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Abstract

This paper considers a robot that moves
in the plane and is only able to sense
the cyclic order of landmarks with re-
spect to its current position. No met-
ric information (e.g., coordinates) is avail-
able regarding the robot or landmark posi-
tions; moreover, the robot does not have
a compass or odometers. We carefully
study the information space (belief space)
of the robot, and establish its capabili-
ties in terms of mapping the environment
and accomplishing tasks, such as naviga-
tion and patrolling. The information space
can be nicely characterized using the no-
tion of order type, which provides informa-
tion powerful enough to determine which
points lie inside the convex hulls of subsets
of landmarks.

1 Introduction

Consider a robot moving in the plane with very lim-
ited sensing: it knows only the cyclic ordering of
landmarks as they appear from the robot’s current
position (no distance information can be measured
and there are no other sensors). This paper consid-
ers the question:
What can a robot learn about its environment from
an extremely limited sensor?

The answer to this question for various robot
systems comes from carefully studying the result-
ing information spaces (or belief spaces). Infor-
mation spaces represent the complete knowledge of
the robotic task, considering the histories of ac-
tions and observations [11; 12]. Such spaces have
been usually applied to construct a complete envi-
ronment model, and an explicit estimation of the
robot position. In the most well-know form of si-
multaneous localization and mapping (SLAM) [14;

Figure 1: The robot can only detect the cyclic order
of landmarks around its position. Estimates of the
coordinates of the position of the landmarks, or the
robot itself, are not available.

18], the addition of some Gaussian assumptions al-
lows the estimation of the position of the robot and
the landmarks through the use of probabilistic fil-
ters. Although these approaches have a very impres-
sive implementation success, the probabilistic infor-
mation spaces they generate are hard to character-
ize, given that they are infinite-dimensional.

In this paper, we take a minimalist philosophy,
which implies that we want the robot, its sensors,
and its models to be as simple as possible. Al-
though our problem has not been considered be-
fore, this philosophy has been successful in a num-
ber of works (e.g., [1; 4; 13; 6]). Is it really neces-
sary for the robot to build an explicit representa-
tion of the environment? Is knowing the exact po-
sition of the robot crucial for the completion of the
task? After establishing what the robot can learn
from its simple sensor (see Figure 1), we then illus-
trate the kinds of tasks that it can solve, including a
surveillance/patrolling behavior around the perime-
ter (convex hull) of landmarks.

Such tasks can be achieved by forgoing complete



SLAM, and instead manipulating the robot’s infor-
mation space. The information space is character-
ized using the concept of the order type of a config-
uration of points in the plane [7]. Given the sensor
limitations, we avoid estimation of the position of
the robot and of landmarks, and instead concentrate
on the landmarks’ relative orderings to construct the
algorithms. Eventually, the map, or representation
of the environment, is a sequence of landmark cyclic
permutations.

The particular models and assumptions used in
this paper are appropriate for resolving basic sens-
ing issues in robotics. There are also close connec-
tions to sensor networks, which are becoming in-
creasingly important in security applications. The
landmarks can be imagined as “sensors” in a net-
work, and the robot provides the “communication”
link between them. The insights obtained from our
work may help in the development of robust, cost-
effective robotic systems and sensor networks ap-
plied to surveillance, tracking, pursuit-evasion, and
other sensor-based problems.

2 Model

The robot is modeled as a moving point in R
2. Let P

be a set of n points in R
2. Let m : R

2 → {0, . . . , n}
be a mapping such that every point in P is assigned a
different integer in {1, . . . , n}, and m(p) = 0 for any
p /∈ P . The mapping m is referred to as a feature
identification function, and P is referred to as the set
of points selected by m. For a point p ∈ P , a feature
is defined as the pair (m(p), p). For a set R ⊂ R

2,
an environment E is defined as a pair (R,m). The
space of environments E is the set of all such pairs.
Let q ∈ SE(2) be the configuration of the robot
(position in the plane and heading). The state is
defined as the pair x = (q, E), and the state space
X is the set of all such pairs (SE(2) × E).

