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Abstract

We present an algorithm for searching a 2D environ-
ment for unpredictable moving targets using only beam-
based detection. One or more pursuers move along the
environment boundary, and carry o rotating beam that
detects evaders. The beam could correspond in prac-
tice to a laser or a camera. The task is to compute
motions for pursuers and their beams that ensure that
all evaders will be detected. For a 2D polygonal envi-
ronment, we solve a long-standing open problem by pre-
senting a complete O(n®)-time algorithm that is guar-
anteed to find a successful motion strategy for a single
pursuer and its beam, if a solution exists. This algo-
rithm is extended to the case of coordinating multiple
pursuers, but the number of pursuers used in a solu-
tion is not necessarily optimal. An implementation is
presented, and several computed examples are shown.

1 Introduction

In recent years there has been a rising interest in
robotics and computational geometry in designing mo-
tion strategies for pursuit-evasion scenarios. The basic
task is to compute motion strategies for one or more
robots (pursuers) to guarantee that unpredictable tar-
gets (evaders) will be detected using sensors. A key
difficulty which makes the problem more challenging
than basic exploration is that the evaders can sneak
back to places already explored. Efficient algorithms
that compute these strategies can be embedded in a
variety of robotics systems to locate other robots and
people. They can aid mobile surveillance systems that
detect intruders using sonars, lasers, or cameras. Mo-
bile robots can be used by special forces in high-risk
military operations to systematically search a building
in enemy territory before it is declared safe for entry.
If robots have limited communication, the algorithms
could be used to help robots locate each other for

coordinated tasks such as map-building, localization,
or target tracking. Beyond robotics, these algorithms
could help in the training of firefighters engaged in a
rescue effort, law enforcement officers in a hostage sit-
uation, or soldiers attempting to secure a potentially-
hostile area. The strategies can also be used in virtual
environments to help game developers design compli-
cated pursuit strategies.

This paper focuses on a particular scenario that has
simple sensing requirements. The evaders are unpre-
dictable points that move continuously in a 2D environ-
ment. Each pursuer carries a thin detection beam that
can be placed at any orientation. The beam could be
implemented by a camera and vision system that uses
feature detection to recognize a target. Alternatively,
a single laser beam could be used. Unexpected changes
in depth measurements would imply that an evader is
blocking the beam, causing detection. We require that
each pursuer moves along the boundary of the envi-
ronment, or along the beam of another pursuer. If a
single pursuer is used, this is not restrictive because it
cannot protect its work from a position in the interior
of the environment. For multiple pursuers, it is restric-
tive; however, this restriction can be beneficial in some
cases. Localization is one of the most difficult problems
in mobile robotics; however, wall-following is very reli-
able because one dimension has been eliminated from
the localization problem. This might enable a pursuer
robot to be constructed using less-expensive hardware.
In fact, sensors could be mounted along tracks that
are fastened to the walls of a building, as opposed to
employing a general-purpose mobile robot. The pur-
suer could then be envisioned as an electric train that
carries an inexpensive detection device.

Related problems have been considered in dynamic
game theory, graph theory, computational geometry,
and robotics. In game theory, pursuit-evasion scenar-
ios, such as the Homicidal Chauffeur problem, express
differential motion models for two opponents, and con-



ditions of capture or optimal strategies are sought [5].
In graph theory, several interesting results have been
obtained for pursuit-evasion in a graph, in which the
pursuers and evader can move from vertex to vertex
until eventually a pursuer and evader lie in the same
vertex [1, 6, 10, 11, 12, 13]. The pursuer-evasion prob-
lem using a single detection beam in a polygonal envi-
ronment was first introduced by Suzuki and Yamashita
[15]. Although the problem has been open for a while,
several variations have been considered. Lee et al [9]
considered pursuit-evasion using beam detection in a
room (i.e., a polygon with one door — a point which
has to remain clear at all times) and presented a O(n?)
solution. Icking and Klein [4] solved a search problem
for two guards who move on the boundary of a polygon
and are always mutually visible. Their result was later
improved by Heffernan [3]. To the best of our knowl-
edge, we present the first complete algorithm for the
single-pursuer pursuit-evasion problem in a polygonal
environment with a rotating beam, solving a problem
originally posed in [15]. Pursuit-evasion in a 2D en-
vironment using 360° vision has also been considered
2, 7, 8, 15].

