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Abstract

We present an algorithm for a pair of pursuers, each
with one rotating beam (flashlight, laser or a camera),
searching for an unpredictable, moving target in a 2D
environment (simple polygon). Given a polygon with n
edges, the algorithm decides in time O(n*) whether it
can be cleared by the pursuers, and if so, constructs a
search schedule. The pursuers are allowed to move on
the boundary and in the interior of the polygon. They
are not required to maintain mutual visibility through-
out the pursuit.

1 Introduction

Consider the following scenario: in a (dark, doorless)
polygonal region there are three moving objects (rep-
resented as points). Two of them are robots, called the
pursuers or 1-searchers, and have the task to find
the third, called the evader. The evader can move
arbitrarily fast, and his movements are unpredictable
by the pursuers. Each pursuer is equipped with a ro-
tating beam and can see the evader only along the
illuminated line segment the beam emits. The pur-
suers have perfect knowledge about each other’s loca-
tion. They plan their moves in cooperation and are
not required to maintain mutual visibility at all times.
The pursuers win if they illuminate the evader with a
beam. If there is a movement strategy of the pursuers
whereby they win regardless of the strategy employed
by the evader, we say that the polygon can be cleared
by two 1-searchers. In this paper we present an al-
gorithm which, given a polygon with n edges, decides
in time O(n*) whether it can be cleared by the two
1-searchers, and if so, constructs a search schedule.

The scenario above is a typical problem in pursuit-
evasion, a field rising interest in both robotics and
computational geometry. The basic task in pursuit-
evasion is to compute motion strategies for one or
more pursuers to guarantee that unpredictable evaders
will be detected. A key difficulty which makes the
problem more challenging than basic exploration is
that the evaders can sneak back to places already ex-
plored. Efficient algorithms that compute these strate-
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gies can be embedded in a variety of robotics systems
to locate other robots and people. They can aid mo-
bile surveillance systems that detect intruders using
sonars, lasers, or cameras. Mobile robots can be used
by special forces in high-risk military operations to sys-
tematically search a building in enemy territory before
it is declared safe for entry.

Related work. Pursuit-evasion in the plane was in-
troduced by Suzuki and Yamashita [1]. They consid-
ered a single pursuer looking for an evader inside a
simple polygon. They defined different kinds of pur-
suers depending on the number of beams (flashlights)
is equipped with, e.g., a 1-searcher has one flashlight,
a k-searcher has k flashlights, and an oco-searcher has
360°-vision. This naturally defines a pursuit-evasion
problem for each class of searchers. [1, 2, 3] presented
polynomial solutions for deciding searchability of spe-
cial classes of polygons, the general case single pursuer
problem was open for quite a while. Recently, the au-
thors provided a O(n?) solution for a single 1-searcher
in a polygon [4]. Park et al [5] presented polynomial
solutions for the cases of single 2-searcher and single
oo-searcher.

Independently of [1], Icking and Klein [7] defined the
“two guard walkability problem”, which is a search
problem for two guards who move on the boundary of
a polygon while maintaining mutual visibility. Efrat et
al [10] considered a generalization: pursuit-evasion by
a chain of k£ guards, subject to the restriction that the
first and the k-th guards always move on the bound-
ary while guard 4, 1 < i < k moves in the interior of
the polygon and maintains visibility with her neigh-
bors, guards i — 1 and i + 1. Efrat et al [10] gave a
polynomial algorithm for the & guards problem. Note
that the pursuit with two 1-searchers is not a special
case of the k guards pursuit since (i) the 1-searchers
are not required to maintain visibility all the time,
and (ii) for each 1-searcher, the endpoint of the ray of
light emitted by her flashlight does not have to move
continuously along the boundary of the polygon.

An interesting variation of pursuit-evasion was intro-
duced by Rajko and LaValle [11]. They presented a
pursuit-evasion algorithm in which the searcher does
not have a map of the polygon. This approach is
of special importance for robotics, since it imposes
minimal sensing requirements for the pursuer, thus
makes a practical implementation more reliable and
cost-effective.

Notation and preliminaries. From now on, all
polygons are assumed to be simple. The boundary
of a polygon P is denoted by dP and we assume that
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Figure 1: The two kinds of gap edges: (a) left, (b)
right.

