n23 € Ly;p» @nduiz € U1 UUs. complete the task for anjy’ consistent with the assumptions

Assumer(ii3) = r(n23). Eitheru;z € Uy or uiz € Us. If - gp6ve; we say that the robot can localize itself.
uy3 € Uy, then becaus&; < R, there existrs and! satisfying

the definition forR; UR3 < Ry URs. If uy3 € Us, then choose B. Equivalences and dominances
I =1 anda3(n) = uy3 for all n. Then for allz, we have Although RP generates 15 robot models, we can use the
results of Section V to group them into equivalence classes.
=<
H(m?”ulg;h(x’uw)) = A(n23, w3, 1w, w13)) Theorem 1:The following equivalences hold:

= K(F"(n23, m23, 7)), (13) (a) CA=C

completing the proof. O (b) CTA=CT
Corollary 5: If Ry = Ry, thenR; U R3 = Ry U R3. (c) TL=L
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Fig. 7. Fifteen robot models grouped into their eight eq@&rak classes. L || T -—| C
(d) TAL = AL Fig. 8. Classification of robot models under which the lo@dlin task
(e) CAL=CTL=CTAL=CL can be completed. Shaded models do not admit a solution. Arnasisaite

The three remaining robot models, A, T, and AT, are i?\ommances'

singleton equivalence classes.
Proof: (a) Combine Example 12 and Lemma 3. (by yncertainty in transitions and sensing
Combine Example 12, Lemma 3, and Corollary 5. (c) Com- _ ] .
bine Example 11 and Lemma 3. (d) Combine Example 11,First, as we have already mentioned, we require state
Lemma 3, and Corollary 5. (¢) Combine Examples 11 and jtpansitions and observations to be deterministic. To relax
Lemma 3, and Corollary 5. 7 this restriction, extend the state transition and obs&mat
These equivalences are illustrated in Figure 7. From eadctions to include a third parameter chosen by an external
select the unique robot with the fewest primitives and digcad€cision maker “nature”. This leads fo: X x U x © — X
the remaining 7 robots. We can state a number of dominan@¥l # : X x U x ¥ — Y. In each stage, nature selects a
between these classes. 6 € © and ay € V. Nature's selections are governed by
Theorem 2:Between representatives of the equivalencd Nondeterministic or probabilistic uncertainty model ethi

(a) C<ACT<CL extension can be incorporated into Definition 4 by the additi

(b) A<IAT <AL <CL of universal quantifiers ove® and V.

(c) LIAL <CL

(d TSATICTLCL
Proof: Combine Examp|es 11 and 12 with Lemma(2. The form of Definition 4 is local in an important sense.

Comparisons are made based on a robot’s ability to simulate

another robot’s trajectory i, step by step. An equivalent
Which equivalence classes contain robots that can complejgbal” definition can be defined in terms of reachable sets

the localization task? First, notice that several robot @i®d and preference closure. Lef(R;) C T denote the I-states

are so absurdly simple that we can rule them out immediatefgachable byr; and for N c Z, let Pc™(N) denote the set of
Lemma 7:None of C, A, L, and T can localize themselvesy|| |-statesy; for which there exists an, € N with 1; < 5.

Proof: For C and A, notice that no action changes thehen R, < R, if and only if Z(R,) C Pc™(Z(Ry)).

robot’s position and no observation is influenced by positio
Therefore neither robot can ever gather information abtsut C. Probabilistic uncertainty
position. For L and T, notice that the robot can never change
its orientation. Information available to the robot is lted to
the ray extending from its initial state to the nearest alleta
forward. SincelW may contain continua of starting state
consistent with this information, neither robot can lozali
itself.

Two prior results are helpful for the remaining cases.

Lemma 8 ([33], [34]): AL and CT can localize themselves
but AT cannot.