The robot is able to detect and recognize features.
This is modeled as a mapping s : R

2 → N∪{0}. Such
mapping is referred to as a landmark identification
function. For a point p ∈ R

2 such that s(p) 6= 0, a
landmark is defined as the pair (s(p), p), and s(p) is
called a landmark label. Let P ′ = {p ∈ R

2 | s(p) 6=
0}. The mapping s is called sufficient with respect
to m if P ⊂ P ′ and s(p) = s(r) ⇔ p = r, for any
p, r ∈ P . If furthermore, P = P ′, then s is called
complete with respect to m. If P is not a subset of
P ′, or s(p) = s(r) does not imply that p = r, then s
is said to make identification errors with respect to
m.

A landmark sensor is defined in terms of a land-
mark identification function s. Such sensor is called
a landmark order detector, and it is denoted with
lods(x), for x ∈ X. The landmark order detec-
tor gives the counterclockwise cyclic permutations of

(a) (b)

Figure 2: The landmark order detector gives the
cyclic order of the landmarks around the robot. For
example, a possible reading for the configuration on
(a) is shown in (b). Note that only the cyclic order
is preserved, and that the sensed angular position of
each landmark may be quite different from the real
one. Thus, the robot only knows reliably, up to a
cyclic permutation, that the sequence of landmarks
detected is [7,4,1,6,3,5,8,2].

landmark labels as seen from the current state (see
Figure 2). Note that no metric information is avail-
able to the robot. The robot does not have any co-
ordinate estimate of its position, and the position of
the landmarks. Moreover, we assume that the land-
mark order detector does respect the cyclic order of
landmarks, but does not measure the angle between
them. In other words, lods(x) does not provide by
itself any notion of front, back, left or right with re-
spect to the robot. It is assumed, though, that the
robot can choose a particular landmark label s(p)
and move towards the landmark position p. This
landmark tracking motion is denoted by track(s(p)).
For simplicity, we assume that track(s(p)) ends when
the robot arrives at p, which means that lods(x)
no longer detects the landmark just tracked 1. Al-
though we do not discuss here the real implemen-
tation of the landmark order detector, it can be
constructed, for example, with an omnidirectional
camera with standard feature tracking software (i.e.,
filter-based tracking [17]).

We assume that landmarks obstruct the visibility
of the robot. In this case, only the landmark closest
to the robot is detected. In this paper we assume
that the environment is of the form E = (R2,m),

1We might as well define track(s(p)) to stop just be-
fore p is reached, but the essence of further develop-
ments does not change, and it clutters some descriptions.
Moreover, it already models some robotic systems, as a
robotic agent flying over a terrain.
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Figure 3: Cyclic permutations of three landmarks.
Purely by sensing, the robot cannot even know if it
is inside the convex hull defined by the three land-
marks. Nevertheless, the orientation of the triangle
(the counterclockwise cyclic order of the landmarks
as sensed from inside their convex hull) can be de-
termined with an information state.

and that the landmarks are in general position (no
three landmarks are collinear). Furthermore, we as-
sume that the landmark identification functions are
complete in their respective environments, and that
the landmark order detector has infinite range. We
propose these assumptions for the sake of presenta-
tion, and we remove them in an upcoming paper (see
Section 5).

3 Order Types and Landmarks

Given the model described in the last section, con-
sider the robot as it moves in the environment. The
only information the robot receives is the changes
in the cyclic permutations. For example, for three
landmarks, only two sensing readings are possible.
Purely by sensing, the robot cannot even know if it
is inside the convex hull defined by the three land-
marks (see Figure 3). Nevertheless, consider the
robot traveling from the landmark labeled with 1
to the landmark labeled with 2. Since the reading
from the landmark order detector follows a counter-
clockwise order, the robot can determine whether
the landmark labeled with 3 is to the left or right
of the directed segment that connects landmark 1
to landmark 2. Thus, the robot can combine sens-
ing with action histories to recover some structure
of the configuration of landmarks.

We generalize the previous idea to encode infor-
mation states with the concept of order type. Two
ordered sets A and B are said to have the same or-
der type if there is a bijection f : A → B such that
for all a1, a2 ∈ A, a1 ≤A a2 ⇔ f(a1) ≤B f(a2),
in which ≤A and ≤B are the relations defining the
orders of A and B, respectively.

