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Abstract

We address an on-line version of the visibility-based pursuit-evasion problem. We take a minimalist
approach in modeling the capabilities of a pursuer robot. A point pursuer moves in an unknown, simply-
connected, piecewise-smooth planar environment, and is given the task of locating any unpredictable,
moving evaders that have unbounded speed. The evaders are assumed to be points that move continuously.
To solve the problem, the pursuer must for each target have an unobstructed view of it at some time
during execution. The pursuer is equipped with a range sensor that measures the direction of depth
discontinuities, but cannot provide precise depth measurements. All pursuer control is specified either
in terms of this sensor or wall-following movements. The pursuer does not have localization capability
or perfect control. We present a complete algorithm that enables the limited pursuer to clear the same
environments that a pursuer with a complete map, perfect localization, and perfect control can clear (under
certain general position assumptions). Theoretical guarantees that the evaders will be found are provided.
The resulting algorithm to compute this strategy has been implemented in simulation. Results are shown
for several examples. The approach is efficient and simple enough to be useful towards the development
of real robot systems that perform visual searching.

1 Introduction

In the past few years, there has been significant interest in robotics and computational geometry in designing

motion strategies for pursuit-evasion scenarios. The basic task is to move one or more robots (pursuers)

to guarantee that unpredictable targets (evaders) will be detected using visibility-based sensors. Efficient

algorithms that compute these strategies can be embedded in a variety of robotic systems to locate other

robots and people. Potential application areas include surveillance, high-risk military operations, video game

design, search-and-rescue efforts, firefighting, and law enforcement.

1.1 Relation to Previous Work

Previous work has considered the case of having a complete map and a robot with perfect navigation capa-

bilities; this case is already quite challenging. Visibility-based pursuit-evasion in a polygonal environment

was first considered in [30], in which algorithms were given for classes of polygons in which the pursuer has

omnidirectional visibility, or has a set of k beams, called flashlights. A complete algorithm for the case of

omnidirectional visibility was first presented in [20]. Solutions to the case in which the pursuer has one or

more detection beams, or in which several pursuers are present, are considered in [7, 21, 28, 33, 31], for var-

ious types of polygons. A pursuit-evasion algorithm for curved environments was presented in [19]. In [11],

both optimal and approximation algorithms were presented for the case of a chain of pursuers that maintain

mutual pairwise visibility in a polygonal environment. Until very recently [25], it had been unknown for
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nearly a decade whether the omnidirectional pursuit-evasion problem in a polygonal environment could be

solved in polynomial time (it can be solved in quadratic time).

This paper presents the first approach to visibility-based pursuit-evasion in a curved environment that

does not require a complete map of the environment to be specified a priori. Our work follows on-line and

minimalist approaches both in theoretical algorithms [5, 8, 24] and in robotics [1, 2, 3, 6, 9, 10, 12, 13, 29, 17,

18, 23, 22]. Our models are similar in some ways to those presented in [23] for robot navigation. In that work,

bug algorithms were presented for navigating a robot to a goal, in the absence of a map and with very limited

sensing. The robot is assumed to have very simple capabilities, such as contact sensing and wall following;

yet, it is guaranteed to reach its destination efficiently. In recent years, other navigation algorithms have been

designed using this philosophy [6, 16, 17, 27]. This mindset inspires our current work, which applies these

principles to pursuit-evasion problems, resulting in a kind of pursuit-evasion bug algorithm. The primary

benefit of this approach is that the sensing requirements of the robot are greatly reduced.

The pursuit-evasion problem, however, is considerably more challenging than basic navigation. Imagine

arriving in a dark, unfamiliar environment with a lantern, and trying to search for any people who might be

moving around. It is assumed that you have no map, no compass, and no reliable way to measure distances

needed to construct a reliable geometric map. This scenario is similar to what might be confronted by a

robot to accomplish tasks such as search-and-rescue. In many applications, it is too risky, expensive, or

unreliable to construct an “exact” map of the environment. Robot sensors are costly and usually inaccurate.

Robotic systems that rely heavily on the integration of many sensors are often prone to error. Furthermore,

map building is a time consuming process that is complicated by issues such as segmentation, viewpoint

registration, and outlier suppression. Once a map is obtained, precise localization within the map becomes

the next obstacle, which is a challenging problem that has been considered extensively in experimental

mobile robotics research. Due to common problems such as poor odometry and wheel slippage, localization

must be performed frequently to determine the appropriate movement with respect to the map. By taking a

minimalist approach in this context, we can circumvent many problems that arise in experimental robotics;

this approach can lead to low-cost robot systems that solve tasks with high reliability.

Therefore, we depart from the traditional assumption of perfect mapping and navigation capabilities.

We introduce an on-line version of the problem by defining simple sensing requirements in the model, and

requiring that all motions are executed directly with respect to the sensor readings. We present an algorithm

which, under general position assumptions, yields a on-line motion strategy that is guaranteed to find any

unpredictable evaders, if such a strategy exists for the limited pursuer.1 Furthermore, we prove that the

algorithm yields a pursuer with searching power that is equivalent to a pursuer with a complete map and

perfect localization. This result is significant, because we assume a very limited pursuer model, and because

the task is extremely difficult, even given a better-equipped pursuer (such as one with a map of R).

A similar approach was used in [29]. In that work, an on-line algorithm was given for a pursuer whose

visibility is limited to a single flashlight, and whose motion is confined to the boundary of a polygonal region.

It was proven that this searcher could clear the same environments that a pursuer with 360 degree vision,

confined to motion on the boundary, could clear.

1.2 An Overview of the Approach

The case of pursuit-evasion in an unknown environment is substantially more complicated than the case of

pursuit-evasion in a known environment. Therefore, we provide a high-level overview of the ideas contained

in this paper, to help give motivation and an intuitive understanding of the concepts before proceeding to

the details in the coming sections.

1A preliminary form of this work appeared in [26].
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The key components are as follows:

1. Gap sensing and control Section 2 presents a model which assumes that the pursuer can use a

sensor to determine the directions of discontinuities in depth (resulting in a gap sensor) as observed

from the current pursuer location. The pursuer is restricted to a simple set of motion primitives that

are either expressed entirely in terms of the gaps or in terms of wall following. This model enables a

robot to solve pursuit-evasion problems without being able to measure precise depths, build maps, read

a compass, use odometry, or localize itself in any coordinate frame. In related work [32], this model

was validated through experiments performed in an indoor environment on a Pioneer 2-DX mobile

robot equipped with two SICK lasers.

2. The navigation graph Section 2.4 defines a set of carefully-chosen motion primitives. Each motion

primitive guides the pursuer within a thin strip in its environment, leading from one set of possible

locations to another set of possible locations. From the perspective of the pursuer, these sets of possible

locations are simply abstract states. Each application of a motion primitive leads to an edge between

the corresponding abstract states, resulting in a navigation graph. Although the map is not known to

the pursuer, for any environment in which the robot is placed, the arrangement of the thin strips leads

to a planar graph (Theorem 4.9). The motion commands are defined in such a way that the strips are

actually “thickened” bitangent rays, as defined in [19].

3. The status graph The information state (referred to here as the status) must be maintained at all

times by the pursuer, just as in [14, 19]. In previous work, this involved keeping track of when the

pursuer crosses from one information-conservative cell to another, and appropriately updating binary

labels. Each label corresponds to a connected component of the environment that is not visible, and

indicates whether or not an evader may be in that component. Using the gap sensor model, this means

that a binary label is assigned to each gap. Initially, all gaps are labeled to indicate that evaders

could be in any component that is not visible. The goal is to force all labels to indicate that there are

no hiding evaders. As the pursuer moves, labels must be updated correctly, which will be described

in Section 2.5. This is an on-line analog of the appear/disapper/split/merge cases that appeared in

[19]. Note that the pursuer may return to the same state in the navigation graph several times, but

each time it could have a different status. Intuitively, it is like having a fiber over each vertex in the

navigation graph, which yields a set of information states. This results in a directed status graph, which

is analogous to the information state graph in [14, 19], but applies to the on-line case. See Section 3

for details.

4. Envisioning Solving the pursuit-evasion problem ultimately involves exploring the status graph. The

concept of envisioning arises in the on-line version of the pursuit-evasion problem, but does have a

counterpart for the perfect mapping and control case. In the perfect case, the pursuer can “envision”

a solution (i.e., search the status graph) without having to move through the environment. Its motion

strategy does not actually depend on anything learned during execution. In the on-line case, the pursuer

learns information about the environment, and incrementally constructs the navigation graph. At any

point, it can “stop and think” about what would happen if it were to move in different ways through the

navigation graph that it built so far. This corresponds to searching the portion of the status graph that

is known so far, which we refer to as envisioning. One approach would be to learn the entire navigation

graph and then search the resulting status graph. Our approach is to tightly interleave exploration

with envisioning so that the pursuer can solve a pursuer-evasion problem without necessarily having

the entire navigation graph. These issues are discussed in Section 3.
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5. Touring countries In previous work [19], a known environment was divided into cells based on rays

that were extended outward along bitangents and also on rays extended from inflectional tangents. The

resulting arrangement of cells can be considered as an aspect graph based on perspective projection.

Imagine one cell decomposition based only on bitangents, in which each 2D cell is referred to as a

“country”. Imagine a refined cell decomposition in which both bitangents and inflections are used,

and refer to each resulting cell as a “province”. Thus, each country is partitioned into provinces by

inflection rays.