2 The Single Pursuer Problem

In this section, we assume that a single pursuer moves
in a 2D polygonal world; the extension to multiple pur-
suers is presented in Section 4. Although we describe
our method in terms of a polygonal environment, it is
based on concepts that allow easy adaptation to curved
environments [7].

The pursuer and evaders are modeled as points that
move in a world, P € R?, that is bounded by a simple
polygon. An arbitrary number of evaders may exist in
P. Let e;(t) € int(P) denote the position of an evader
at time ¢ > 0, in which int(P) denotes the interior of
P. Tt is assumed that e; : [0,00) — int(P) is a con-
tinuous function, implying that each evader is capable
of executing arbitrarily fast motions. The initial posi-
tions e;(0) and the paths e; are assumed unknown to
the pursuer.

Let p(t) € P denote the position of the pursuer. The
pursuer is equipped with a beam that is modeled as a
line segment in P, which emanates from p(t), and ter-
minates at its nearest intersection point on the bound-
ary of P. Let 6(¢t) € [0,27) denote the orientation of
the beam. An evader is detected if it is “touched” by
the beam at some time ¢ > 0.

For a given world, P, the task is to determine both
continuous functions, p : [0,00) = P and 6 : [0,00) —
[0,27) for the pursuer such that all evaders will be
detected in a finite amount of time. Note that the
pursuer is required to move along the boundary of P

(a)

Figure 1. Simple polygon (a) and its corresponding state
space (b)

at all times; otherwise, the evaders can sneak behind
the beam. Thus without loss of generality, it can be
assumed that p : [0,00) — OP, in which P denotes
the boundary of P. Note that OP is a point set with
an S! topology.

Using this restriction, note that the beam partitions P
into two regions. A point in P is cleared if it is known
not to contain any evaders; otherwise, it is contami-
nated. During the pursuit the region on one side of the
beam is cleared, and the region on the other side is
contaminated. Due to symmetry, we will assume with-
out loss of generality that the cleared portion on P is
always to the left of the beam, when looking from the
position of the pursuer.

Since the pursuer moves along 9P, the configuration
space can be simplified to a two-dimensional manifold,
S1 x S', in which the first parameter indicates the
position of the pursuer along 0P, and the second
parameter indicates the orientation of the beam. To
better illustrate the concepts that follow, we use an
alternative representation in which the second param-
eter corresponds to the intersection point of the beam
in QP. Thus, we define a state space, X = 0P x 0P,
in which a state is represented as (p,q) when the
pursuer position is p € 9P, and the beam hits the
position ¢ € OP. To preserve the original S' x S!
topology, we also allow states, (p,q) € X in which ¢ is
not visible from p. The state space X = 0P x 0P can
be partitioned into three sets:

e X;={(p,g) € X |pand g lie on the same edge}
o X, ={(p,q) € X | p and ¢ are mutually visible}
[ Xn :X\(XdUXU)

Figure 1 provides an example of a simple polygon and
the state space corresponding to it. The black squares
along the diagonal of Figure 1 represent X, the shaded
area represents X,,, and the white area represents X,,.
The motions of the pursuer and the rotations of the
beam can be represented by corresponding moves in