An intuition behind this definition is that A and
B have the same order type if they have the same
number of smallest elements, the same number of
second-to-smallest elements, etc. For a configura-

tion of labeled points, the order relation ≤ can be de-
fined through the relative orientation of three points,
which is computed as follows [7]. The ordered triplet
of points p1, p2, p3, with pi = (xi, yi), is said to have
positive orientation if the determinant
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is strictly bigger than 0, and this is denoted by
p1p2p

+

3 . Negative orientation is defined in a simi-
lar manner, and denoted by p1p2p

−

3 . Given our gen-
eral position assumption, this determinant cannot
be zero. The order type of a labeled configuration
of points P is determined by the relative orientation
of each triplet of points in P . The order type of the
configuration of points can be encoded by a function
defined as follows:

Λ(i, j) = {k | pipjp
+

k , for pi, pj , pk ∈ P}. (2)

The function Λ takes the indices i, j of two points
pi, pj ∈ P , and returns the indices corresponding to
the points in P \ {pi, pj} positively oriented with
respect to pi and pj (in that order). For exam-
ple, following Figure 2, Λ(3, 7) = {2, 5, 8}, and
Λ(7, 3) = {1, 4, 6}. Alternatively, the order type can
be specified with the function λ(i, j) = |Λ(i, j)|. It
is not immediately clear that once the function λ
is known, Λ can be deduced. Surprisingly, this is
not only true for the plane, but for any dimension
[7]. The order types generalize the common notion
of linear sorting for real numbers into the so called
geometric sorting. Here, minimum and maximum
become extremal subsets of points in P . For exam-
ple, if λ(i, j) = 0, then there are no points to the left
of the directed edge pipj , and both pi and pj belong
to the boundary of the convex hull. Note that the
other direction works too, in this case λ(j, i) will be
a non-unique maximum of λ.

3.1 Order type as an information state

The order type definition is extended naturally to
our landmark framework, using the landmark labels
as the indices for Λ. Of course, the robot cannot
compute the determinants, because it lacks any co-
ordinates. Nevertheless, it is possible to compute Λ
for any pair of landmark labels. For this computa-
tion we establish the following lemma:

Lemma 1. Let the output of the sensor be of the
form lods(x) = [X, i, Y, j, Z], in which X,Y,Z are
subsequences of lods(x) separated by the labels corre-
sponding to landmarks (i, pi) and (j, pj). If the robot
is on the line segment pipj, and its heading is point-
ing towards pj, then Λ(i, j) = X∪Z and Λ(j, i) = Y .

3



Proof. To determine Λ(i, j), we are looking for the
landmarks to the left, of the directed segment pipj .
Consider any point in the interior of pipj , as a pivot
of a counterclockwise radial sweep starting at pj ,
and ending at pi. It is clear that all the landmarks
swept lie to the left of pipj . If the robot is placed
according to the conditions of the lemma, this sweep
can be obtained from the cyclic sequence given by
lods(x), starting at j until i is found. By symmetry,
Λ(j, i) is found also.

The value of Λ(i, j) is determined as follows. The
robot is commanded to track landmark (i, pi) until
(i, pi) disappears (the robot is at pi). Next, the robot
is commanded to track (j, pj), and at the moment
(i, pi) is detected again, the robot is guaranteed to
be on pipj , pointing towards pj . Applying Lemma 1
to the sensor reading, Λ(i, j) and Λ(j, i) are found.

Now we use Λ to construct the information space
generated by the robot model. Consider the state
x = (q, E), which is unknown to the robot. Al-
though is not known in the general case, informa-
tion about q and E is available to the robot. In
particular, partial knowledge of the order type of
E can always be computed. Also, using tracking
commands together with readings from lods(x), the
position of the robot can be determined to be either
on a landmark, in the segment between two land-
marks, or aligned with two landmarks but not on
the segment joining them (i.e., when one landmark
occludes another). An information state is defined
as the pair (q′,Λ′), in which q′ refers to the position
of the robot with respect to the landmarks, and Λ′ is
the partial knowledge of Λ. The information space
I is the space of all such pairs.

Let I(E) be the information states for which Λ′

does not contradict the configuration of landmarks
in E. Note that up to a relabeling of the landmarks,
|I(E)| is finite. This is because for n landmarks,
there are b = n(n − 1) index pairs, and thus 2b pos-
sibilities for Λ′. Also, the number of possible values
for q′ is bounded by the number of combinatorial el-
ements of the line arrangement drawn from the lines
passing through each pair of landmarks.