The key intuition behind the movement strategy is that unnecessarily crossing country borders (i.e.

bitangent rays) can lead to information loss because connected components of the invisible portion

of the environment could become merged. Furthermore, by moving the pursuer along the navigation

graph, the pursuer only stays within the “border region” of any country. It has to be argued that

there is no reason to visit interior provinces in any country (Theorem 4.4); all information regarding

the pursuit can be obtained by traveling along the border region. In addition to this difficulty, one

must travel from country to country in a way that avoids unnecessary loss of information.

6. Recognizability problems A recurring difficulty throughout this work is the challenge of being able

to recognize the occurrence of specific events, even though basic sensors, such as odometry and a

compass, are missing. For example, when traveling from country to country, how can we tell whether

we are returning to a country already visited, or arriving in a new country for the first time? This is

addressed by selecting a careful movement strategy, presented in Section 3. Following this, recogniz-

ability arguments form a large part of the algorithm analysis presented in Section 4. When traveling

within a country, how do we know that we have traversed the entire boundary at least once? This

problem is more difficult to solve, and we simply assume some additional capability on the part of the

pursuer, such as being able to place a marker on the floor and being able to recognize upon return.

In practice, it should be easier to detect and avoid such infinite loops, but the theoretical technicality

nevertheless exists.

7. Completeness Section 4 covers the arduous task of showing that the algorithm presented in Section

3 enables the pursuer to solve pursuit-evasion problems for as many environments as it possibly can.

In fact, under general position assumptions, it can even solve any pursuit-evasion problem that can be

solved by the original pursuer with perfect mapping and control [14, 19, 30]. This is stated in Theorem

4.12, which concludes the theoretical analysis. Thus, the restrictive model developed in this paper

surprisingly leads to a pursuer that is just as powerful as the original pursuer. Note, however, this will

come at a price: the distance traveled by the pursuer presented in this paper is much greater.

An implementation (in simulation) is briefly presented in Section 5, along with some computed examples.

Finally, some conclusions and final remarks appear in Section 6.

2 The Model

2.1 Problem Definition

The task is for one pursuer robot to visually locate one or more evaders in a complicated environment. The

pursuer and evaders are each points that move in a bounded, simply-connected open set, R, in the plane.

The boundary of R is a simple, closed, piecewise-smooth curve (with only a finite number of nonsmooth

points). Note that this definition includes polygonal boundaries. Let πei
(t) ∈ R denote the position of the

ith evader at time t ≥ 0. It is assumed that πei
: [0,∞) → R is a continuous function, and each evader is
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(a) (b)

Figure 1: a) An example of a region which cannot be cleared. b) An example of a region which can be
cleared, and one path which clears the region.

(a) (b)

Figure 2: Discontinuities in depth measurements partition the set of viewing directions. Each discontinuity
could hide an evader.

capable of moving arbitrarily fast (i.e., it moves at a finite, unbounded speed). Similarly, let πp(t) denote

the position of the pursuer at time t ≥ 0; the pursuer also moves continuously.

For any x ∈ R, let V (x) ⊆ R denote the set of all y ∈ R such that the line segment that joins x and y does

not intersect the boundary of R. We call V (x) the visibility region of x. If at any time t, πei
(t) ∈ V (πp(t)),

we say that the ith evader is detected.

For convenience, we will assume that an evader is eliminated when it is detected. Any such subset of R

that might contain a evader is referred to as a contaminated region. If it is guaranteed not to contain any

evaders, then it is referred to as cleared. If a region is contaminated, becomes cleared, and then becomes

contaminated again, it is referred to as recontaminated.

It is assumed that the pursuer does not know the starting position, πei
(0), or the path, πei

, of any evader,

ei. Initially, each evader could be anywhere in R that is not visible from πp(0). The task is to ensure that

the pursuer will follow a path that clears R, or to report that it is impossible to clear R. See Figure 1.

Finally, our general position assumption is that no three critical lines intersect at a single point, in which

a critical line is either a generalized inflection of ∂R or a generalized bitangent to ∂R, as defined in [19]. For

the case of curved environments, these reduce to inflections and bitangents. The generalized definitions also

encompass equivalents for polygonal environments. We also assume that there are no triple tangents. Note

that the general position assumptions are defined for the environment in which the robot is placed, even

though the robot does not have a map of R.
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(a) (b) (c)

Figure 3: Three situations: a) moving towards a proximity pair; b) moving away from a proximity pair; c)
moving along a wall.

2.2 Pursuer Model

The pursuer robot has no representation of R initially, and is not capable of building an exact, complete

map of its environment. It is assumed that the pursuer’s sensors are not necessarily powerful enough to

provide accurate and dense depth measurements, which could be used to build a representation and perform

localization. In the interest of robustness, it might be advantageous to avoid such constructions even if the

pursuer is capable. It is assumed that the pursuer can execute omnidirectional motions, but with limited

precision that results in control uncertainties. The pursuer has neither a reliable odometer nor a compass.

Some sensing capability is required, of course, to solve the problem. Consider Figure 2.a, in which a

pursuer is placed in a curved environment. The pursuer is equipped with a sensor that is capable of producing

a representation as shown in Figure 2.b, which gives the location of discontinuities in depth information, when

performing an angular sweep of the environment. Note that each discontinuity corresponds to a connected

portion of R that is not visible to the pursuer. Each discontinuity will be referred to as a gap, and the sensor

will be called the gap sensor. It is assumed that the pursuer can track the gaps at all times, and record any

topological change, which involves the appearance, disappearance, merging, or splitting of gaps.

2.3 Gap Tracking

As the pursuer moves, the report from the gap sensor will change. To describe the changes which may occur

and the events which cause them, we define two types of lines in R, as shown in Figure 4. Consider a ray

which extends from an inflection of the boundary until it hits another point on the boundary; we refer to

this ray as an appear line. Also, consider a line segment tangent to the boundary at two points (that is, a

bitangent). A ray can be extended outward from each point of tangency until it hits the boundary; we refer

to each ray as a distinct merge line. Note that there are two merge lines for every bitangent.

There are four possible ways in which the gaps change. Below, we describe each event and provide

notation for the event, assuming that the event happens to a gap γ. See Figure 5.

1. A new gap appears: appears(γ)

2. An existing gap disappears: disappears(γ)

3. Two or more gaps merge into one: α = merge(β, γ)

4. A single gap splits into two or more gaps: split(γ) = (α, β)

We call these changes gap events. The first two events occur because the pursuer crosses an appear line.

The other two events occur because the pursuer crosses a merge line [19]. Suppose that γ splits when the
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(a) (b)

Figure 4: Rays extended from inflections and bitangents cause critical events. The rays are terminated at
their first point of intersection with the boundary. a) the ray represents an appear line. b) the two rays each
represent a distinct merge line.
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Figure 5: Four critical events: a) a single gap splits into two gaps; b) a gap disappears; c) a gap appears; d)
two gaps merge into a single gap. Appear lines and merge lines are indicated by dashed lines.

pursuer crosses some merge line M . We refer to the subset of R in which γ is split as the split side of M ,

and we denote it Rs(M). The other side is referred to as the merged side of M , and is denoted R−Rs(M). In

Figure 5(a), the robot moves from R −Rs(M1) to Rs(M1), and in Figure 5(d), the robot moves from Rs(M2)

to R−Rs(M2).

If the robot follows a path π : [t0, t1]→ R and a gap γ is not involved in any gap events while the robot

moves, then we assume that at any moment during execution of π, the robot can determine which of the

gaps reported by the gap sensor is γ, even if its angle changes. If γ is involved in a gap event, then we

assume the robot can detect the gap event, and can also determine the other gaps affected, both before and

after the event occurred. These abilities are referred to as gap tracking.

We next specify the control precision required for the robot. Suppose that the robot is commanded to

follow a merge line or to follow part of the boundary of R. Let L denote the merge line or the part of

the boundary that is commanded. Let ε be the maximum distance of the robot from L as it executes this

command. Consider the arrangement of appear lines, merge lines, and walls in R. Form a second arrangement

by making two replacements: 1) each merge line M is replaced by a parallel lines that is distance ε from

the merge line, in Rs(M); 2) the walls are replaced by curves that are distance ε from the walls, in R. It

is assumed that ε is small enough that the arrangement formed by the replacements is equivalent to the

first arrangement.2 This assumption ensures that the robot does not become confused during navigation

due to control errors. The value of ε describes the degree of inaccuracy in the robot’s motions; thus, it is

advantageous to make ε as large as possible without violating this assumption.

The existence of ε, together with its relationship with another constant, δ, allows the robot to detect

proximity to a critical line using only the gap sensor. Although the robot lacks a map, it can still predict

when certain critical events will happen; thus, the existence of ε is crucial to the efficacy of the on-line

2We define an equivalence relation among arrangements as follows. Let X, Y be two arrangements of walls, appear lines,
and merge lines. If there is a bijection between the lines in X and the lines in Y such that the order of intersection of lines in
X is preserved under the bijection, then X and Y are equivalent.
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Figure 6: Several junctions. Thick solid lines are walls, thin solid lines are merge lines, and dashed lines are
distance ε from merge lines or walls. A junction is an ε-by-ε parallelogram between intersecting dashed lines
and intersecting merge lines. Each junction in this figure has been shaded, although not all junctions in the
region are indicated.

algorithm.

2.4 Gap-Based Navigation

Suppose the pursuer is on the split slide of some merge line M , and is within ε distance of M . The pursuer

will see two gaps, γ1, and γ2, corresponding to the regions hidden by the two points of tangency which define

M . Let θ(γ) denote the angular position of a gap γ, relative to the direction of heading. We assume there

exists some angle δ > 0 such that |θ(γ1) − θ(γ2)| < δ if and only if the robot stays within ε distance of M .

