DRAFT: Submitted to the 2000 IEEE International Conference on Robotics and Automation

A Framework for Planning Feedback Motion Strategies
Based on a Random Neighborhood Graph

Libo Yang

Steven M. LaValle

Dept. of Computer Science
Iowa State University
Ames, TA 50011 USA

{lyang, lavalle}@cs.iastate.edu

Abstract

Randomized techniques have led to the develop-
ment of many successful algorithms for path planning
in high-dimensional configuration spaces. This paper
presents a randomized framework for computing feed-
back motion strategies, by defining a global navigation
function over a collection of spherical balls in the con-
figuration space. If the goal is changed, an updated
navigation function can be quickly computed, offer-
ing benefits similar to the fast multiple queries per-
mitted by the probabilistic roadmap approach to path
planning. Our choice of balls is motivated in part by
recent tools from computational geometry which com-
pute point locations and arrangements efficiently with-
out significant dependence on dimension. We present
a construction algorithm that includes o Bayesian ter-
mination condition based on the probability that a spec-
ified fraction of the free space is covered. A basic im-
plementation illustrates the framework for rigid and
articulated bodies with up to five-dimensional configu-
ration spaces.

1 Introduction

Determining a collision-free motion strategy is one
of the most basic operations in robotics. One of the
greatest challenges in the design of many robotic sys-
tems is to perform global, geometric reasoning while
also allowing quick on-line responses to unexpected
events. In a traditional view of robotics, an off-line
path planning algorithm considers global, geometric
issues to determine a collision-free path for a given
robot and set of obstacles. The solution is then passed
to an on-line control algorithm that attempts to follow
the path, while hoping that localization errors, con-
trol errors, dynamical constraints, and responses to
unexpected obstacles do not cause failure. Recogniz-
ing this difficulty, many interesting alternatives have

Figure 1: The configuration space is covered by balls
on which navigation functions are defined.

been proposed. For example, in the BUG paradig-
m [8, 9, 19, 18, 27], the robot makes decisions based
on local information and assumes the environment is
mostly unknown, yet global convergence is guaran-
teed. As another example, potential field approaches
have been proposed to allow the robot to use sensor
feedback to determine the actual course during navi-
gation [3, 7, 11, 12, 26, 28, 20].

In general, the task of constructing a collision-free
feedback motion strategy is at least as difficult con-
structing a collision-free path. The computational ex-
pense required to solve general versions of either type
of problem is prohibitive when there are many degrees
of freedom. This difficulty has led to the development
and success of randomized path planning algorithms,
which are capable of solving many challenging and im-
portant practical planning problems [1, 2, 10, 25]. The
tradeoff is that completeness is exchanged for a weak-
er, probabilistic convergence. Through clever use of

randomization, most of the high costs due to high di-
mensionality are eliminated. Randomized path plan-
ning methods have consequently generated great in-
terest both in robotics, and beyond in areas such as
virtual prototyping, computational chemistry, graphi-
cal animation, and architecture. Unfortunately, these
applications contain problems that involve a static,
off-line geometric reasoning task, which is often not a
reasanoable solution for many kinds of robotics prob-
lems.

Inspired by both the success of randomized path
planning techniques and sensor-feedback motion s-
trategies, we propose a randomized framework for
generating feedback motion strategies (see Figure 1)
for robots with high degrees of freedom. We hope
that this framework can facilitate the development
of motion strategies for problems that involve multi-
ple queries, dynamic obstacles, sensing and prediction
uncertainties, nonholonomic planning, tracking con-
troller design, or safety clearance restrictions. The
key idea is to fill the collision-free subset of the con-
figuration space with overlapping spherical balls, and
define collision-free potential functions on each ball.
A similar idea has been developed for collision detec-
tion in [23], and for navigation in [24]. Topological
information is captured by an underlying connectivity
graph called a Random Neighborhood Graph (RNG).
The following desirable properties are achieved during
execution once an RNG has been constructed: 1) a
global potential function (with no local minima) can
be defined over most of the configuration space; 2)
if the goal changes, the RNG can be quickly recon-
figured to represent a new global potential function
that guides the robot to the new goal (this is analo-
gous to the multiple-query property in path planning
algorithms [10]); 3) the path taken by the robot can
be significantly adjusted and adapted on-line, while
easily avoiding collisions; 4) efficient algorithms from
computational geometry can be exploited to quick-
ly extract motion commands in real time [21]. We
present an RNG construction algorithm that has the
following properties: 1) it exploits information com-
puted from existing, efficient distance computation al-
gorithms (e.g., [4, 5, 16, 22, 23]); 2) the use of random-
ization overcomes many of the pitfalls of high dimen-
sionality; 3) techniques from computational geometry
can be exploited to efficiently construct the RNG with
little sensitivity to dimension; 4) a Bayesian stopping
condition guarantees that a specified fraction of the
space is covered with a specified probability.