4 Solving Robotic Tasks

In this section we present some tasks that can be
solved using the concepts presented in previous sec-
tions. In the following examples, L is the set of land-
marks detected in the environment E, and n = |L|.

4.1 Landmarks inside a triangle

The task in this section is to compute the subset of
landmarks of L that are inside of the triangle de-
fined by the landmarks labeled with i, j and k. In

Figure 4: Orientation error. Even a very small con-
trol error may find the wrong orientation for the tri-
angle. On the bottom, if the robot follows the top
arrow, the orientation is not computed correctly.

other words, if k ∈ Λ(i, j), the robot should deter-
mine Λ(i, j)∩Λ(j, k)∩Λ(k, i), or if k /∈ Λ(i, j), then
Λ(j, i)∩Λ(i, k)∩Λ(k, j) should be computed. These
two cases correspond to the two possible orienta-
tions of a triangle, as defined before with the deter-
minant. Since both the orientation of the triangle
and the needed values of Λ can be computed with
Lemma 1, we use this simple example to introduce a
motion strategy that deals with control uncertainty.
Refer to Figure 4. The problem here is that the in-
ternal angle of the triangle at landmark i is obtuse.
This gives little margin of error for the control, and
the triangle orientation may not be computed cor-
rectly. As it can be seen for landmarks j and k,
with acute angles, the error in the control should be
almost π before the orientation is computed incor-
rectly. Given that a triangle has at most one obtuse
angle, the robot repeats the orientation procedure
three times, one for each edge of the triangle. If
in this strategy an orientation is found more than
once, it is taken as the correct orientation of the tri-
angle. This strategy allows for a control error in the
direction of the robot up to 2π/3.

4.2 Boundary of the Convex Hull

In this task the robot should determine the land-
marks that are on the boundary ∂hull(L) of the
convex hull of the locations of the landmarks. This
task can be easily solved, if not efficiently, repeat-
ing the previous example for each possible triplet
of landmarks, until the landmarks that do not be-
long to interior of any triangle are found. How-
ever, a significantly more efficient algorithm can be
constructed based on the well-known three coin al-
gorithm for the computation of the convex hull [9;
16]. In its normal setting, the three coin algorithm
starts by finding one landmark in the convex hull
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(the leftmost for example), and sorting the remain-
ing landmarks radially around it. Next the land-
marks are considered three by three according to
this radial order. Particular landmarks are included
or removed from the boundary of the convex hull
depending if they lie to the left or right of the land-
marks in the triplet. Although space restrictions
forbid us to give an exact detail of how this algo-
rithm works, it is clear that the information needed
can be computed from the corresponding values of
Λ. It remains to be explained how to compute the
first landmark in the convex hull, and how the radial
order is obtained.

The information needed is actually any landmark
pair for which Λ(i, j) = 0. These can be found as
follows. First, select randomly a pair of landmark
labels, i, j, and compute both Λ(i, j) and Λ(j, i). If
one of them is zero, the required pair has been found.
Otherwise, repeat this process on Λ(i, j) ∪ {i, j} or
Λ(j, i)∪{i, j}, whichever has the smallest cardinality.
Since at each iteration at least half of the remaining
landmarks are discarded, only O(log(n)) sensing op-
erations are needed. Once this pair has been found,
the radial order is computed counterclockwise, from
any point on the segment joining pi and pj , with the
robot pointing to either (i, pi), or (j, pj).

4.3 Patrolling

In this example we model robotic tasks in which a
robot carefully monitors some area of the environ-
ment. As a concrete example, imagine an unmanned
flying vehicle above a terrain. The flying vehicle is
given a set of way points, which are visited sequen-
tially. In this example, we solve a version of the pa-
trolling problem in which the robot performs loops
around a given subset of the landmarks. Formally,
let W ⊂ L, with W ∩ ∂hull(L) = ∅. The patrolling
task for set W is defined as follows: Find M ⊂ L,
such that W ⊂ M , ∂hull(M) ∩ W = ∅ and the size
of M is minimum.

To solve this task, the dual of the configuration
of landmarks is introduced. The dual of a land-
mark l = (s(p), p), with p = (px, py), is defined as
the labeled line p∗ = (s(p), pxx + py). There are
well-know properties of such dual arrangements[2;
3], such that the intersection of two lines p∗i and p∗j ,
which defines a vertex in the dual, corresponds to the
line passing through pi and pj in the primal space.
Also, ordering relations are respected. Namely, if a
point p is above a line m in the primal space, then
the point m∗ is above the line p∗ in the dual. Fig-
ure 5 shows the dual arrangement for a configuration
of four landmarks.