A discussion of the relationship between δ and ε appears in the appendix.

We call γ1, γ2 a proximity pair if the angular distance between them is less than δ, or if, as the robot

moves, some gap γ splits into γ1, γ2. We define the direction of a proximity pair (relative to the robot’s

heading) as θ(γ1, γ2) =
θ(γ1)+θ(γ2) mod 2π

2 . If the pursuer moves in directions θ(γ1, γ2)+
π
2 or θ(γ1, γ2)−

π
2 , the

gaps will either quickly diverge or quickly merge. On the other hand, if the pursuer moves in the directions

θ(γ1, γ1) or θ(γ1, γ1) + π, the gaps will remain within δ angular distance, but will not merge. This motion

corresponds to moving along a merge line in R within ε distance. Small errors in control can be corrected

by using feedback from the gap sensor to vary the commanded direction. For convenience, when the pursuer

moves in direction θ(γ1, γ2), we say that it moves towards the proximity pair γ1, γ2. Similarly, when the

pursuer moves in the direction θ(γ1, γ2) + π, we say that it moves against the proximity pair γ1, γ2.

The pursuer’s motion strategy will be described in terms of simple motion primitives. A primitive motion

is movement either along a wall or along a merge line, executed by the robot in terms of movement towards

or against a proximity pair. A primitive motion terminates when the pursuer reaches a junction, at which

point another primitive motion command is issued.

As the pursuer moves along a wall, a junction is encountered when a proximity pair arises. If the

pursuer is moving along a merge line, (that is, towards or against a proximity pair γ1, γ2), then a junction

is encountered when the robot arrives at a wall, or when a new proximity pair (different from γ1, γ2) arises.

Thus, a junction is an ε-by-ε parallelogram at the intersection of a merge line with another merge line or

with a wall, always on the split side of a merge line. See Figure 6.

At each junction, one of four possible primitive motions is possible:

F Continue forward with the same heading.

B Move backwards with respect to the current heading

R Move to the right. If the pursuer arrived at a wall, then it turns right and follows the wall. Otherwise,

the pursuer moves right either in the direction towards or against the new proximity pair (depending
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on which one is to the right).

L Move to the left. This motion is symmetric to the R primitive.

From any initial position, assume the pursuer can be commanded to move until a junction is encountered.

From this position and heading, a motion strategy, µ = 〈µ1, µ2, . . . , µm〉 is defined as a finite sequence of

primitive motions, in which each element µi ∈ {F,B,R,L}. The algorithm presented in Section 3 will

compute a strategy, µ, that will guarantee all evaders will be detected, if such a strategy exists. The

strategy is computed online by making decisions based on the sensor history. The execution of the strategy

depends only on the pursuer’s ability to follow walls, track gaps and envision a solution based on its record

of observations.

2.5 The Pursuit Status

Consider the circular sequence of gaps reported by the sensor at a junction j. Recall from Figure 2 that

each gap corresponds to a hidden connected region of R that is not visible. For each hidden region, a binary

label can be marked as 1 to indicate that the region is contaminated, and 0 to indicated it is cleared. Let

Bj denote a circular sequence of binary labels, in which each label indicates the status of a gap detected by

the gap sensor when the pursuer is at j. We say Bj is the pursuit status, and denote Bj(γ) as the status of

gap γ, at junction j.

Suppose that at least one gap event occurred when the robot moves from j to k, and Bj must be

transformed to Bk to reflect the gap changes. If a gap γ disappears, then Bk excludes the label for γ. If

a gap γ′ appears, then Bk(γ
′) = 0 because the hidden region represented by γ was visible when the robot

was at j, and therefore it contains no evaders. If gaps γ1, γ2 merge into γ
′, then Bk(γ

′) = Bj(γ1) ∨ Bj(γ2),

in which ∨ denotes the logical OR operation. This notion is correct because one contaminated region could

spread to other regions. If γ splits into γ ′1, γ
′
2, then Bk(γ

′
1) = Bk(γ

′
2) = Bj(γ).

3 The Algorithm

The algorithm consists of interleaved processes. In exploration, the robot travels through R to learn and

record information about the environment, and in envisioning, the robot searches this information for a path

which will clear R. It is possible to finish exploration first, and then to attempt to envision a solution; we

interleave these processes for efficiency.

The navigation graph We define the navigation graph, gn, as follows. Let gn contain a vertex for each

junction in the environment. If u, v ∈ V (gn), an edge connects them if the junction corresponding to v can

be reached from the junction corresponding to u by a single primitive motion. Note that gn is undirected,

because the primitive motions are reversible. Since primitive motions correspond to following a wall or a

merge line, it may be useful to think of uv as a straight line (or curved line, if the robot follows a wall to

move from u to v) of ε width in R connecting the junctions corresponding to u and v.

Note that gn is planar. Following an edge corresponds to moving along a wall or moving towards (or

against) a proximity pair; therefore, the intersection of two edges corresponds to the point where, as the

robot follows one of the edges, a new proximity pair is visible. This point is a junction, or a vertex in gn.

Two edges only intersect at a vertex; therefore, gn is planar.

Because gn is planar, it can be partitioned into faces. Consider a face, f , of gn. We refer to the

corresponding face of R as the area in R enclosed by the robot as it travels along the border3 of f .

3We use the term “border” assuming its definition in planar graph theory; thus, an edge borders at most two distinct faces,
and a face f borders another face f ′ if and only if f and f ′ share an edge.
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At a given time, gn represents the robot’s knowledge about R; it might not fully represent the junctions

of R (in fact, it usually does not). If the robot has fully explored R, then we refer to its navigation graph

as Gn. Using this notation, gn can be thought of as the portion of Gn that is revealed incrementally during

exploration.

For convenience, we will discard the distinction between gn and R and say that the robot is at a vertex

in gn when it is at the corresponding junction in R, the robot travels along the edge uv when it travels by

a single primitive motion between the corresponding junctions, and the robot explores a face of gn when it

travels along the border of the corresponding face of R.

The status graph We define the status graph, gs, which is constructed from the information in the

navigation graph and the pursuit status. For each vertex in gn and each possible pursuit status at that

vertex, we construct a vertex in gs; more formally, V (gs) = {〈v,B〉 : v ∈ V (gn), B ∈ {0, 1}
nv}, in which nv

is the number of gaps detected by the gap sensor when the pursuer is at v. If an edge connects two vertices

u, v in gn, and it is possible for a particular pursuit status Bu to be transformed into Bv after moving from

u to v, then (〈u,Bu〉, 〈v,Bv〉) ∈ E(gs). Note that gs is a directed graph.

Although gs is an exponential-size graph, we make some observations which suggest that graph search

in gs may be efficient. First, the edge set is usually sparse. In particular, let 〈u,B〉 be a vertex in gs. There

are at most four neighbors of u in gn. One property of the pursuit status is that, given a starting vertex,

u in gn, a pursuit status B, and an edge uv in gn, the pursuit status B
′ which results from traveling along

uv is unique and is a deterministic function of the gap events which occur along uv. This property implies

that 〈u,B〉 has exactly one neighbor among the vertices
{〈

v, {0, 1}|gaps(v)|
〉}

, where v is some neighbor of

u. Then the maximum degree of 〈u,B〉 is 4, so |E(gs)| =
1
2

∑

v∈V (gs) degree(v) ≤ 2|V (gs)|.

Second, it is not necessary to store the entire graph at once; it can be lazily computed, given gn, during

graph search. This approach lead to good performance in [14], in which a similar exponential-size information

state graph was searched to solve pursuit-evasion problems with a known map. In Section 5, we discuss an

implementation of this algorithm which suggests that, despite the theoretical exponential size of the graph,

the practical performance of the algorithm is efficient. In Section 6, we propose an extension of this work

which would yield an on-line algorithm for a pursuer with two flashlights. It is possible that such an algorithm

would yield a smaller status graph, because a pursuer with two flashlights has less information at any point

in time than a pursuer with omnidirectional vision.

Let Gs denote the status graph which would be constructed from Gn.

Initialization To begin the exploration, the robot moves until it encounters a wall; then it moves left until

it detects a proximity pair. Now it is at a junction; it initializes gn with V (gn) = {v}, E(gn) = φ, in which

v is a vertex that represents the current junction.

At this point, at least two motions are possible: B (corresponding to motion that reverses the initial-

ization) and L (corresponding to motion along the merge line which causes the proximity pair). The robot

creates edges for the paths described by each possible primitive motion, and marks them unexplored. The

edges are created in order of increasing clockwise angular distance from the direction of heading.

We now describe how the robot explores R, starting with the subprocedures of traveling along an edge

and exploring a face.

Traveling along an edge. Let gaps(u) be the circular sequence of gaps detected by the gap sensor at

vertex u. As the robot travels along edge uv, it records or computes the following information:

1. The circular sequences gaps(u), gaps(v).

10
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Figure 7: The result of a face exploration. Incomplete vertices are solid circles; unexplored edges are dotted
lines; incomplete edges are thick dashed lines; complete edges are thick solid lines. The edges e1, e2, e3 form
an incomplete path. The arrow indicates the face which has been explored, and the direction of exploration.
Note that only a part of gn is shown.