OP C P and that 9P is oriented in the clockwise (also
called positive) direction. For two distinct points
a,c € OP, we write (a,c) to denote the open inter-
val of all points b € P such that when starting after
a in positive direction along 0P, b is reached before c.
We also use the notation [a, ¢, [a, ) and (a, c] for the
closed and half-closed intervals on OP.
Let po,p1,---,pn_1 denote the vertices on P ordered
in the positive direction. The edges of P are eq, e1,
.., én—1, where edge e; has endpoints p; and p;;1,
and the indices are computed modulo n, e.g., p, = po.
Vertex p; € OP is a reflex vertex if the angle formed
by incident edges e; 1 and e;, in the interior of P, is
greater that 180° (i.e., points p;_1, pi, and p;;1, form
a left turn). Otherwise, p; is a non-reflex vertex.
For points ¢,d € P we say that d is visible from c,
if every interior point of the line segment cd lies in
P—0P. Obviously, if one point is visible from another,
then the two are mutually visible. Note that no two
points on the same edge of P are mutually visible.
In the rest of the paper “pursuer” will be synonymous
to a l-searcher, unless otherwise specified. Without
loss of generality we can assume that the pursuit starts
at time 0 and continues until time 1. A region of the
polygon which may contain the evader is said to be
contaminated. Otherwise the region is clear.

2 Information-state model of the pur-
suit

In this section we define a simple model of the pursuit.
While the model does not allow feasible search for a
winning strategy for the pursuers, it does provide a
conceptual framework of the pursuit and is quite in-
tuitive, as it directly represents the movements of the
1-searchers. The idea is that at any time we can rep-
resent a snapshot of the pursuit as the position of the
pursuers as well as some additional information which
records the clear and contaminated regions of the poly-
gon.

Let » € P, ¢*,¢q> € OP be three colinear points, see
Figure 1(a). We say that the pair (¢',¢?) forms a
left gap edge relative to r if: ¢! is visible from r,
no point in (¢*, ¢%] is visible from r, and every open
interval which contains ¢? also contains a point visible
from r. Similarly, see Figure 1(b), the pair (¢%,q")
forms a right gap edge relative to r if: ¢ is visible

Figure 2: Contamination regions induced: (a) by con-
figurations (ri,q1) and (ra,q2) and (b) by the corre-
sponding canonical configurations (py, ¢1) and (p2, ¢2).

from 7, no point in [¢*, ¢?) is visible from r, and every
open interval which contains ¢! also contains a point
visible from r.

For any two points, r € P, ¢ € 0P, we refer to the
pair (r,q) as a configuration, if one of the following
conditions is true: (i) r and ¢ are mutually visible, (ii)
there exists a point ¢’ € P such that (¢/,q) forms a
left gap edge or (g,q’) forms a right gap edge relative
to r, or (iii) r = ¢ = p; for some non-reflex vertex p;.
For example, in Figure 1(a), the pairs (r,¢%), (r,¢?)
and (p,p) are configurations, while (¢",r) and (r,p)
are not. Intuitively, a configuration encodes the co-
ordinates of a single pursuer: r is the location of the
pursuer and ¢ is location of her lightpoint (the point
of the boundary illuminated by her flashlight).
Consider ¢°, ¢', ¢, ¢* € OP ordered in positive direc-
tion and r € P. Suppose that r, ¢* and ¢? form a gap
edge and ¢° and ¢ are sufficiently close to ¢! and ¢?
respectively, so that all the points in (¢", ¢*) U (¢%, ¢°)
are visible from r, see Figure 1, (a) or (b). Suppose a
pursuer is located at » and the lightpoint is at ¢°. If
the pursuer rotates the beam clockwise, the lightpoint
moves continuously over P before it reaches ¢'. At
that moment the lightpoint jumps from ¢' to ¢2. Af-
ter ¢2 the lightpoint moves continuously to ¢3. We call
this a lightpoint jump from configuration (r,¢') to
configuration (r, ¢). The reverse move, from (r, ¢*) to
(r,q'), is also a lightpoint jump. A lightpoint jump is
the only possible discontinuity in the location of the
lightpoint.