A line arrangement can be encoded with a se-
quence of permutations [3]. This is done by sweep-
ing a vertical line from left to right in the line ar-

(a) (b)

Figure 5: Retrieving the permutations that encode
the configuration of landmarks. In (a) the robot
travels outside the convex hull of a set of landmarks.
This is naturally expressed in the dual line arrange-
ment on (b).

rangement, recording the vertical order of the in-
tersections of the vertical line with the lines of the
arrangement. Such permutations can be obtained
from the primal space. As it is shown in Figure 5,
when the robot travels outside a convex hull of a
set of landmarks, a vertex of the line arrangement
is read whenever two labels swap places from one
permutation to the other. Since a vertex in the dual
corresponds to a line in the primal, only

(

n
2

)

+1 per-
mutations are needed to describe the line arrange-
ment, when actually 2

(

n
2

)

could be read by the robot
traveling outside the convex hull. These permuta-
tions have other nice symmetric properties, and the
reader is referred to [3].

There some minor complications for obtaining
such permutations with the robot model described.
First, the robot cannot, in general, travel outside a
convex hull, since it only knows how to track land-
marks. To solve this, we need the following lemma:

Lemma 2. Let L be a set of landmarks, let Z be
a subsequence of lods(x) and containing only the la-
bels corresponding to the landmarks in ∂hull(L) (ele-
ments of Z may not appear consecutively in lods(x)).
Then Z is the same sequence for any position of the
robot inside hull(L).

Proof. For labels s(a) and s(b) to switch places in Z,
at some moment they should map to the same po-
sition in the landmark order detector. This means
that a, b and the robot are collinear, and that either
a is contained in the line segment from the robot po-
sition to b, or b is contained in the line segment from
the robot position to a. Since no three landmarks
are collinear, the robot must be outside hull(L).

From Lemma 2, the robot can obtain the counter-
clockwise order of the landmarks on the boundary of
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the convex hull. Instead of traveling properly out-
side the convex hull, the robot tracks sequentially
each of the landmarks in the boundary, following
the order found. When the robot arrives at a land-
mark, the corresponding permutations are generated
in the natural manner from the reading of the land-
mark order detector at such location. Finally, the
landmark order detector gives cyclic permutations,
but the arrangement description needs the extremal
point in a particular direction to come first. This
is easily solved by ordering the cyclic permutation
such that the label of the landmark being tracked
appears first. The following lemma is a well-known
result for dual line arrangements (expressed in our
framework):

Lemma 3. Let L∗ be the set of lines dual to the set
of landmarks L. Let mv be a vertical line, and let
[l∗1, l

∗

2, . . . , l
∗

n] for l∗i ∈ L∗ be sorted according to the
y-coordinate of the intersection between mv and l∗i .
Then the landmarks l1 and ln belong to ∂hull(L).

Proof. Let mv intersect the x− axis at x. Consider
all the lines intersecting the convex hull of L with
slope x. Since the duality transformation is order
preserving, then l1 is below and ln is above all such
lines.

Corollary 1. Let L∗ be the set of lines dual to the
set of landmarks L. Let mv be a vertical line, and let
[l∗1, l

∗

2, . . . , l
∗

n−1, l
∗

n] for l∗i ∈ L∗ be sorted according to
the y-coordinate of the intersection between mv and
l∗i . Let l1, l2, ln−1, and ln be the duals of l∗1, l

∗

2, l
∗

n−1,
and l∗n respectively. Then l2 is in ∂hull(L\{l1}), and
ln−1 is in ∂hull(L \ {ln}).

Proof. Consider L∗ \ {l∗1} and L∗ \ {l∗n}, and apply
Lemma 3.

The patrolling problem can be solved as follows.
Assume the robot has computed the permutations
encoding the dual arrangement of L. The algorithm
is based in the following iteration. Set L0 = L. For
i > 0, find l ∈ ∂hull(Li) such that ∂hull(Li\{l}) does
not contain any landmark in W . If no such landmark
exists, set M = Li. Else, set Li+1 = Li \ {l} and
repeat.