2. The new gaps detected during the motion.

3. The gap events which occur, including the gaps involved in each event.

By our assumptions, the robot can easily compute or record items 1, 2, and 3. In Section 4.3, we mention

other items the robot must record, which allow it to construct gs.

Exploring a face Suppose that the pursuer is at a vertex v and is commanded to explore a face. It then

executes the primitive motions 〈L,L, . . . , L〉 until v is reached again. Once it returns to v, the robot has

explored a face.

There are several ways to detect whether v has been reached again: 1) the robot can recognize this event

by dropping a marker, or a “pebble,” at v and detecting the marker upon return (as in [4]); 2) very coarse

angular odometry could be used to stop after enough turns have been made; 3) the robot could exploit a

distance bound by stopping after traveling for a certain time, if such a bound exists. It might be possible to

determine that v has been reached again using only the gap sensor, but this problem remains open.

Suppose that the robot visits a vertex u during its exploration of a face. If the robot could execute a

primitive motion at u without hitting a wall or exploring an edge it has previously explored, then it adds

to gn a new vertex, u
′, and an edge, uu′, corresponding to this motion. It marks uu′ as an unexplored edge.

The vertex u is the explored vertex of the unexplored edge.

If a vertex has been explored, but is incident to an unexplored edge, then we say the vertex is incomplete.

Similarly, if an edge has been explored, but it borders an unexplored face, then we say the edge is incomplete.

Note that an incomplete vertex must be incident to an incomplete edge. An explored edge which borders

two faces is complete.4 Also, if a path consists entirely of incomplete edges, we say that it is an incomplete

path. See Figure 7.

The global exploration strategy Face exploration proceeds in stages. In the first stage, a single face is

explored, starting at the first junction found during initialization. For stage i, where i > 1, the robot visits

4Note that a single edge borders at most two faces, since gn is planar.

11
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(a) (b)

Figure 8: a) The global exploration strategy specifies that faces are explored in concentric waves, starting
with the first face the robot explores. When a break in the environment is discovered (in stage 3), it is
explored recursively (in stages 4 and 5). This strategy ensures that when the robot encounters a junction,
it can determine whether or not it has previously visited the junction, and can thus build gn accurately.
Dashed lines indicate merge lines, and solid lines without arrows indicate parts of the wall. b) The state of
the exploration is shown, following stage 3 of the global exploration algorithm. Thick dashed lines indicate
incomplete edges, and solid circles indicate incomplete vertices. Dotted lines indicate unexplored edges, and
hollow circles indicate unexplored vertices. Where unexplored edges correspond to parts of the wall, both
are shown, but the unexplored edges are set apart from the wall for clarity. Note that only part of R is
shown.

each incomplete vertex discovered in stage i−1; at each such vertex, the robot explores a face. In even stages,

the incomplete vertices are visited in clockwise order; in odd stages, they are visited in counterclockwise order,

to reduce the number of motions needed to begin the next stage. See Figure 8.

In some stages, there will be more than two incomplete vertices which are on ∂R. This situation indicates

that a break in the environment has been discovered. In these situations, each part of the environment is

explored recursively. Thus the explored region (that is, the union of the explored faces) is always simply

connected.

Let the incomplete vertices in some iteration be v1, . . . , vm. In odd stages (in which the robot visits the

incomplete vertices in counterclockwise order), the robot explores the ith face by traveling to vi, dropping a

pebble, and repeatedly issuing L motions until it returns to vi. All of the edges and vertices explored during

this process are added to gn, except for the last l edges and l + 1 vertices explored, where l is the length

of the incomplete path from vi to vi+1.
5 In even stages, the robot explores the ith face by traveling to vi,

dropping a pebble, taking the incomplete path from vi to vi+1, and issuing L motions until it returns to vi.

All of the edges and vertices encountered as the robot moves from vi+1 to vi are added to gn.

Envisioning and Terminating When the robot finishes exploring a face, it extends gs to account for

the new edges added to gn, and the gap events which occur along those edges.
6 The robot then searches gs

5In Section 4.2 we will show that there is a single incomplete path from vi to vi+1, and further that the edges on this path
are the only explored edges on the border of fi, where fi is the face whose exploration begins at vi.

6For example, suppose that when the robot explores f , it discovers the new vertices x and y, each having n gaps. Then it
adds the set of vertices {(v,B) : v ∈ {x, y}, B ∈ {0, 1}n} to V (gs). Also, suppose that the robot determines that if the robot
starts at x, with pursuit status 〈0 · · · 01〉, and travels to y, then its new pursuit status will be 〈0 · · · 00〉. Then the robot will
add the edge (〈x, 〈0 · · · 01〉〉 , 〈y, 〈0 · · · 00〉〉) to E(gs).

12



for a path from its current junction and status to a junction and status of 〈0 · · · 0〉. If such a path can be

found, then it is appended to the previous history of motions as a path that clears R. If no such path can

be found, and no unexplored edges remain, then the algorithm terminates, reporting that there is no path

which can clear R.

4 Algorithm Analysis

In this section, we consider the theoretical properties of the algorithm. In Section 4.1, we show that if it

is possible to clear R with a powerful robot (that is, one which has a map of R, perfect odometry, and a

compass) then it is possible to clear R with the limited model we have chosen.

We then consider the exploration and envisioning stages of the algorithm separately. In Sections 4.2 and

4.3, we show that it is possible for the robot to navigate through R using gn, and that it is possible for the

robot to search gs, thus finding a solution if it exists.

Section 4.1 is theoretically important, but may obfuscate the main ideas of the algorithm. It may be

useful to read it briefly at first, and to read it more carefully later.

4.1 Feasibility

We now prove that it is possible to clear R using only the model described in Section 2.

Let R′ ⊂ R be the portion of the environment which is exactly ε distance from the wall, or exactly

ε distance from a merge line (on the split side). More precisely, let the merge lines of R be M1,M2, . . ..

Recall that the part of R on the split side of Mi is denoted Rs(Mi). Thus, R
′ = {x : d(x, ∂R) = ε} ∪ {x :

∃Mi such that x ∈ Rs(Mi), d(x,Mi) = ε}, in which d is the Euclidean distance metric. We show that if it is

possible to clear R, then it is possible to do so while moving only in R′.

Note that R′ is a subset of the space in which the robot is allowed to move via primitive motions.

However, this restriction of the robot’s motion does not affect the information the robot collects. Let C be

some critical line that the robot crosses while following a line K (which may be a wall or a merge line) at

distance ε < ε. By assumption the two arrangements described in Section 2.3 are equivalent; therefore the

robot will cross C while following K at distance ε as well. On the other hand, if the robot crosses C while

moving in R′, then there exists a point x ∈ C with d(x,K) = ε. Since there are no walls or merge lines

between x and K, then C also intersects K; therefore the robot will cross C if it follows K at a distance

ε < ε.

Lemma 4.1 If π is a path which clears R, then there exists a path π′ : [ts, tf ] → R which clears R, such

that π′(ts), π
′(tf ) ∈ R′.

Proof: Let π′ be the following path. The robot starts at some point in R′. From that point, it goes to

π(ts), then executes π, and then goes to some other point in R
′. The robot’s motions before reaching π(ts)

do not alter the fact that π clears R; once R has been cleared, it cannot be recontaminated. Therefore, π ′

clears R.

Now, suppose the robot executes a path π : [t0, t3] → R′ which can be described as follows. For some

merge line M , we have π(t0), π(t3) ∈ R − Rs(M); furthermore, there exist t1, t2 such that t0 < t1 ≤ t2 < t3,

and π : [t1, t2]→ R′ ∩Rs(M), but at all other times t 6∈ [t1, t2], π(t) ∈ R−Rs(M). An example of such a path

appears in Figure 9.

We call such a path a splitting hop around M . Since the robot moves continuously, then the robot crosses

M (from the merged side to the split side) at t1, and then crosses M again at t2 (from the split side to the

merged side). Let α be the gap which splits at t1, and β be the gap which merges at t2.

13
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Figure 9: An example of a hop around M . Dashed lines are in R′. Solid circles indicate π(t1), π(t2).

Lemma 4.2 No recontamination occurs due to a hop around M ; that is, Bπ(t2)(β) ≤ Bπ(t1)(α).

Proof: Let split(α) = (γ1, γ2). First, notice that neither γ1 nor γ2 can participate in any merge or split

events between t1 and t2. Because α splits when the robot crosses M , and the robot stays within ε distance

ofM on the interval [t1, t2], then γ1 and γ2 remain within δ angular distance of each other on the gap sensor.

If γ1 and γ2 merge with each other, then the robot must have crossed M again; that is, γ1 and γ2 can only

merge to form β.

Suppose, without loss of generality, γ1 merges with some gap (other than γ2) on the interval (t1, t2); call

this gap γ3. Before γ1 and γ3 merge, they must appear within δ angular distance on the gap sensor. Then

γ1, γ3 form a proximity pair; but at the same time, γ1, γ2 are in a proximity pair, so there are three gaps in

a single proximity pair, indicating a tri-tangent. This conclusion violates our general position assumption;

therefore, γ1 does not participate in any merge events, unless it merges with γ2.

Similarly, suppose split(γ1) = (γ3, γ4) on the interval [t1, t2]. Just before the split, γ1 and γ2 are within

δ angular distance on the gap sensor. Then after the split, both γ3, γ4 are within δ distance of γ2 on the

gap sensor; again, three gaps appear in a single proximity pair, violating our general position assumption.

Since obviously neither γ1 nor γ2 can participate in appearance events on the interval [t1, t2], the only

gap events γ1 and γ2 can participate in on this interval are disappearances.