We encode the position of pursuer ¢ with configuration
(ri,qi), i = 1,2. The segments 71q; and T3q3 partition
P into a number of connected components. We call
each component a contamination region, consist-
ing of all points of P which are connected by a path
within P not crossed by a ray of light. (To avoid te-
dious technicalities, we exclude from the partition the
points lying on the segments 71g; and 72¢z.) For sta-
tionary pursuers, an evader can move undetected to
every point within a contamination region, hence all
the points in a region have the same contamination sta-
tus: clear (denoted by 0) or contaminated (denoted by
1). There can be at most 4 contamination regions, so
to record their contamination status we need at most
4 bits. We call them contamination bits and we
write b € B to denote that they can be represented
as a nonempty binary string b of length at most 4. Let
s € OP, s # q1 be the point out of r1,ry, g which is
the first after ¢; in positive direction along 0P. We



label as C; the contamination region which borders
OP in (q1,s). We label the rest of the regions Cs,
C3, Cy in positive order along 0P. Bit b; represents
the status of region C;, 1 < i < 4. For example, in
Figure 2(a) there are two contamination regions, C
and C5. The current status of the pursuit is fully de-
termined by the position of the two pursuers and the
contamination bits.

Suppose that p; = (r;,¢;), i = 1,2, are two configu-
rations and b is a binary string of length equal to the
number of contamination regions induced by p; and ps.
We define (p1, p2, b) to be an information state. The
set of all information states is the information space.
An information state is called a starting state if all
contamination bits are 1, i.e., every point of P is con-
taminated. An information state is called a goal state
if all contamination bits are 0, i.e., P is clear.

We define a schedule to be a piecewise contin-
uous path in the corresponding information space
parametrized over time, i.e., we view it as a function
t — (p1,p2,b), encoding the relative position of the
two pursuers and the changes in the contamination
status over time. More precisely, p; : [0,1] — P x 9P,
such that p;(t) = (ri(t),q:(t)), if at time ¢ pursuer
i is located at point 7;(t) € P and her lightpoint is
qi(t) € OP. That is, we will refer to r; = r;(¢) and
¢; = q;(t) as functions of time as well. A schedule has
to also satisfy some conditions derived from the se-
mantics of the pursuit. The positions of the pursuers,
r;(t), must be continuous functions of time. The end-
points of the ray of light, ¢;(¢), must be piecewise con-
tinuous with discontinuities corresponding exactly to
the lightpoint jumps as defined earlier. At time 0 the
schedule is in a starting information state. The bits
in b change according to the contamination status of
the respective regions. A schedule which at time ¢ = 1
ends in a goal state is called a winning schedule.
The definition of a winning schedule directly implies
the following lemma.

Lemma 1 A polygon P can be cleared if and only if a
winning schedule exists in the corresponding informa-
tion space.

3 Canonical pursuit

In this section we will consider a model of the pursuit
equivalent to, yet slightly simpler than, the one in Sec-
tion 2. In the new model the two 1-searchers stay on
the boundary most of the time.

We first define a mapping from a configuration to a
corresponding canonical configuration. Suppose a pur-
suer is at point r;1 € P — 0P, directing the beam at
point ¢; € P, see Figure 2(b). Shoot a ray starting
from 7y in direction opposite of ¢; and let p; € 9P
be the first boundary point hit by the ray. We say
that (p1,q1) is the canonical configuration for the
configuration (ry,q1). If r1 € 9P, then (ri,q;) maps
to itself. Similarly, define (ps,g2) to be the canonical
configuration for the second pursuer who is in (1, g2).
The mapping from a configuration to a canonical one
can be extended to a mapping from information states
to canonical ones. Note that this mapping preserves
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Figure 3: Projecting motion in the interior onto mo-
tion on the boundary.

the position of the lightpoint and has the property that
the contamination regions induced by the segments
Piq; are a refinement of the regions induced by the seg-
ments 7;q;. For example, consider Figure 2(b) and as-
sume the pursuers are in configurations of p; = (14, ¢;),
i = 1,2. If we define the area C; = C{UC]{ UC?%, then
71q1 and T3qz partition P into just two contamination
regions, C7 and Cs, and we can encode the informa-
tion state as (pi1,p2,b1b2). On the other hand, for
the corresponding canonical positions, m; = (p;, ¢;),
i = 1,2, there are four contamination regions: Cj,
CY, Ci and C%, and the canonical information state is
(71,72, bab{b1b?). The contamination regions CY, C{,
C’l2 and C5 are a refinement of the regions C7 and Cs
which leads us to the following observation.