2 Problem Formulation

Assume that a robot moves in a bounded 2D or 3D
world, W C ®Y, such that N =2 or N = 3. An n-
dimensional configuration vector, q, captures position,

orientation, joint angles, and/or other information for
robot. Let C, be the configuration space (i.e., the set
of all possible configurations). Let A(q) denote the set
of points in W that are occupied by the robot when
it is in configuration ¢. Let O C W denote a static
obstacle region in the world. Let Cf,.. denote the set
of configurations, ¢, such that A(q) N O = 0.

The task is to find a motion strategy that uses
feedback and guides the robot to any goal configu-
ration from any initial configuration, while avoiding
collisions. For a given goal, g4, this can be accom-
plished by defining a real-valued navigation function,
U : Cyree — R that has a single local minimum, which
is at g4. A navigation function can be considered as
a special case of an artificial potential function [11]
that avoids the pitfalls of becoming trapped in local
minima. The robot is guided to the goal by following
directions given by the negative gradient of U.

The task can generally be divided into two stages:
constructing a representation of C frees and construc-
tion a navigation function over this representation.
the first stage is performed only once, while the sec-
ond stage may be iterated many times, for a variety
of changing goals. In general, it is too difficult to ob-
tain a navigation function defined over all of Cyree.
Instead, the task is to build navigation functions over
as much of C¢,c. as possible. Assume Cy,. is bound-
ed. Let u(X) denote the measure (or n-dimensional
volume) of a subset of Csree (Obviously the measure
is sensitive to the parameterization of the configura-
tion space). For a given a € (0,1), and a probability,
P, the first phases consists of building a data struc-
ture that fills Csree With a set B C Cgpee, such that
w(B)/p(Csree) > a with probability P. As goals are
changed, it must be possible to efficiently recompute
a new navigation function. This operation motivates
our construction of a Random Neighborhood Graph,
which is described in Section 3.

3 Random Neighborhood Graph

A Random Neighborhood Graph (RNG) is an undi-
rected, graph, G = (V, E), in which V is the set of
vertices and F is the set of edges. Each vertex repre-
sents an n-dimensional ball that lies entirely in Cfpee.
For any vertex, v, let ¢, denote the center of its cor-
responding ball, r, denote the radius of its ball, and
let B, be the set of points,

B, :{QEC | ||q_cv|| Srv}'

We require that B, C Cfree. The definition of B,
assumes that C is an n-dimensional Euclidean space;
however, minor modifications can be made to include

other frequently-occurring topologies, such as 2 x S*
and N3 x P3.

An edge, e € E, exists for each pair of vertices, v;,
and vj, if and only if their balls intersect, B; N B; # .
Assume that no balls are contained within another
ball, B; Z Bj, for all v; and v; in V. Let B represent
the subset of Cyrc. that is occupied by balls,

B= UBU.

veV

Suppose that the graph G has been given; an algo-
rithm that constructs G is presented in Section 4. For
a given goal, the RNG will be used to represent a feed-
back strategy, which can be encoded as a real-valued
navigation function, v : B — R. This function will
have only one minimum, which is at the goal configu-
ration. If the goal changes, it will also be possible to
quickly “reconfigure” the RNG to obtain a new func-
tion, «', which has its unique minimum at the new
goal.