Suppose that neither γ1 nor γ2 disappears on the interval [t1, t2]. Then Bπ(t1)(γi) = Bπ(t2)(γi), for

i ∈ {1, 2}. Thus we have:

Bπ(t2)(β) = Bπ(t2)(γ1) ∨Bπ(t2)(γ2) = Bπ(t1)(γ1) ∨Bπ(t1)(γ2) = Bπ(t1)(α).

On the other hand, suppose that exactly one of γ1, γ2 disappears; assume that it is γ1 without loss of

generality. Let γ3 be the gap which merges with γ2 to form β. If γ3 was visible at t1, then γ3 would have

also split from α (since γ3, γ2 merge when the robot crosses M). Since γ3 did not split from α, γ3 must

appear on the interval [t1, t2]. Since γ3 appears, we have Bπ(t2)(γ3) = 0; thus,

Bπ(t2)(β) = Bπ(t2)(γ3) ∨Bπ(t2)(γ2) = 0 ∨Bπ(t2)(γ2) =

Bπ(t2)(γ2) = Bπ(t1)(γ2) = Bπ(t1)(α).

Finally, if both γ1, γ2 disappear, then β = merge(γ3, γ4), for some gaps γ3, γ4 which both appear on the

interval [t1, t2]. Since Bπ(t1)(α) ∈ {0, 1},

Bπ(t2)(β) = Bπ(t2)(γ3) ∨Bπ(t2)(γ4) = 0 ∨ 0 = 0 ≤ Bπ(t1)(α).

Consider also a merging hop around M , the dual of a splitting hop around M . That is, a merging hop is

a path on R′, starting at Rs(M), proceeding to R − Rs(M) at t1, and returning again to Rs(M) at t2. It is

14



π′

π

∂R

R′

Figure 10: Lemma 4.3, Case 1. The image of π goes between R′ and ∂R. The image of π′ has been set apart
from R′ for clarity.

clear that the only recontamination which may occur on such a path is any recontamination which occurs

at π(t1).

For any pair of statuses Bj = 〈b1 · · · bm〉, Bk = 〈b
′
1 · · · b

′
m〉, we say that Bk dominates Bj if, for all i,

(bi = 0)⇒ (b′i = 0).

Lemma 4.3 For any path π : [ts, tf ]→ R, such that π(t) ∈ R′ if and only if t ∈ {ts, tf}, there exists a path

π′ : [ts, t
′
f ]→ R′ such that π′(ts) = π(ts), π

′(t′f ) = π(tf ), and Bπ′(t′
f
) dominates Bπ(tf ).

Proof: By definition, Bπ′(t′
f
) dominates Bπ(tf ) if and only if π

′ clears all the gaps that π clears, without

contaminating any gaps that π did not contaminate. We consider the two kinds of paths π.

Case 1. The path π goes between R′ and K, in which K is either a merge line or a part of ∂R. See Figure

10. In this case, π follows K at a distance ε < ε. Let π′ be the path which follows K at distance exactly ε.

While executing π′, the robot will cross the same appear and merge lines as it would while executing π. So

Bπ′(t′
f
) = Bπ(tf ); then Bπ′(t′

f
) dominates Bπ(tf ).

Case 2. There exists a minimal7 simple closed loop, L′ ⊂ R′, such that π(ts), π(tf ) ∈ L′, and π(t) is in

the region of R bounded by L′, for ts < t < tf . See Figure 11. Note that L
′ is a finite collection of lines in

R′. Let these lines be enumerated in clockwise order as L′1, . . . , L
′
n, starting with the line containing π(ts).

Let L′r be the line which contains π(tf ). Let π
′ be the path which starts at π(ts), travels in the clockwise

direction along L′1, L
′
2, . . . , L

′
r, and stops at π(tf ).

Let Rloop be the region of R bounded by L
′. For each L′i, let Li be the line in R which is distance ε

from L′i (that is, Li is either a merge line or a wall). If π crosses an appear line A inside Rloop, then A

also intersects the boundary of Rloop (that is, L
′) at two points, one of which is visited on a clockwise path

between π(ts) and π(tf ). Since π
′ is just such a clockwise path, π′ also crosses A, thereby clearing any gaps

which π clears.

Now we show that no recontamination occurs on π′ that does not occur on π. Consider some Li on

the “interior” of Rloop (that is, some Li such that ∃x : x ∈ Rloop ∩ Li). When the robot travels along

L′i−1, L
′
i, L

′
i+1 during execution of π, it is executing a splitting hop around Li. By Lemma 4.2, the gap which

splits as a result of crossing Li is not recontaminated.

Any recontamination which occurs is due to π′ crossing some merge line M 6∈ {L1, . . . , Ln}. Suppose

π does not cross M . The line M can be used to define a closed loop whose enclosed region contains π,

but is smaller than Rloop, so L′ is not minimal. This contradiction implies that π crosses M , thereby

recontaminating the same gap which π′ recontaminates when crossing M . Thus, π′ clears any gaps which π

clears, and does not recontaminate any gaps, except for those which π recontaminates, as desired.

7That is, there is no loop which encloses a smaller region of R and still meets the conditions stated.
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Figure 11: Lemma 4.3, Case 2. Merge lines are solid, and lines in R′ (that is, lines ε distance from a merge
line) are dashed. The path π′ is set apart from R′ for clarity.

Combining Lemmas 4.1 and 4.3, we have the following result: if there is some path that clears R, then

there exists some path whose image lies in R′ that also clears R.

Theorem 4.4 If ∃π : [ts, tf ] → R such that Bπ(tf ) = 〈0 · · · 0〉, then ∃π
′ : [t′s, t

′
f ] → R′ such that Bπ′(t′

f
) =

〈0 · · · 0〉

Proof: By Lemma 4.1, there exists a path π̃ : [t̃s, t̃f ] → R such that π̃(t̃s), π̃(t̃f ) ∈ R′ and π̃ clears

R. Subdivide π̃ into paths π̃0 : [t̃s, t̃1) → R′, π̃1 : [t̃1, t̃2) → R, . . . , π̃m : [t̃m, t̃f ] → R′, so that the paths

alternately map onto R′ and R. Consider some π̃i : [t̃i, t̃i+1)→ R. By Lemma 4.3, there exists another path

π′i : [t
′
i, t
′
i+1)→ R′ such that Bx′

i
dominates Bx̃i

(in which x′i = π′i(t
′
i+1), x̃i = π̃i(t̃i+1)). For all i, let π

′
i = πi

if πi → R′, and let π′i be the path described above otherwise. Concatenate the π
′
i into π

′ : [t′s, t
′
f ]→ R′. By

Lemma 4.3, Bπ′(t′
f
) dominates Bπ̃(t̃f ). Since π̃ clears R, Bπ′(t′

f
) = 〈0 0 · · · 0〉; therefore, π

′ clears R.

4.2 Exploration

Our algorithm relies on the correct computation of gn and gs; if these two graphs are correctly computed,

then the algorithm itself is correct. We show that the robot can compute these graphs correctly using only

the gap sensor.

First, we turn to the computation of gn. The computed graph is correct if and only if there is a bijection

between the explored junctions in R and the explored vertices in gn such that junction adjacencies via motion

primitives are preserved under the bijection as edges in gn.

Since the robot always creates vertices in gn when it visits new junctions in R, and similarly creates edges

in gn, the bijection condition is satisfied if and only if the robot neither neglects to visit some junction in R

nor creates more than one vertex (or edge) for each junction (or single motion primitive between junctions)

in R. The robot does not neglect junctions in R due to the nature of the global exploration strategy: every

unexplored edge which can be seen in the kth iteration of the strategy is explored in the (k + 1)th iteration.

We now show that the robot does not create excessive vertices or edges. New vertices and edges are created

only during face exploration; except for a single chain of edges between successive incomplete vertices, all

edges and vertices visited are added to gn.
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Figure 12: The explored region of R is bordered by incomplete paths and the explored parts of ∂R. Dashed
lines indicate incomplete edges, solid lines indicate parts of ∂R, and solid circles indicate incomplete vertices.

The paths from u
(1)
1 to u

(1)
m1 and from u

(2)
1 to u

(2)
m2 are incomplete paths. Since there are more than two vertices

at a wall – u
(1)
1 , u

(1)
m1 , u

(2)
1 , and u

(2)
m2 – there is a break in the environment. Each incomplete path borders a

region which will be explored recursively.

The next lemma shows that in any unexplored face f , there is a single chain of explored edges on the

border of f ; these are the only edges visited during exploration of f which should not be added to gn. Lemma

4.8 shows that this chain of explored edges is the same as the set of edges which the robot neglects to add

to gn after exploring f , implying that excessive edges are not added to gn.
8

Lemma 4.5 Let e1, . . . em be the edges on the border of an unexplored face f , enumerated in counterclockwise

order, beginning with an unexplored edge incident to an explored edge. There exists an integer i such that

e1, . . . , ei are unexplored, and ei+1, . . . , em are explored.

Proof: Consider the region of explored faces of R; denote this region as Rexp. The global exploration

strategy ensures that Rexp is simply connected. Therefore, the edges on its border must either correspond

to parts of ∂R, or must be incomplete edges. Furthermore, it is impossible for an incomplete edge to lie on

the interior of Rexp, because if it did, then it would border two explored edges. Thus, the border of Rexp,

which we refer to as the “frontier of exploration,” is composed of the explored parts of ∂R, together with

chains of incomplete edges. See Figure 12.