Observation 2 At any single moment, we can re-
place a pair of pursuers in the interior of P with its
canonical pair without causing additional contamina-
tion.

The triple ({p1,q1),(p2,q2),b), where (p1,qi) and
(p2, ¢q2) are canonical configurations and b is the corre-
sponding contamination string is defined as a canon-
ical information state. A canonical information
state is a starting (resp. goal) one if it is a start-
ing (resp. goal) information state. We define the set
of all canonical information states to be the canonical
information space:

X = {(<p17Q1>a <p27q2>7b) |p17q17p27q2 € aPub S 814} .

Most of the time the continuous motion of r;(¢t) € P
translates into a continuous motion of p;(t) € 9P, see
Figure 3(a). However, there are exceptions: the con-
tinuity conditions for 7; may not be satisfied, as seen
in the example in Figure 3(b). For simplicity, assume
that the second pursuer is stationary at point ro with
lightpoint gs. The first pursuer moves over a continu-
ous path from r{ to r}, which is projected in a piece-
wise continuous path on P from pi to p}. The move
of the first pursuer can be divided into two parts. The
first part, from r} to 72, is projected into the contin-
uous path from pl to p?. The second part, from and
excluding r} to rj, is projected into the continuous
path from and excluding p} to pj. However, there is a
problem: the jump from p? to p$ represents a discon-
tinuity in p;(t), the projection of r1(¢) on 9P and this



jump cannot be simulated by a pursuer moving solely
over the boundary.
The solution is to allow the pursuer to move along the

segment p?p3. Thus the continuous motion from r{ to
r$ can be represented as continuous motions from p}
to p? along 9P, from p? to p3 inside P, and from p3
to p} along OP.

We call the move from (p?,q1) to (p$,q1) a pursuer
jump. Just like in the case of the lightpoint jump, the
reverse move, from (p$,q1) to (p?,q1), is also consid-
ered a pursuer jump. Note that in reality the physical
location of the pursuer is still continuous but at least
for a moment the pursuer had left the boundary. From
now on this will be the only circumstance in which the
pursuers will leave OP.

The introduction of the pursuer jump ensures that
there is a well-defined mapping from a schedule to
a canonical schedule. Now we can define a canon-
ical schedule to be a piecewise continuous trajec-
tory in the corresponding canonical information space
parametrized over time. It is quite similar to a sched-
ule with the restriction that the pursuers move on the
boundary (except for the pursuer jumps). A canonical
schedule has to satisfy some conditions derived from
the semantics of the pursuit. The positions of the pur-
suers, p;(t), and the lightpoints, ¢;(t), must be piece-
wise continuous functions in P with discontinuities
corresponding exactly to the pursuer and lightpoint
jumps. At time 0 the canonical schedule is in a start-
ing canonical information state. The bits in b change
according to the contamination status of the corre-
sponding region. A canonical schedule which at time
1 ends in a goal state is called a winning canonical
schedule.

Does a given winning schedule always map to a corre-
sponding winning canonical schedule? Observe that at
any time the canonical schedule induces contamination
regions which are a refinement of the corresponding re-
gions induced by the original schedule. It follows that
we do not reduce the power of the pursuers by restrict-
ing them to move on the boundary most of the time.
The result can be summarized in the following lemma.

Lemma 3 For a fized polygon there exists a winning
schedule if and only if there exists a winning canonical
schedule.

Next we discuss the ways contamination bits change.
This will allow us to define a finite set of elementary
moves, so that we regard a canonical schedule as a
sequence of these elementary moves.

First, we note an important property of a canonical
schedule. The configuration bits only change if there
are pursuer of lightpoint jumps or if there is a change in
the relative order of the points p1, q1, p2, and ¢; along
OP. This allows us to divide any canonical schedule
into a sequence of moves, called elementary moves
and defined as follows:

[Type 0: no change] Throughout the duration of
the move there are no jumps and the order of py, q1,
p2, and go is preserved, so there are no changes in

the contamination bits. There are two kinds of type 0
moves depending whether the two beams cross or not.