Let G be a weighted graph in which /(e) denotes
the cost assigned to an edge e € E. Assume that
1 <I(e) < oo for all e € E. The particular assignmen-
t of costs can be used to induce certain preferences on
the type of solution (e.g., maximize clearance, mini-
mize distance traveled). Let B, denote any ball that
contains the goal, ggoq1, and let vy be its corresponding
vertex in G. Let L*(v) denote be the optimal cost to
reach vy from v. The optimal costs can be recomputed
for each vertex in V in O(V?) or O(V1gV + E) time
using Dijkstra’s algorithm; alternatively, an all-pairs
shortest paths algorithm can be used to implicitly de-
fine solutions for all goals in advance.

Assume that G is connected; if G is not connect-
ed, then the following discussion can be adapted to
the connected component that contains vy. Define a
strict linear ordering, <,, over the set of vertices in
V using L*(v) as follows. If L*(vy) < L*(vq) for any
v1,v9 € V, then v1 <, vo. If L*(v1) = L*(vy), then
the ordering of v; and vy can be defined in an arbi-
trary way, while ensuring that <, remains a linear
ordering. The ordering <, can be adapted directly to
the set of corresponding balls to obtain an ordering <
such that: B,, <p B,, if and only if v; <, v2. Note
that the smallest element with respect to <; always
contains the goal.

For a given goal, the RNG will be used to represent
a mapping v : B — R that serves as a global potential
or navigation function. For each vertex, v € V, let
Yy : By — R represent a partial strategy. Among all
balls that intersect B,, let B, , denote the ball that is
minimal with respect to <j. It is assumed that v, is a
differentiable function that attains a unique minimum
a point in the interior of B, N B,, . Intuitively, each
partial strategy guides the robot to a ball that has
lower cost.

The partial strategies are combined to yield a glob-
al strategy in the following way. Any configuration,

S

Figure 2: The negative gradient of a partial navigation
function sends the robot to a lower-cost ball.

GENERATE_RNG(a,P,)
1 Guinit(ginit);
2 while (TerminationUnsatisfied(G,a,P,) do
3 repeat
4 Gnew — RandomConf(G);
5 d + DistanceComputation(gneqw);
6 until ((d > 0) and (gnew € B))
7 r + ComputeRadius(d);
8 Unew —G.AddVertex(gnew, 7);
9 G.AddEdges(vpew);
10 G.DeleteEnclaves();
11 G.DeleteSingletons();
12 Return G

Figure 3: This algorithm constructs the RNG and de-
termines automatically when to terminate based on
estimated coverage of Cyree.

q € B, will generally be contained in multiple ball-
s. Among these balls, let B, be the minimal ball with
respect to <p that contains q. The navigation function
at ¢ is given by v,(q), thus resolving any ambiguity.
Note that the robot will typically not reach the mini-
mum of a partial strategy before “jumping” to a ball
that has a lower cost with respect to <j.

4 RNG Construction Algorithm

An outline of the RNG construction algorithm is
given in Figure 3. The inputs are a € (0,1) and P, €
(0,1) (the obstacle and robot models are implicitly
assumed). For a given a and P,, the algorithm will
construct an RNG such that with probability P., the
ratio of the volume of B to the volume of Cyy.. is at
least a.

Each execution of Lines 3-9 corresponds to the ad-
dition of a new ball, B, . , to the RNG. This results
in a new vertex in GG, and new edges that each cor-
responds to another ball that intersects B,,,,. Balls
are added to the RNG until the Bayesian termina-

tion condition is met, causing TerminationUnsatisfied
to return FALSE. The Bayesian method used in the
termination condition, RelativelyUnexplored, is pre-
sented in Section 4.2. The repeat loop from Lines
3 to 6 generates a new sample in Cygree \ B, which
might require multiple iterations. Collision detection
and distance computation are performed in Line 5.
Many algorithms exist that either exactly compute or
compute a lower bound on the closest distance in W
between A and O [16, 22, 23]

d(gnew) = E;&l}}ﬂ)gémlla—OII

If d is not positive, then ¢, is in collision, and an-
other configuration is chosen. The new configuration
must also not be already covered by the RNG before
the repeat loop terminates. This forces the RNG to
quickly expand into Cgyee, and leads to few edges per
vertex in G.