Now, suppose there is some face f for which the claim does not hold. The border of f is composed of at

least two chains of unexplored edges and at least two chains of explored edges. That is, there exist i1, i2, i3
such that 1 < i1 < i2 < i3 < m and e1, . . . , ei1 are unexplored, ei1+1, . . . , ei2 are explored, ei2+1, . . . , ei3 are

unexplored, and ei3+1, . . . , em are explored. See Figure 13.

Since ei1+1, . . . , ei2 and ei3+1, . . . , em border an unexplored face, they must be incomplete. Incomplete

edges cannot lie on the interior of Rexp; therefore these edges lie on the border of Rexp. In particular, there

must be a path p of edges on the border of Rexp which includes both ei2 and ei3+1.

Suppose that p is incomplete. Let q be the path ei2+1, . . . , ei3 , and let C = p∪ q. The set of edges C is a

simple closed curve consisting of finitely many segments; therefore, it partitions the plane into two regions.

Let RC be the region inside of C. The region RC is unexplored because the path q, which borders RC , is

composed of unexplored edges. See Figure 14(a).

Consider the state of exploration just after f has been explored. The new explored region is R′exp =

Rexp∪f . The region RC remains unexplored. Since p borders Rexp and q borders f , C = p∪q borders R′exp.

8Although we only discuss edges here, we could similarly conclude that excessive vertices are not added to gn.
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Figure 13: The face f has more than one chain of explored edges: e1, . . . , ei1 are unexplored, ei1+1, . . . , ei2
are explored, ei2+1, . . . , ei3 are unexplored, and ei3+1, . . . , eim are explored. Dashed lines indicate unexplored
edges, and solid lines indicate explored edges.
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Figure 14: a) The path p is an incomplete path that includes ei2 and ei3+1. The path q is the set of
unexplored edges ei2+1, . . . , ei3 . Together they enclose an unexplored region RC . After f is explored, RC

is a hole in the explored region Rexp ∪ f . b) The path p of explored edges including ei2 and ei3+1 must
include an edge e which corresponds to a part of ∂R. Then there is a part of ∂R on the interior of R, so
R is multiply-connected. In both a) and b), dotted lines indicate unexplored edges, dashed lines indicate
incomplete edges, and solid lines indicate explored parts of ∂R.

The region RC is inside of C; therefore, RC is an unexplored region on the interior of R
′
exp. This implies that

R′exp is multiply-connected. However, the global exploration strategy ensures that R
′
exp is simply connected.

Thus, p must not be incomplete; p includes at least one complete edge.

Recall that all of the complete edges on the border of Rexp correspond to parts of ∂R. Hence there is

some edge e ∈ p which corresponds to a part of ∂R. Also, p lies on the interior of Rexp∪f ⊆ R. Therefore, e

lies on the interior of R. See Figure 14(b). This implies that R is multiply-connected, because e corresponds

to a part of ∂R. However, R is simply-connected by assumption. Therefore, f must not have more than one

chain of explored edges.

Now consider the state of the exploration just after the ith stage of the algorithm. Let the paths of

incomplete edges on the border of Rexp be p1 = u
(1)
1 u

(1)
2 , . . . , u

(1)
m1−1u

(1)
m1 , p2 = u

(2)
1 u

(2)
2 , . . . , u

(2)
m2−1u

(2)
m2 , . . ..

Since the vertices u
(j)
1 , u

(j)
mj are incident both to edges that correspond to ∂R and to incomplete edges, they

are incomplete vertices. Moreover, if there is more than one incomplete path on the border of Rexp, then

there is a break in the environment, and the unexplored region bordered by each incomplete path will be

explored recursively, as specified by the global exploration strategy. See Figure 12.
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Figure 15: There cannot be two incomplete paths p1 and p2 from vj to vj+1, since one path must have an
edge which lies on the interior of Rexp, which must be a complete edge. In this case, since the edges on p1

border an explored region, p2 must lie inside Rexp. Dashed lines indicate unexplored edges, and solid lines
indicate ∂R.

Since each incomplete vertex must be adjacent to an incomplete edge, all of the incomplete vertices are on

the frontier of exploration. We combine this fact with the foregoing discussion to achieve the following goal.

For each face f explored in the (i+1)th stage of the algorithm, we can determine which previously-explored

edges form f ’s chain of unexplored edges.

The following observation is immediate from the definition of explored edges, incomplete edges and

incomplete vertices, and Lemma 4.5.

Observation 4.6 The chain of explored edges of an unexplored face is an incomplete path, and its endpoints

are incomplete vertices.

We will claim that the chain of explored edges of an unexplored path is an incomplete path between

consecutive incomplete vertices. We now prove that there is exactly one such incomplete path.

Lemma 4.7 Let the incomplete vertices explored in the (i + 1)th stage be v1, . . . , vm. There is exactly one

incomplete path between vi and vj, for 1 ≤ i, j ≤ m.

Proof: Since each incomplete vertex is incident to an unexplored edge, then each incomplete vertex is

on the frontier of exploration. Since the frontier of exploration is composed of explored parts of ∂R and

incomplete paths, each incomplete vertex must lie on one of these incomplete paths.

Note that if there are more than two incomplete paths on the border of Rexp, then each incomplete

path borders a region which will be explored recursively. See Figure 12. This implies that if there are two

incomplete vertices which are explored in the same stage of global exploration, then they must lie on the

same incomplete path on the border of Rexp. Hence, for 1 ≤ i, j ≤ m, vi and vj lie on the same incomplete

path on the border of Rexp; it follows that there is at least one incomplete path between vi and vj .

If there were more than one incomplete path from vi to vj , then one path would be on the interior of

Rexp, and would thus contain complete edges. See Figure 15. Thus, there is no more than one incomplete

path from vi to vj .

Therefore, there is exactly one incomplete path from vi to vj , for 1 ≤ i, j ≤ m.

Let fj be the j
th face explored in this stage.

Lemma 4.8 The chain of explored edges of fj is the incomplete path from vj to vj+1.

Proof: First, we show that the incomplete path from vj to vj′ , where |j − j′| > 1, cannot be the border

of any face. Suppose that such a path were the border of a face f , and assume that j < j ′, without loss of
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Figure 16: A face whose chain of explored edges is the incomplete path from vj to vj+2. The unexplored edge
incident to vj+1 must be on the interior of f ; this fact implies that a merge line M pierces f in two places,
vj+1 and w, which implies that f is not a face. Thick dashed lines indicate incomplete edges, dotted lines
indicate unexplored edges, solid circles indicate incomplete vertices and hollow circles indicate unexplored
vertices.

generality. Consider the incomplete vertex vj+1, and the unexplored edge e incident to it. Since vj+1 is on

the incomplete path from vj to vj′ , the incomplete edges incident to vj+1 border f . See Figure 16.

But the edge e must be inside one region bordered by the incomplete path from vj to vj′ . This path

borders two regions: Rexp and f . The edge e is unexplored, so e is not on the interior of Rexp. Hence e is

on the interior of f . Note that since e is an edge of gn, and e does not correspond to motion along ∂R, that

it must correspond to a primitive motion along some merge line, M , of R. Since merge lines are bounded

only by ∂R, this merge line must pierce the boundary of f in two places: at vj+1 and at some other vertex

w. Then there is a path from vj+1 to w which lies on the interior of f . Therefore f is not a face, or gn is

not planar, both of which are contradictions.

The remainder of the proof is by induction on j. For j = 1, the chain of explored edges for f1 must

be the incomplete path from v1 to v2, since there is no other vertex vj′ such that |1 − j′| = 1. For j > 1,

the exploration of fj begins at vj , as specified by the algorithm. The chain of explored edges of fj must be

either the incomplete path from vj−1 to vj or the incomplete path from vj to vj+1, since there are no other

vertices vj′ such that j− j
′| = 1. Since the incomplete path from vj−1 to vj is the chain of explored edges of

fj−1 by the inductive hypothesis, the explored edges of fj must be the incomplete path from vj to vj+1.

Theorem 4.9 There is a bijection from the junctions in R to the vertices in gn, such that junction adja-

cencies via single motion primitives are preserved under the bijection as edges in gn; that is, gn is correctly

constructed.

Proof: As discussed at the beginning of this section, gn will be correctly constructed if and only if the robot

does not create excessive vertices or edges in gn after exploring a face f . According to Lemma 4.5, there

is precisely one chain of explored edges on the border of any unexplored face; the robot must add all edges

and vertices visited during exploration of f to gn, except for vertices and edges on this chain. According

to Lemma 4.8, this chain of explored edges is correctly computed, and is identical to the set of edges which

the robot does not add to gn, as specified by the exploration algorithm. Therefore, no excessive vertices or

edges are created in gn. Hence, gn is correctly constructed.
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4.3 Envisioning

Suppose the robot is at vertex v0, with pursuit status Bv0 . We wish to determine – without issuing any

motion commands – what the new pursuit status would be if the robot executed some walk in gn. We call

this the future status problem.

Suppose the robot has an ideal compass, and can perfectly measure its direction of heading with respect

to absolute North; then it can solve this problem easily. Let gapsθ(v) be the gap sensor report at vertex v,

when the robot is oriented in the direction θ. The angle θ is measured relative to absolute North, which is

0 radians, and the gaps are enumerated in the clockwise direction starting at θ.

Let the walk in gn be denoted v0v1, . . . , vm−1vm. Assume that the robot is at v0, oriented in the direction

θ. Let θ0 be the direction of heading when the robot first entered v0 along the edge v0v1.