We denote the contamination bits in the left and right
positions by b, and b}, correspondingly, 1 < i < 4.
A move from the left to the right position does not
change the contamination bits, i.e., b, = b/.
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Again, b, =0 , 1 <i<A4.

[Type 1: point merge move] The move represents
a movement during which the two of the points pq, q1,
P2, g2 merge into a single one. There are two kinds of
point merge moves.

The figure represents a pursuer closing in on a non-
reﬂex vertex The bits change as follows (=): b «
1, by« b, s b 0 b — 0 b —0

The figure represents crossing of the beams. The bits
change as follows: (=): bf «— b}, by «— b5, b — b,
(): by« by, by = 0, b — b, by — b

[Type 2: lightpoint jump] During this move there
is a single lightpoint jump. Both types 2 and type
3 moves have the property recontamination: clear
regions of the polygon become contaminated.

R
| 1
bl bl
{2
5.6, RCAN

The bits change as follows: (=): b3 « b}V, bl — b,
1€{1,3,4}, («<): by <« by vy, b — b i€ {234}



Together with the jump there may also be a simulta-
neous change in the relative order of the points py, q1,
D2, g2. The bits change as follows: (=): b} « b} V b},
D Vb b b, () By b < B, by b
by «— bV by

3 2 V03

[Type 3: pursuer jump| During this move there
is a single pursuer jump, possibly combined with a
change of the order of p1, q1, p2, ¢2. Just a reminder,
eventhough this move suggests a discontinuity of the
position of the searcher on 0P, in reality the position
of the pursuer is continuous within P.

b, b, b, [b,

]
3
"

b, b,

The bits change as follows: (=): b/ «— b}, i € {1,2},
b% \7;3;’ — b5V by, (<) b — b, i e {1,2}, by = by —
3V 0y

We have not listed all the possible moves - there are
slight variations depending on the relative order of pq,
q1, p2 and ¢o. However, we note that the total number
of moves is finite, thus it can be written in a lookup
table. So in finite amount of time an algorithm can
determine a new information state, given a starting
information state and a type of move.

4 Finite representation

The canonical information space we defined in the pre-
vious section provides a simpler model for the two pur-
suer problem, yet still an infinite one. Thus an exhaus-
tive search for a winning schedule is still infeasible. In
this section we will introduce an equivalent, finite rep-
resentation of the search space and we will show how
to find a winning strategy by a search in the finite
space.

Let p be a non-reflex vertex in P. We define (p,p)
to be a diagonal configuration. For example points
10, 13 and 22 are some of the non-reflex vertices in the
polygon in Figure 4(a). In the corresponding canon-
ical configuration space in Figure 4(b) the diagonal
configurations are marked as black circles along the
diagonal, including (10, 10), (13,13) and (22, 22).
Define an inflection point to be a non-reflex vertex,
p;, adjacent to a reflex one. If we shoot a ray from p;
in the direction of the reflex vertex, the point p, € OP
touched first by the ray is defined as a inflection im-
age. We define (p;, p}) and (p}, p;) as inflection con-
figurations. A sequence of (at least three) vertices
Di>Pit1,---,Pj—1,p; in which p; and p; are the only
non-reflex vertices is called a concave region. E.g.,
in Figure 4(a) points 5 and 10 are inflection points,
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Figure 4: (a) Inflections and bitangents of a poly-
gon. (b) Corresponding canonical configuration space
(white areas), diagonal, inflection and bitangent con-
figurations (black circles), boundary configurations
(white circles, only two shown).

while points 2 and 16 are their corresponding inflec-
tion images. There are two concave regions: 5,...,10
and 22,...,29.