X as follows. A horizontal move in X, from left to
right (right to left) denotes a rotation of the beam in
clockwise (counterclockwise) direction and stationary
pursuer (see the horizontal dashed line in Figure 1).
Similarly, a vertical move down (up) in X, represents
a motion of the pursuer in clockwise (counterclockwise)
direction with the beam fixed at the same point (see
vertical dashed line in Figure 1). Each of these moves is
reversible. Apart from the four different moves within
X, there is one more move which we call “recontam-
ination”; it corresponds to a stationary pursuer who
moves the beam to the left across a gap edge. In X this
is represented by a horizontal move to the left across a
part of X,, (see the dotted line in Figure 1). The move
is not reversible, i.e., if the pursuer decides to move the
beam back to the original position, this would contam-
inate the whole area to the left of the beam. For a more
detailed example of recontamination, see Figure 5.
How is the search defined in terms of the diagram? It
corresponds to finding a path in X which is a sequence
of the 4 + 1 basic moves described above. The path
starts immediately above and to the left of the diag-
onal and reaches the diagonal from the left or from
below. (Remember that there is a vertical and hori-
zontal wraparound along each of the axes.) The path
cannot cross the diagonal since this would correspond
to the pursuer pointing the beam outside the polygon.
The solid black path in Figure 1 from the center to the
upper right corner, represents a successful search by
the pursuer.

3 Structure of the State Space

This section presents a complete algorithm that solves
the single-pursuer problem by capturing the topology
of the state space, X, and obtaining a combinato-
rial representation through the identification of criti-
cal events. This is similar to the philosophy used in
[14] for classical path planning, and builds on previous
efforts in visibility-based pursuit-evasion [7, §].

A cell decomposition of dP. The first step is to
partition 0P into open intervals and critical points.
Let V(p) denote the set of all points along P that are
visible to the pursuer at position p € 0P. Each open
interval identifies a maximal set of positions from which
the topology of V(p) remains invariant. The same
connected components appear, although they may be
shifted in a continuous manner made precise by piece-
wise homotopy arguments in [7]. Let d: 9P x ST — R
denote the real-valued function that corresponds to the
ideal distance measurements. The value d(p, ) gives
the distance from p to another point on P by placing
the beam at angle §. We call each data discontinuity
a gap in d(p) (d(p) is considered as a function of 6).

Intuitively, piecewise homotopy can be considered as a
generalization of classical homotopy to piecewise con-
tinuous functions. The gaps must move continuously
in the piecewise homotopy. Note that from any p, the
set of gaps partitions P into an alternating sequence
of visible and invisible intervals. Each visible interval
corresponds to one topologically-distinct direction in
which the beam can be aimed.

The next task is to determine the points along OP at
which a critical change occurs in terms of this alternat-
ing sequence of visible intervals. These critical changes
correspond directly to changes in gaps in V(p). As the
pursuer moves along P, one of four changes can oc-
cur: 1) a gap disappears, 2) a gap appears, 3) two gaps
merge into one, or 4) one gap splits into two. If OP is
not in general position, then several events could occur
simultaneously; this technicality is excluded from the
discussion (yet the algorithm still applies). The first
two types of changes occur at inflections, and the last
two occur at bitangents.

Inflections. Inflections either cause the set of topo-
logically-distinct beam directions to change, or they
cause an invisible interval to appear or disappear along
the horizon (the limiting case in which the beam is
nearly parallel to the edge(s) that contains the pur-
suer). Let vg, v1, ..., Un—1, represent the set of poly-
gon vertices in clockwise order. A vertex, v;, is called
a reflex vertex if v;41 lies to the left of the ray from
v;—1, through v; (this assumes modularity of indices,
V_1 = Up_1, and v, = vp).

An inflection point is a reflex vertex v;, which is ad-
jacent to a non-reflex one, v;4+1. The point, p; € 0P,
that is touched by a ray extended from v;, in the direc-
tion of v;41v;, is called the inflection image of v;. The
pairs of points (2,10) and (0,9) (connected with a dot-
ted line in Figure 2) show pairs of an inflection point
and its image. The inflection point is a critical event
because as the pursuer moves from Point 3 to Point 1,
part of P between Point 3 and Point 2 is no longer
visible. The inflection image is a critical event because
all of 9P from Point 3 to Point 2 becomes visible as
the pursuer moves from Point 11 to Point 9 (an invis-
ible interval vanishes). Both kinds of inflections cause
critical events in terms of the pursuit, and will be used
in our combinatorial representation of the pursuit.
Bitangents. Bitangents either cause two visible in-
tervals to merge into one, or cause one visible interval
to split into two. A pair of reflex points, v; and v; are
each called bitangent points if: 1) both edges incident
to v; lie on the same side of the line through v; and
vj, 2) both incident to v; lie on the same side of the
line (although these may lie on a different side than
the edges incident to v;), and 3) v; and v; are mutu-



Figure 2. Cell decomposition of the polygon in Fig 1.
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Figure 3. State space for the polygon from Fig 2.

ally visible. Points 1 and 4 of Figure 2 are bitangent
points.