By re-enumerating the gaps in gapsθ(v), the robot can compute gapsθ0(v0). If the gap events that occur

along v0v1 are recorded according to the enumeration of the gaps in gapsθ0(v0), then the robot can compute

the status Bv1 that would result from moving along v0v1. The process repeats recursively until the robot

has computed Bxm
.

We replace the ideal compass using two main ideas. First, the robot uses a “local compass,” which we

call a stable gap, to provide a fixed frame of reference with respect to motion along a particular edge. Second,

a gap sensor distance measure replaces unreliable angular measurements with reliable gap counting.

4.3.1 Stable Gaps

Suppose the robot moves from junction u to junction v. Consider some γ ∈ gaps(v). We say that γ is stable

with respect to uv, which we denote stableuv(γ) = true, if one of the following conditions hold while the

robot moves along uv:

1. ¬appearsuv(γ)

2. γ = mergeuv(α, β) for some α, β

3. splituv(α) = (β, γ) for some α, β

Above, we extend our earlier notation, so that, for example, appearsuv(γ) means “as the robot moves

from u to v, gap γ appears.” If we identify α, β and γ whenever split(γ) = (α, β) or γ = merge(α, β), then

we have stableuv(γ) = stablevu(γ) for all edges uv and all gaps γ.

Lemma 4.10 For every pair of junctions (u, v), ∃γ ∈ gaps(v) such that stableuv(γ) = true, or the robot

can clear R by traveling along uv.

Proof: The robot crosses at most 2 merge lines when traveling along uv: at most one just after leaving u,

and at most one just before entering v. We consider the claim under all possible cases. See Figure 17.

Case 1. The robot crosses no merge lines when traveling along uv; therefore, no gaps merge or split

during motion along uv; the only gap events are appearances and disappearances. Suppose there does not

exist a gap γ as described. Then for all γ ∈ gaps(v), γ appears as the robot moves along uv. Appearing

gaps receive a “0” status label, and disappearing gaps have no status label; therefore, after the robot moves

along uv, Bv = 〈0 · · · 0〉, and R is cleared.

Case 2. The robot crosses a merge line just after leaving u. Let γ = merge(α, β) for some α, β ∈ gaps(u).

Since merged gaps never disappear, γ ∈ gaps(v), which implies that stableuv(γ) = true.

Case 3. The robot crosses a merge line just before entering v. Let split(α) = (β, γ) for some α, β. The

gap γ is in the gap sensor just after the robot crosses the merge line, and the robot crosses the merge line

just before entering v; therefore γ ∈ gaps(v), which implies that stableuv(γ) = true.
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Figure 17: Lemma 4.10: a) Case 1. The robot crosses no merge lines when going from u to v. b) Case 2.
The robot crosses M1 just after leaving u. c) Case 3. The robot crosses M2 just before entering v. d) Case
4. The robot crosses M1 just after exiting u, and crosses M2 just before entering v.

Case 4. The robot crosses a merge line just after leaving u and just before entering v. Both the events

in Cases 2 and 3 occur, and there is at least one stable gap.

For all edges e, let σe be the gap such that stablee(σe) = true. If there are multiple such gaps for a single

edge, the robot chooses one, with preference to merged gaps.

After traveling along uv for the first time, the robot computes and records σuv as follows. If a merge line

is crossed, then the robot can determine α, β, γ such that either splituv(α) = (β, γ) or γ = mergeuv(α, β); γ

is recorded as a stable gap. If a merge line is not crossed, the robot checks whether ∃γ ∈ gaps(u)∩ gaps(v).

If so, then γ neither appears nor disappears as the robot moves along uv, which implies that γ is a stable

gap. If there is no such gap γ, then there is no stable gap, and the robot has cleared R.

4.3.2 Gap Sensor Distance

The robot can record gap events which occur along an edge uv by enumerating gaps(u) and gaps(v) with

σuv first. This record can be used to solve the future status problem, assuming that the robot can identify,

when it is at u or v, which gap is σuv.

Suppose the robot travels along uv, and determines which gap is the stable gap σuv. Now suppose that,

at some point in the future, the robot returns to v. We wish to identify which of the gaps in the gap sensor

is σuv; we call this problem the future identification problem.

The difficulty, again, is that the robot lacks a compass and perfect odometry. Suppose that when the

robot first determines which gap is σuv, it also observes σuv appears at
π
4 radians in the clockwise direction

from absolute North. Then identifying σuv on future trips to v is trivial: the robot orients itself towards

absolute North, and finds the gap which appears at π
4 radians in the clockwise direction.

We use the proximity pairs to solve this problem. Recall that the robot can always identify proximity

pairs, and further that at each junction, either one or two proximity pairs are visible. For gaps α, β, we

define the gap sensor distance τv(α, β) as the number of gaps between α and β in the gap sensor report at

v, in the clockwise direction. If gaps(v) = γ1, . . . , γm, then τv(γi, γj) = j − i mod m.

Suppose that there is only one proximity pair at a junction v, and its rightmost gap is γ. When the robot

travels along an edge uv and determines which gap is σuv, it computes x = τv(γ, σuv). On a future visit to

v, the robot can find γ (because it can detect the single proximity pair at v) and can find the gap whose gap

sensor distance from γ is x. This gap must be σuv. See Figure 18.

Suppose that there are two proximity pairs at v, with rightmost gaps α and β. Then v is at the intersection

of two merge lines, and when the robot arrives at v, it must be following one of these merge lines, which

means that it must be moving towards or away from one of the two proximity pairs. If the robot travels

along the edge uv to arrive at v, and this motion corresponds to moving towards (or away from) a proximity
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Figure 18: Solving the future identification problem for a vertex with one proximity pair, α. a) The first visit
to v via the edge uv. b) The robot’s gap sensor after the motion in a). The arrow indicates the direction of
heading. The robot computes τv(α, σuv) = 3. c) A future visit to v, via another edge u

′v. d) The robot’s gap
sensor after the motion in c). The robot identifies σuv as the gap which is 3 gaps in the clockwise direction
from α on the gap sensor.
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Figure 19: Solving the future identification problem for two proximity pairs. a) The first visit to v via e1.
b) The robot’s gap sensor after the motion in a). The arrow points in the direction of heading. The robot
records τv(α, σe1) = 3 and τv(β, σe1) = 5. c) A future visit to v via e3. Note that β controls this motion.
d) The robot’s gap sensor after the motion in c). The robot identifies σe1 as the gap which is 5 gaps in the
clockwise direction from β.

pair whose rightmost gap is α, we say that α controls the motion on uv.

Suppose that the robot travels along edge e1 to arrive at v and α controls the motion along e1. Let e2
be the edge which corresponds to the F motion primitive. Then α also controls the motion along e2. Let e3,

e4 be the other two edges incident to v; β controls the motion along the edges. When the robot computes

σe1 , it also records x = τv(α, σe1) and y = τv(β, σe1).
9

At some point in the future, the robot returns to v. If it arrives via e1 or e2, then the gap it has been

following is α; it can identify σe1 as the gap γ such that τv(α, γ) = x. If it arrives via e3 or e4, then the gap

it has been following is β; it can identify σe1 as the gap γ such that τv(β, γ) = y. See Figure 19.

Since the future identification problem has been solved, it is easy to compute the gap sensor distance

between stable gaps. In particular, whenever the robot determines that some gap in gaps(v) is stable for

some edge incident to v, it can identify the other stable gaps in gaps(v), then compute and record the gap

sensor distance between each of the old stable gaps and the new stable gap.

9From the robot’s perspective, α is the proximity pair which it has been following; β is the other proximity pair.
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In the above discussion, we have ignored a minor difficulty. Suppose that the robot is oriented at 0

radians when it arrives at v, and it detects a proximity pair composed of α, α′, where α′ is the rightmost

gap. If the robot returns to v and is oriented at π radians, then it will perceive α as the rightmost gap. If

the robot tries to find a stable gap whose distance from the proximity pair is recorded as x, then it will find

the wrong gap, since x is the gap sensor distance from α′, not α. This problem is easily overcome: when

computing gap sensor distances, the two gaps in a proximity pair should be counted as a single gap, not as

two.

Lemma 4.11 If the robot is at v0, with pursuit status Bv0 , and it can identify σv0v1 , then the robot can

compute the pursuit status Bvm
that would result from executing the walk v0v1, . . . , vm−1vm.

Proof: To compute Bvm
, the robot need only execute the following recursive process. The current pursuit

status Bv0 is written with the label for σv0v1 first. Using information about the events which occur along

v0v1, and the distance measures τv0(σv0v1 , γ) for all γ ∈ gaps(v0), the robot computes the changes in the

pursuit status, resulting in Bv1 .

Now, the robot rotates the pursuit status Bv1 by τv1(σv0v1 , σv1v2) gaps, in the clockwise direction. The

robot then recursively computes the pursuit status that results from the walk v1v2, . . . , vm−1vm, resulting in

the correct value of Bvm
. Correctness follows from Lemmas 4.10 and the solution to the future identification

problem.

Lemma 4.11 yields a remarkable result: the gap sensor can replace a perfect compass. We think of a

stable gap as a kind of “local North pole,” providing a fixed point against which all other gaps can be tracked.

Gap sensor distances replace angles, allowing the robot to measure distances between gaps while relying on

easily measured (or sensed) quantities.

Theorem 4.12 If it is possible to clear R, then a pursuer robot that executes the motion strategy presented

in Section 3 will successfully clear R.