Distance computation algorithms are very efficien-
t in practice, and their existence is essential to our
approach. The distance, d, is used in Line 7 by the
ComputeRadius function, which attempts to select r
to create the largest possible ball that is centered at
Gnew and lies entirely in Cypc.. A general technique for
choosing r is presented in Section 4.1.

The number of iterations in the while loop depends
on the Bayesian termination condition, which in turn
depends on the outcome of random events during ex-
ecution and the particular Cy,.. for a given problem.
The largest two computational expenses arise from the
distance computation and the test whether ¢, lies
in B. Efficient algorithms exist for both of these prob-
lems. Hierarchical representations [23] and Voronoi
structure [16, 17, 22] can be exploited to efficient-
ly compute distance. The test whether gne, lies in
B can be considered as a point location problem, for
which very efficient algorithms exist, which approach
computation time logarithmic in the number of balls,
regardless of dimension [21].

4.1 Radius selection

For a given ¢y, the task is to select the largest
radius, r, such that the ball

—dqll <7}

is a subset of Cyree. If DistanceComputation(gpew)
returns d, then max,e4 ||a(gnew) — a(g)|| < d for all
g € B, implies that B, C Cgree. For many robots
one can determine a point, af, in .4 that moves the
furthest as the configuration varies. For a rigid robot,
this is the point that would have the largest radius
if polar or spherical coordinates are used to represen-
t A. There exists a positive constant, r, such that
lgnew — all < 7 implies [las(gucw) — ag(@)]] < d. The
goal is to make r as large as possible to make the RNG

By, ={q €| llgnew

construction algorithm more efficient. The largest val-
ue of r is greatly affected by the parameterization of
the kinematics. For example, if ay is far from the o-
rigin, points on the robot will move very quickly as
the rotation angle changes. For a 2D rigid robot with
translation and rotation, C = 2 x S', and the follow-
ing homogeneous transformation can be used for the
kinematics

Tnew COS(Q3/7‘m) - Sin(Q3/7‘m) q1 z
Ynew | = | sin(gz/rm) cos(gz/rm) @ y
1 0 0 1 1

(1)

in which 7,, = [lag(0)||, g1 is x-translation, g is y-

translation, and g3 is a scaled rotation. Using this
representation it can be shown that » = d. If the stan-
dard parameterization of rotation was used, the effects
of rotation would dominate, resulting in a smaller ra-
dius, 7 = d/rm. Although the relative fraction of S!
that is covered is the same in either case, the amount
of R2 that is covered is increased substantially.

Although many alternatives are possible, one gen-
eral methodology for selecting r for various robots and
configuration spaces is to design a parameterization by
bounding the arc length. Let f : R* — R™ denote the
expression of the kinematics that maps points from an
n-dimensional configuration space to an mD world (a
simple of example of f is (1)). In general, arc length
in the world, based on differential changes in configu-
ration, is specified by a metric tensor

0fi 0fi ,
ZZZ@ 0q dg-

i=1 j=1 k=1

If the transformation f is orthogonal, then the arc
length simplifies to

Pop |

in which each term represents the squared magnitude
of a column in the Jacobian of f. Using the bound
d?> < ds?, (1) expresses the equation of a solid el-
lipsoid in the configuration space. If every term is
one, then ¢ = d, which occurred by design using (1).
The key is to choose kinematic expressions that keep
the eccentricity as close as possible to representing a
sphere. For problems that involve articulated bodies,
it is preferable to derive expressions that consider the
distance in the world of each rigid body. For the re-
sults in Section 5, we use this general technique for 2D
rigid bodies, and 2D articulated bodies.