Note that the line through v; and v; always intersects
OP at two places other than v; and vj, before leav-
ing P. These two intersections are called bitangent
images. Points 7 and 11 in Figure 2 are bitangent im-
ages. When a bitangent image is crossed, the number
of topologically-distinct directions in which the beam
can be aimed either decreases by one or increases by
one. For example, if the pursuer moves along 0P from
Point 6 to Point 8, the number increases because the
pursuer is able to see into the “pocket” between Points
1 and 4. In Figure 2 the each pair of a bitangent point
and its image is connected with a dashed line.

The pursuit graph. Suppose that we now “slice”
X into horizontal rows along the critical boundaries of
OP. Within each slice, starting to the right from the
diagonal, there will be alternating white and shaded
regions. All the points in a white region within the
slice correspond to a single topologically-distinct direc-

tion to aim the beam from a given position of the pur-
suer. So instead of considering the transitions within
the continuous space of points in X,,, we are going to
substitute all the white points from the region with a
single vertex in a graph. Also, vertices in the graph will
be connected if they correspond to neighboring white
regions in X. The edges between neighboring vertices
from different rows are two-directional and correspond
to the four reversible moves of the pursuer. In order to
take into account the possibility of a recontamination
move, we also add unidirectional edges from every ver-
tex to its left neighbor (if one exists) within the same
row, but not across the diagonal.

This naturally reduces the state space X to a directed
graph, G = (V, E), that has O(n®) vertices and edges,
where n is the number of vertices in the bounding poly-
gon of P. (Each of the O(n?) rows contribute O(n) ver-
tices to G.) For example, the state space as described
in Figure 1 is overlaid with its corresponding graph G
and the result is shown in Figure 3.

Define the initial vertices to be the ones which are im-
mediately to the right of the diagonal. (For example,
in Figure 3 these are vertices Oa, 1a, 2q, .. .,11a.) Sim-
ilarly, define the goal vertices as the ones which are
immediately to the left of the diagonal. (For example,
in Figure 3 these are vertices Oc, 1d,2¢,...,11b.) A
successful search of the polygon corresponds to a path
from an initial vertex to a goal vertex. Furthermore, if
we add a start node S which has only outgoing edges to
all the initial vertices, and also a finish node F' which
has only incoming edges from all the goal vertices, then
finding a solution path will be equivalent to finding a
path in G from node S to F.

The graph representation can be easily constructed in
time ©(n?), and the graph can be searched in time
©(n?) for a solution path using a standard method such
as breadth-first search. The graph search algorithm
finds a solution if and only if the polygon is solvable.
The proof is based on the fact that by construction,
every node in the graph corresponds exactly to a topo-
logically equivalent set of pairs (p,q) in X. Similarly,
every transition in the graph corresponds exactly to a
movement of the pursuer or rotation of the beam. Thus
solving the graph search problem in ©(n?) is equivalent
to solving the pursuit-evasion problem in ©(n?).

4 Simple Multiple-Pursuer Extension

In this section we assume that more than one pursuer
is necessary to detect all of the evaders. We continue to
restrict the pursuer to move along P, but note that in
general, one might wish to consider solutions in which
pursuers move in the interior of P (unless a particu-
lar robot system prohibits this). Although the single-



pursuer algorithm is restricted to a simply-connected
environment, the multiple pursuer algorithm also ap-
plies to multiply-connected environments (i.e., poly-
gons with holes). The multiple-pursuer algorithm is
complete in the sense that it will find a solution when
a solution exists; however, it is not guaranteed to use
the optimal number of pursuers.