By Corollary 1, landmarks can be removed from
Li, and the boundary of the convex hull can be read
directly from the permutations encoding the dual
arrangement. Moreover, the permutations with the
landmark removed encode the dual arrangement of
Li+1. A landmark may not be removed if this will
make a landmark in W to become the first, or last
in the permutations encoding the dual arrangement.
The robot can then patrol the landmarks in W , by
following the landmarks on the boundary of M in
counterclockwise order.

Figure 6: Swap lines. Crossing a half-line swaps
the order of the respective landmarks in the reading
of the landmark order detector. Such half-lines are
called swap lines.

4.4 Navigation

The final task described in this paper is navigation.
In our framework, a navigation goal is a sequence g
of landmark labels. Formally, the navigation task is
defined as follows: Move the robot such that a state
x with lods(x) = g is reached. Report if g cannot be
attained given the configuration of landmarks in the
plane.

Before describing the navigation algorithm, we
need to describe what is achieved by moving the
robot to a place where a particular permutation is
sensed. For this purpose, consider the partition of
the plane in which locations inside the same cell gen-
erate the same reading in the landmark order detec-
tor. This can be considered as an aspect graph [10],
in which a cyclic permutation is an aspect of the
configuration of landmarks. The decomposition is
determined by half-lines, that if crossed, generate a
change in the permutation order of a pair of land-
marks in lods(x). Each pair of landmarks generate a
pair of half-lines, which are referred to as swap lines
(see Figure 6).

Given that the robot cannot travel outside
hull(L), the navigation task is only defined for cells
whose intersection with hull(L) is not empty. The
navigation task is only meaningful if different cells
generate different cyclic permutations for the land-
mark order detector. To prove this, the following
Lemma is proposed:

Lemma 4. Let C be the set of cells of the decom-
position generated by the swap lines that intersect
hull(L), and let Ci, Cj ∈ C. If Ci and Cj are not
the same cell, and they are bounded by the same swap
line m, then they generate different readings in the
landmark order detector.

Proof. Let (s(a), a) and (s(a′), a′) be the landmarks
that generated m. Consider a motion of the robot
from Ci to Cj in a straight line arbitrarily close to
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m. This makes labels s(a) and s(a′) to appear con-
secutive in lods(x) for the duration of the motion.
Since Ci and Cj are different, then at least one swap
line intersects m between cells Ci and Cj . Let such
swap line be generated by landmarks (s(b), b) and
(s(b′), b′). Crossing this line swaps the order of s(b)
and s(b′). This swapping could be reverted if the
other swap line generated by (s(b), b) and (s(b′), b′)
is crossed, or if one of (s(b), b) or (s(b′), b′) swaps
with all the other landmarks. The first situation is
not possible, since both swap lines lie in the same
line, and m can only intersect one of them. The
other case implies that s(a) and s(a′) are at some
instant not consecutive in lods(x). This is not pos-
sible by traveling arbitrarily close to m. Thus, the
readings of lods(x) from Ci and Cj will differ in at
least a pair of landmarks.

The next theorem states that the landmark order
detector generates different readings for cells inter-
secting the convex hull of the configuration of land-
marks.

Theorem 1. Let C be the set of cells of the decom-
position generated by the swap lines that intersect
hull(L). Then for any two different cells Ci and Cj,
the cyclic permutations generated by lods(x) when
the robot is inside Ci or Cj are different.

Proof. By induction on the the number of landmarks
n = |L|. When n = 3, there is a single cell inter-
secting hull(L). For n > 3, assume the statement
is true for n landmarks. Then for n + 1, adding
the new landmark generates 2n swap lines, some of
which stab cells in C. Cells stabbed by the same
swap line will have different cyclic permutations, by
Lemma 4. Since the new landmark does not change
the relative ordering of any other three landmarks,
by the induction assumption, cells that do not share
one of the new swap lines will also have different
permutations.