Finally, we can finish the classification:

B. Reachable sets and preference closure

C. Completing the localization task

We have focused our attention on nondeterministic un-
certainty. Our results also apply, at least in principle, to
grobabilistic uncertainty. In this context, the relevaatided |-
spacel,,op is a space of probability distributions ovar. It is
not immediately clear what the “right” information preface
relation over such a space would be. Depending on the models
used, it may also be necessary to relax Definition 4 to require
only that R, can simulateR; with sufficiently high probability.
More generally, the differences between nondeterminastid
Lemma 9:CT can localize itself. probabilistic uncertainty models warrant further exptia
Proof: Combine Lemma 6 with Lemma 8. For example, nondeterministic uncertainty has the prgpert

0 . ! .
The results of Lemmas 7-9 are summarized in Figure 8.that sensing can only help — actions from primitives IiKe
(Example 7) orPr (Example 6) that do not change the state

VII. DISCUSSION AND CONCLUSION will always lead to a derived I-state at least as good as the
There are several issues that space limitations preventausrent one. Under probabilistic uncertainty, this propeoes
from fully describing. not hold; sensing can sometimes increase uncertainty.



D. Finiteness ofRP
Another avenue for extension is to consider the case when

(17]

RP is not a finite set. For example, we may exteid (from  [18]
Example 5) to a family [19]
{PL,G = (517 {0}7 fLe ) h‘Le) | € 2 0} (15) [20]

of primitives, each using a noisy linear odometer whosererro
is bounded by. With reasonable choices far, x, and=, one
can show thatP; ., < Pr ., if and only if e; < €. If RP
contains many such families of primitives, and we assunp)
each robot has at most one primitive from each family, then
the space of robot models is a cubeRf. The problem of

identifying the region in which a given task can be solved is
correspondingly more difficult. [24]

(21]

ACKNOWLEDGMENT 25]

The authors thank Rob Ghrist for helpful suggestions. This
work is supported in part by DARPA grant #HR0011-05-1-
0008. [26]

REFERENCES

E. U. Acar and H. Choset. Robust sensor-based coveragestiuctured [27]
environments. IrProc. of IEEE IROS, Int'l Conference on Intelligent
Robots and System2001.

P. K. Agarwal, A. D. Collins, and J. L. Harer. Minimal tragesign. In
Proceedings IEEE International Conference on Robotics Antbma-
tion, volume 3, pages 2243-2248, 2001.

S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts deg
on a conveyor with a one joint robotAlgorithmica 26(3):313-344,
March-April 2000.

D. J. Austin and P. Jensfelt. Using multiple gaussian hiypses to
represent probability distributions for mobile robot Idzation. InPro-
ceedings IEEE International Conference on Robotics andration
pages 1036-1041, 2000.

D. Avis and H. Imai. Locating a robot with angle measuremenis
Symb. Comput10(3-4):311-326, 1990.

K. Basye and T. Dean. Map learning with indistinguistelacations. In
Proceedings Conference on Uncertainty in Atrtificial Ingghce pages
331-342. North-Holland, 1990. (34]
M. A. Bender, A. Ferandez, D. Ron, A. Sahai, and S. Vadhan.
The power of a pebble: exploring and mapping directed graplins.
Proceedings IEEE Symposium on Foundations of Computen&gie [35]
pages 269-278, 1998.

M. Blum and D. Kozen. On the power of the compass (or, why maze
are easier to search than graphs).Phoceedings IEEE Symposium on[36]
Foundations of Computer Sciengeages 132—-142, 1978.

R. I. Brafman, J. Y. Halpern, and Y. Shoham. On the knowledge
requirements of taskdArtificial Intelligence 98(1-2):317-349, 1998. [37]
H. Choset and J. Burdick. Sensor based planning, paid:generalized
Voronoi graph. InProceedings IEEE International Conference on[38]
Robotics and Automatiompages 1649-1655, 1995.

I. J. Cox. Blanche — an experiment in guidance and nawigabf [39]
an autonomous robot vehicle.IEEE Transations on Robotics and
Automation 7:2:193-204, 1991.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte cddcalization
for mobile robots. InProceedings IEEE International Conference on
Robotics and Automatiori999.

E. D. Demaine, A. bpez-Ortiz, and J. |. Munro. Robot localization [41]
without depth perception. IrScandinavian Workshop on Algorithm
Theory 2002.

B. R. Donald. On information invariants in robotics.Artificial
Intelligence 72(1-2):217-304, 1995.

G. Dudek, K. Romanik, and S. Whitesides. Localizing a tolih
minimum travel. SIAM J. Comput.27(2):583-604, 1998.

M. Erdmann. Understanding action and sensing by desigaction-
based sensorsnternational Journal of Robotics Reseayd¥(5), 1995.

(1]

(2]

(29]
(3]

[30]
[4]
[31]
[5] [32]

[6] [33]

(7]

8]

El
[10]

[11]

[12] [40]

[13]

[14] (42]

[15] [43]

[16]

] S. Lenser and M. Veloso.