The single-pursuer algorithm is used as a module in
the multiple-pursuer algorithm. This general idea was
also used in [8] for visibility-based pursuit evasion. The
multiple-pursuer algorithm progressively uses the sin-
gle pursuer algorithm to clear as much of P as possible,
in terms of the number of inflections that lie to the left
of the beam. The remaining, contaminated portion of
P is then cleared using another pursuer that executes
the single-pursuer algorithm on the remaining subpoly-
gon. If it succeeds then a two-pursuer solution has been
determined; otherwise, the algorithm attempts to use a
third pursuer, after the second pursuer clears as much
a possible. The process continues until the entire en-
vironment is cleared. A number of possible variations
are obvious by designing different heuristics for stop-
ping a pursuer while other pursuers continue. There is
also the issue of recovering a pursuer that has finished
clearing one portion, to be used for clearing another
portion. In this paper, we present one simple coordi-
nation algorithm and show computed results.

5 Implementation

Both the single-pursuer and multiple-pursuer algo-
rithms were implemented using GNU C++ and the Li-
brary of Efficient Data Types and Algorithms (LEDA),
and experiments were performed on a Pentium III
500Mhz PC running Linux. The algorithms were de-
termined to be efficient enough for practical use in real
environments. The running time to compute a solution
for a polygon with 253 vertices, 130 inflection points,
and 394 bitangents is 5 seconds, with very little opti-
mization of the code performed. Figures 4 and 5 show
examples that were solved using the complete, single-
pursuer algorithm. Figure 6 shows an example that
was solved using multiple pursuers.

Figure 4 corresponds to the polygon already discussed
in Figures 1, 2, and 3. It has a quite simple solution.
The pursuer starts from the upper left corner. In the
beginning and in the end the pursuer moves and simul-
taneously rotates the beam. In between, without loss
of generality we can assume that the movements of the
pursuer and the rotations of the beam do not happen
at the same time, rather they alternate. Note that the
position of the pursuer on the boundary is designated
with a small white circle.

Figure 5 is a polygon which requires recontamination in

(a) E (b) E

(c) E (d) E
Figure 4. Solution for the polygon in Fig 1.
order to be searched successfully. The recontamination
happens between frames (d) and (e): some of the area
which was already cleared is contaminated again after
the pursuer rotates the beam to the left.
Finally, Figure 6 is an example of search by multiple
pursuers. Frame (c) shows the maximum area (white)
cleared by the first pursuer. Frame (d) corresponds
to the first pursuer becoming stationary and the sec-
ond pursuer taking over the search. In frame (f) the
second pursuer has cleared another part of the poly-
gon, so a third pursuer can finish the search. As we
already noted, sometimes pursuers can be “recycled”,
i.e., when the second pursuer is finished, the first one
is no longer needed in the previous position. Thus the

first pursuer can finish the search without actual need
for a third one.

6 Discussion

We presented algorithms that compute motion strate-
gies for pursuers that must detect all unpredictable
evaders in a polygonal environment using rotating
beams. A complete algorithm was presented for the
one-pursuer case, which solves an open problem posed
in [15]. This was extended to a greedy algorithm for
the case of multiple pursuers, but it does not necessar-
ily use an optimal number of pursuers. The simulation
results presented in this paper are very encouraging.
A logical next step is to assess the value of our model
through experimentation. This could be performed,
for example, on any indoor mobile robot, using a color
camera or laser scanner for detection.

We believe that some of the ideas presented in this
paper can be extended to other pursuit-evasion and
visibility problems. A variety of improvements and al-
ternatives can be considered for our multiple-pursuer
algorithm, especially in the choice of stopping point for
each pursuer. Also, a recursive algorithm can be con-
sidered that attempts to solve and evaluate multiple
subproblems using the single-pursuer algorithm.
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Figure 5. A single-pursuer example which requires recon-
tamination (between frames (d) and (e)).
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