By Theorem 1 it is known that different “places”
will have different cyclic permutations associated.
Given that the robot does not have the landmarks
coordinates, the exact geometrical decomposition
cannot be constructed. Nevertheless, the robot can
navigate such that a particular cyclic permutation g
appears in the landmark order detector. First of all,
the robot has to decide if g is attainable in the con-
figuration of landmarks. This can be decided using
Λ as follows:

Lemma 5. Let g = [s(p1), s(p2), . . . , s(pn)], and let
g(s(pi), s(pj)) be the set whose elements are the el-
ements of the subsequence of g starting at s(pi+1),
ending at s(pj−1). If g is attainable in the config-
uration of landmarks of L, then for each landmark
label s(pi) there is a landmark label s(pj) such that

Λ(s(pi), s(pj)) = g(s(pi), s(pj)). The directed line
passing from pi to pj is called the polar line of (i, pi),
and (j, pj) is called the pole of (i, pi).

Proof. Suppose that g is attained when the robot is
at point p. Consider the infinite ray r starting at
landmark pi and passing through p. Now rotate r
clockwise, with pi as a pivot, until r hits a landmark,
say (s(pj), pj). Then we have that Λ(s(pi), s(pj)) =
g(s(pi), s(pj)), otherwise the order required for g is
not attained ((i, pi) or (j, pj) would appear in the
wrong place according to g).

While the region in which g is attained is bounded
by polar lines, not all polar lines intersect such re-
gion. However, a landmark and its pole appear con-
secutive in lods(x) if the corresponding polar line
bounds the goal region. Thus, the search for the
search for the goal permutation g is reduced to such
polar lines. Suppose that a polar line is determined
by landmarks (s(a), a) and (s(b), b). If both of them
belong to the boundary of the convex hull, then the
robot traverses the line segment ab until g is found.
This is done, for example, by tracking (s(a), a) and
then tracking (s(b), b) (see Figure 7). If the land-
marks do not belong to the boundary of the convex
hull, the intersection of the polar line with the con-
vex hull is found by the robot traveling in the bound-
ary of the convex hull, until landmark labels s(a) and
s(b) swap places. At this point, the robot tracks any
of the landmarks, which traverses at the same time
the polar line. Note that the robot may not need
to traverse the convex hull boundary to find this in-
tersections, since this information may be already
available from Λ. Note also that the tracking takes
place once s(a) and s(b) swap places in lods(x), thus
the robot travels arbitrarily close, but not exactly on
the polar line.

5 Future Work

Given that the Λ and λ functions are equivalent, it
is plausible to allow some recognition error of land-
marks. This idea is as follows. If the landmark order
detector is not able to identify a landmark, but it is
able to detect that indeed a landmark is present,
this recognition error may be corrected using the λ
function. For example, the robot may be able to
detect landmarks much farther than the maximum
distance for a perfect identification. The λ function
seems the appropriate tool for such situations.

Given the information the permutations provide,
one may wonder if it is possible to recover the coor-
dinates of an equivalent set of landmarks. That is,
is it possible to construct the coordinates of a set of
landmarks, such that this construction has the same
order type as the original set? This turns out to be
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(a) (b)

Figure 7: The two general cases for navigation in the
polar lines. In (a) the polar line is determined by
two landmarks in the boundary of the convex hull,
and no further computation is required. In (b), the
intersection of the polar line with the boundary of
the convex hull is found by a change in the order of
the landmarks which determine the polar line. With
this, the robot is able to traverse the polar line.

a very hard question. Just deciding if a sequence
of permutations can be realized in the plane is NP-
hard[15]. Moreover, representing such coordinates
may require exponential number of bits[8]. Never-
theless, our problem may be simpler, since the robot
proves that the permutations are realizable (by sens-
ing them). If not for the general case, realizations
can be found for small subsets of landmarks.

We are currently working on removing some of
the assumptions made on this paper. One of them
is the infinite range assumption for the landmark or-
der detector, since the concepts presented still hold
for local neighborhoods of landmarks. One solution,
although not very efficient in the number of sens-
ing operations, is to apply directly the algorithms
presented in [5], in the context of sensor networks.
Determining the relations between neighborhoods of
landmarks, also allows the introduction of environ-
ment obstacles.

Is it possible to construct the coordinates of a set
of landmarks, such that this construction has the
same order type as the original set? This turns out
to be a very hard question. Deciding if a sequence
of permutations can be realized in the plane is NP-
hard [15]. Moreover, representing such coordinates
may require exponential number of bits [8]. Never-
theless, our problem may be simpler, since the robot
proves that the permutations are realizable (by sens-
ing them). If not for the general case, realizations
can be found for small subsets of landmarks.
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