Let ¢,d,c’,d’',x € P be colinear points. Let ¢ and d
be mutually visible vertices of P and z be an interior
point of cd. If there exist points ¢’ and d’ such that
the pairs (¢, ¢') and (d,d’) form a gap edges relative to
z, we say that ¢ and d define a bitangent. We call ¢
and d bitangent points and ¢’ and d’ bitangent im-
ages. The polygon in Figure 4(a) has four bitangents
represented by dashed lines: (1, 7, 27, 33), (9, 14, 26,
35), (9, 12, 18, 24) and (8, 15, 25, 36). If p # ¢ are
bitangent points or images of the same bitangent we
define the pair (p,¢) as a bitangent configuration.
Figure 4(b) represents the Visibility Obstruction Dia-
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gram [4] for the polygon in Figure 4(a). The inflection
(resp. bitangent) points and images induce red (resp.
green) vertical and horizontal lines which form a grid.
The white regions represent the set of all canonical
configurations, W. The diagonal, inflection and bitan-
gent configurations are shown as black circles. Con-
sider a single connected (white) region in W. If we
traverse its boundary and follow the projections on
the horizontal and vertical axes, we observe that the
local extremums of the projections coincide with in-
flection and bitangent points [4]. This prompts us to
refer to the inflection and the bitangent configurations
as extreme configurations.

Consider a vertical red or green (i.e., induced by an
inflection or a bitangent) line (%, ¢) from the grid. Let
¢ =(p',q) and " = (p”,q) be such that the interior
of ¢/,c” lies in the interior of W and while ¢ and ¢”
lie on the boundary of W. We define ¢’ and ¢” to be
boundary configurations with respect to the ver-
tical line (x,q). (The definition for a horizontal line
is similar.) In Figure 4(b), configurations (26,8) and
(a, 8) are configurations with respect to the line (x, q).
We now define a directed graph G = (V,E) as a fi-
nite representation of the canonical information space
X. We group the infinite number of canonical infor-
mation states into equivalence classes, represented by
the vertices in the graph.

The vertex set V is defined as follows. Consider a
bitangent configuration (p,¢) and contamination bit
string b. For every bitangent configuration (p’,q’),
({p,q), {0, q'),b) € V(G). For every diagonal con-
figuration (r,r): ({(p,q), (r,7),b), ({r,r),(p,q),b) €
V(G). For every boundary configuration (r,q) with
respect to (p.q):  ((p.q), (r,q).b), ((p,q),{q,7),b),
((rya), (p, @), b), ({a,7), (p,q),b) € V(G).

Every edge of the graph represents an elementary move
from one state to another (or from one equivalence
class of states to another). The only exception is that
in order to keep the outdegree of the graph bounded
by a constant, for type 0 moves we only connect con-
figurations along the boundary of W.

A vertex in G is a starting (resp. goal) one, if the
corresponding canonical information state is a start-
ing (resp. goal) one. A path in G from a starting to
a goal vertex is called a winning path. A winning
canonical schedule exists in X, if and only if there ex-
ists a winning path in G.

Theorem 4 A polygon P can be cleared by two 1-
searchers, if and only if there exists a winning path
inG.

In order to find a winning path, it suffices to build the
graph G and to perform breadth-first search beginning
at a start and ending at a goal vertex. If a winning
path exists, then the path represents the search sched-
ule for the two pursuers.

To compute the time complexity of the algorithm
above, let n be the number of edges in the poly-
gon and let m denote the number of concave re-
gions, m = O(n). The the number of vertices in
G is |V| = O(m?(n +m?)). The outdegree of G is

bounded by a constant, so |E| = O(m?(n + m?)) as
well, therefore the time for the search in the graph is
O(m?(n +m?)) = O(n*).

5 Conclusion

We presented a complete algorithm for a pair of pur-
suers, each with one rotating beam, searching for an
moving target in a simple polygon. For a polygon with
n edges and m concave regions, the algorithm in time
O(m?(m?+n)) decides whether it can be cleared by the
pursuers, and if so, constructs a search schedule. The
algorithm can be implemented and embedded on any
moving devices with unidirectional vision (flashlights,
lasers, or cameras). A natural direction for extend-
ing the current results is designing a similar algorithm
for two pursuers with 360° vision. A more ambitious
goal is to provide an algorithm for searching a polygon
without holes using any number of pursuers. Another
interesting problem is combining the results of our pa-
per with the minimal sensing approach of Rajko and
LaValle [11], i.e., whether the two pursuers can find a
winning strategy without prior knowledge of the shape
of the polygon.
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