M. A. Erdmann and M. T. Mason. An exploration of sensales
manipulation.|EEE Transations on Robotics and Automatidf¥):369—
379, August 1988.

K. Y. Goldberg. Orienting polygonal parts without sers Algorith-
mica 10:201-225, 1993.

K. Y. Goldberg and M. T. Mason. Bayesian grasping.Froceedings
IEEE International Conference on Robotics and Automatit®$90.

L. J. Guibas, R. Motwani, and P. Raghavan. The robot liz&gon
problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and R.-Wil
son, editorsProceedings Workshop on the Algorithmic Foundations of
Robotics pages 269-282. A K. Peters, Wellesley, MA, 1995.

T. Kameda, M. Yamashita, and |. Suzuki. On-line polygoarsh by a
six-state boundary 1-searcher, April 2003. submitted fdalipation.

I. Kamon, E. Rivlin, and E. Rimon. Range-sensor basedgadign in
three dimensions. IfProceedings IEEE International Conference on
Robotics and Automatiori999.

] J. M. Kleinberg. The localization problem for mobile mib. InIEEE

Symposium on Foundations of Computer Sciepages 521-531, 1994.
S. Koenig, A. Mudgal, and C. Tovey. An approximation aigan for
the robot localization problem. IRroceedings ACM-SIAM Symposium
on Discrete Algorithms2006.

K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provabteategies
for vision-guided exploration in three dimensions.Aroceedings IEEE
International Conference on Robotics and Automatipages 1365—
1371, 1994.

A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and&..Kavraki.
On the feasibility of using wireless Ethernet for indoor dbzation.
IEEE Transactions on Robotics and Automafi@9(3):555-559, June
2004.

S. M. LaValle. Planning Algorithms Cambridge University Press,
Cambridge, UK, 2006. Also available at http://msl.cs.uida/planning/.
Sensor resetting localizafion poorly
modelled mobile robots. IRroceedings IEEE International Conference
on Robotics and Automatip2000.

T. Lozano-Rerez and M. A. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacléSommunications of the ACM
22(10):560-570, 1979.

V. Lumelsky and S. Tiwari. An algorithm for maze searchiwith
azimuth input. InProceedings IEEE International Conference on
Robotics and Automatiompages 111-116, 1994.

M. Moll and M. Erdmann. Manipulation of pose distributi Interna-
tional Journal of Robotics Research1(3):277-292, 2002.

C. O. Dunlaing and C. K. Yap. A retraction method for planning the
motion of a disc.Journal of Algorithms6:104-111, 1982.

J. M. O’Kane. Global localization using odometry. Pnoceedings IEEE
International Conference on Robotics and Automatipd06.

J. M. O'Kane and S. M. LaValle. Almost-sensorless lazation. InPro-
ceedings |IEEE International Conference on Robotics andration
2005.

M. Rao, G. Dudek, and S. Whitesides. Randomized algoritfons
minimum distance localization. IfProc. Workshop on Algorithmic
Foundations of Roboticpages 265-280, 2004.

K. Romanik and S. Schuierer. Optimal robot localizationtriees. In
Proceedings Symposium on Computational Geomgiages 264-273,
1996.

K. Sugihara. Some location problems for robot navigatisimg a simple
camera.Comp. Vis., Graphics, & Image Prqced2(1):112-129, 1988.
S. Thrun, W. Burgard, and D. FoXrobabilistic Robotics MIT Press,
Cambridge, MA, 2005.

B. Tovar, L. Guilamo, and S. M. LaValle. Gap Navigatione€s: Min-
imal representation for visibility-based tasks. Proceedings Workshop
on the Algorithmic Foundations of Robotjc2004.

A. F. van der Stappen, R.-P. Berretty, K. Goldberg, andHVOvermars.
Geometry and part feeding. Bensor Based Intelligent Robpfsages
259-281, 2000.

G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping trafcRosition
and orientation of moving indoor systems by correlation ofyefinder
scans. INEEE/RSJ Int. Conf. on Intelligent Robots & Systed894.
D.E. Whitney. Real robots don't need jigs. roceedings IEEE
International Conference on Robotics and Automatib®36.

J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. cAmplete
algorithm for designing passive fences to orient part®ssembly
Automation 17(2), August 1997.