Proof: Since it is possible to clear R, then by Theorem 4.4 it is possible to clear R by moving only through

R′. As a result of Theorem 4.9, gn is constructed correctly. Since gn can be correctly explored using the

algorithm described above, then by Lemma 4.11, gs can be correctly extended using gn. As a result, gs can

be searched for a path which clears R.

If the robot is placed in a polygonal environment, the size of Gn is O(n
3), in which n is the number

of edges [15]. For environments that can be represented piecewise algebraically, the bounds in [19] apply

directly to Gn. The running time is the same as that in [14, 19], which is exponential in the number of appear

lines due to the worst-case exponential number of possible statuses at a single vertex of Gn. However, the

worst case rarely arises in practice, and reasonable computational performance has been observed in our

implementations [20]. Furthermore, it may be possible to exploit the recent results of [25] to dramatically

reduce the number of statuses that need to be considered. This remains an open topic for further research.

5 Simulation Results

The algorithm has been implemented in C++ on a 1000MHz Linux PC. In the implementation, we assumed

that the robot is placed in an environment that is bounded by a simple polygon. All motions, however,

are determined using information only from a simulated gap sensor. The algorithm successfully computed

results for all examples. For examples that have no solution, it correctly reports failure in a few seconds.
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Figure 20: A simple computed example.

A very simple example, shown in Figure 20, starts out with the robot at point marked “X” facing north.

The gap sensor reveals that there are three ways to go: following the wall forwards or backwards, and moving

towards the proximity pair to its left. The exploration starts by going forward, and issuing left turns until

the “X” is reached again (see the solid lines with arrows in Figure 20). Gap events are monitored along the

way, and the result is a face in gn; the first pass of envisioning runs (yielding no solution, yet). There are

now two unknown edges in gn: one from “X” going down, and one from the junction to the left of “X” going

left. The robot continues by exploring the face containing those edges (dotted lines in figure), and in doing

so clears the region. A second pass of envisioning would now find a solution, but this is not necessary as the

problem has already been solved; the pursuit status is 〈0 · · · 0〉.

Two other examples are shown in Figures 21 and 22. The example in Figure 21 has 15 faces, and has been

solved by the algorithm in 1 second, with a motion strategy consisting of 36 primitive motions. The second

has 61 faces, took 23 seconds to compute, and has a motion strategy consisting of 183 primitive motions

We refer to Figure 22 as the “eagle” example [26]. In this example, the robot is required to recontaminate

the top portion of the environment multiple times, for the following reason. The robot must visit the “toes”

at the ends of the “eagle’s feet” (the six small triangular regions towards the bottom of the figure). To clear

a toe, the robot must travel to the end of a foot, but in traveling there, the robot crosses a merge line (a line

tangent to the entrance to the foot and the entrance to the beak). As the robot crosses the merge line, it

loses sight of the “beak” (the triangular region at the top of the figure). The beak becomes recontaminated;

therefore, each time the robot clears a toe, it must immediately revisit the beak.

If the robot starts on the right side of the figure, outside both the beak and any feet, then a motion

strategy that clears the region can be described as follows. The robot travels to the bottom of the rightmost

foot; then it travels to the beak, without crossing any merge lines; then it visits the next foot to the left;

then it visits the beak, again without crossing any merge lines. The robot continues in this way until the

final toe, and then the beak, are cleared.

Based on several examples, we have found that the time for computing a solution is within a few seconds,

and is much less than the time that would be required for a pursuer robot to move in a typical environment.

As a result, we believe the algorithm is practical for use in real-time pursuit evasion problems.
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Figure 21: A more-challenging environment. Only the faces are shown.

6 Discussion

We have presented and implemented a complete algorithm which enables the limited-sensing pursuer to

solve any problem that could have been solved by a pursuer that has a complete map and perfect navigation

capabilities (under some general position assumptions). The motion strategy relies entirely on wall-following

capability and the ability to move in the direction of proximity pairs, which are based on its target detection

sensor. Although in its current form, the algorithm is not ready to implement in a mobile robot, it removes

many unnecessary components from previous, idealized models. The gap sensor model has been validated

on real mobile robot hardware in [32]; however, the motions generated by our proposed algorithm are

very complicated. It should be possible to generate much simpler motions, but this remains a topic of

future research. In any case, the pursuit-evasion strategies determined by our algorithm do not depend on

complicated environment models, which are often difficult or impossible to construct with great accuracy.

Therefore, we believe this work will enable the development of low-cost robots that can complete pursuit-

evasion tasks with a high degree of robustness and autonomy. We imagine that a mobile robot might one

day be taken “from the box,” be placed in an unknown environment, and be able to systematically search

for all moving targets.

The completion of this work raises many interesting and challenging questions. In the appendix, we

consider the constraints placed on the environment by the ε control and δ sensing requirements. It might

be possible to weaken the ε control precision requirement, thus weakening the corresponding constraints on

the environment. Also, the general position requirement might not be necessary. For the exploration of a

face, it might be possible to detect a cycle by simply examining the gap events, at least for some class of

environments. Further, we make no claims that the number of primitive motions executed by the robot is

optimal; constructing a competitive ratio bound for the on-line problem remains a considerable challenge.

It is also interesting to consider extensions to pursuers that have other evader detection and sensing

models. For example, the pursuer might have limited distance perception, or might carry a finite collection

of beams for detecting evaders. Also, it might be possible to replace omnidirectional vision in our algorithm

with two-flashlight vision, due to the results in [29, 25]. To handle more-complicated environments, it will
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Figure 22: An example that requires recontaminations.

be necessary to coordinate the efforts of multiple pursuers, which is a considerable challenge (finding the

minimum number of pursuers is NP-hard for the ideal information case in a polygonal environment [14]).

Our focus was primarily on ensuring that our algorithm yields solutions for as many environments as

possible, as opposed to trying to optimize the distance traveled by the robot. Obtaining a stronger result,

such as a competitive ratio [24], as is often considered in on-line algorithms, remains an open problem. In

fact, finding shortest-path solutions to pursuit-evasion problems with complete maps is also an open problem.
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Appendix

In Section 2.4, we assume that the robot is within ε distance of a merge line (on the split side) if and

only if the gaps corresponding to the two unseen regions are within δ angular distance in the gap sensor.

Although this presents no theoretical difficulties, there are some practical issues and limitations regarding

this assumption. The difficulties arise from the lack of any distance information available to the robot. Even

coarse distance information can be used to alleviate this difficulty.
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Figure 23: Two points of tangency are c distance apart; the angular distance between the corresponding
gaps is δ. The line L is parallel to the merge line M , and is used to construct parallel angles.

Suppose there are two points of tangency which are c distance apart, as in Figure 23. We wish to find

the region in which the corresponding gaps are δ angular distance apart. Suppose the robot is distance x to

the right and y above the rightmost point of tangency.

We can compute δ as a function of x, y and c using simple geometry:

c

sin δ
=

b

sin θ3

θ1 =
π

2
− (δ + θ2)

θ3 = π − (δ + θ2)

= θ1 +
π

2

θ1 = tan−1 x

y

δ = sin−1 c sin θ3
b

= sin−1 c sin θ3
√

y2 + (x+ c)2

= sin−1 c sin(θ1 +
π
2 )

√

y2 + (x+ c)2

δ = sin−1
c sin

((

tan−1 x
y

)

+ π
2

)

√

y2 + (x+ c)2
(1)

Figure 24 shows contour maps of Equation 1. Several salient features emerge:

1. If we let the point of rightmost tangency in Figure 23 be the origin, then a single contour curve

representing some constant δ is the image of a path π such that the gaps are exactly angular distance

δ apart whenever the robot is at π(t), for all t. They are less than δ apart whenever the robot is in

the region between π(t) and M , for some t.

2. As c grows larger and x and y remain constant, δ grows larger; that is, for all x, y, ∂δ
∂c

> 0.

3. As c grows larger and x and y remain constant, each contour curve grows “flatter”; that is, for all x, y,
∂2δ
∂c2

< 0.
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Figure 24: A contour map of Equation 1, with (a) c = 2 and (b) c = 64. In both graphs, 1 ≤ x, y ≤ 512.
Note that darker regions indicate lower values of δ, and that regions with similar shading in (a) and (b) do
not necessarily have similar values of δ.

As a result of these observations, we can now make some observations about the required value of δ. Let

c0 be the largest distance between points of bitangency, and let x0 be the length of the largest merge line

(recall that a merge line is a line from a point of bitangency to ∂R). Let ε be the robot’s maximal control

error, as described in Section 2.2. Then δ can be computed according to Equation 1, with c = c0, x = x0,

and y = ε.

A few small difficulties remain in the guarantee that the robot will be within ε distance of M if and only

if the two gaps in a proximity pair corresponding toM are δ distance apart in the gap sensor. First, we have

not considered this issue for the case of curved environments. In this case, c is not a constant, but a function

of x and y; a similar analysis could be performed. Second, we note that as the robot gets closer to the origin

(the rightmost point of bitangency), it must be closer and closer to the x-axis (the line M) in order to see

the gaps within δ angular distance. We believe that mistakes in these small regions can be corrected using

coarse odometry. Finally, we have noted that it is necessary to know c0 and x0 in order to compute δ.

Our original model is therefore slightly weakened; we require that the robot (or its designer) has some

knowledge about the environment. However, c0 and x0 may be approximated, and in any case retrieving

them reliably is much easier than retrieving a map of R. We believe that the required relationship between

ε and δ does not significantly impede the practical implementation of this work; however, experimental

evaluation in a real system would be the ultimate test.
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