4.2 A Bayesian termination condition

The algorithm in Figure 3 decides to terminate
based on a statistical estimate of the fraction of Cspe,

that is covered by the RNG. The volumes of Cyfree
and B, denoted by p(Csree) and p(B) are assumed
unknown. Although it is theoretically possible to in-
crementally compute u(B), it is generally too compli-
cated to compute. A Bayesian termination condition
can be derived based on the number of samples that
fall into B, as opposed to Cfe \ B. For a given a and
P,, the algorithm will terminate when 100« percent
of the volume of Cf,.. has been covered by the RNG
with probability P..

Let p(x) represent a probability density function
that corresponds to the fraction p(B)/p(Csree). Let
Y1,Y2, - - -, Yk represent a series of k observations, each
of which corresponds for a random configuration,
drawn drawn from Cf.... Each observation has two
possible values: either the random configuration, g;,¢q,
isin B or in Cgree \ B. Let yr = 1 denote gnew € B,
and let yr = 0 denote Tpew € Cyree \ B-

For a given a and P., we would like to determine
whether P[z > o] > P.. The left side can be comput-
ed from

Pl > a] =/ P | 91, u8)- 3)

The integrand above is given by starting with a prior
density function p(z), and iteratively applying Bayes’
rule for each sample. This yields

p(yklz) p(2 [Y1, - yk—1)

: .
/ P | 2) p(& | 91, - - g1)de
0

p($|y17"'7yk) =

Assume that the prior p(z) is a uniform density over
[0,1]. For any k, if y, = 1, then p(yg|z) = z. Oth-
erwise, p(yk|z) = 1 — z. For a sequence of k samples,
suppose yr = 1 for i of these samples, and y; = 0 for
the remaining k — <. Then
P | g1, p) o< (1 —)

The constant of proportionality is somewhat compli-
cated, except in the case in which all samples lie in
B. For simplicity, we use this this set of observations,
even though other observation sets can theoretically
be used (in fact there are a variety of other methods
that would allow more efficient termination). Thus,
yr = 1 for a chain of k& successive samples. The poste-
rior probability density is p(x|y1, k) = (B + 1)k
Using (3), Plz > a]=1—

The algorithm termmates when the number of suc-
cessive samples that lie in B is k, such that aft! <
1 — P.. One can solve for k£ and the algorithm will
terminate when k = M 1. During execution, a
simple counter records the number of consecutive sam-
ples that fall into B (ignoring samples that fall outside
of Crree).

5 An Implementation with Examples

We have implemented the RNG construction algo-
rithm in Gnu C++ using the LEDA library on a Pen-
tium IIT 500 Mhz PC running Linux. A variety of
experiments have been performed for robots in 2D en-
vironments and up to five degrees of freedom.

Figure 1 shows the balls of the RNG for a point
robot in a 2D environment. Figure 4.a shows the RNG
edges as line segments between ball centers. The RNG
construction required 23s, and the algorithm termi-
nated after 500 successive failures (k = 500) to place a
new ball. The RNG contained 535 nodes, 525 of which
are in a single connected component. There were 1854
edges, resulting in an average of only 3.46 edges per
vertex. We have observed that this number remains
low, even for higher-dimensional problems. This is an
important feature for maintaining efficiency because of
the graph search operations that are needed to build
navigation functions. Computation time can be sig-
nificantly improved by weakening the requested per-
centage of coverage. For example, when k = 50, only
0.2s was needed to construct the RNG. Most of the
computation time is wasted when the space is mostly
covered, and it is very difficult find new ball centers
at random that do not lie in B. Part of the problem is
that we perform naive O(n) time point location, which
can be easily improved. We also believe that special-
ized sampling methods can be developed to attempt
to obtain ball centers that are not already covered.
Figures 4.a and 4.b show level sets of two different
potential functions that were quickly computed for t-
wo different goal (each in less than 10ms). The first
goal is in the largest ball, and the second goal is in
the upper right corner. Each ball will guide the robot
into another ball, which is one step closer to the goal.
Using this representation, the particular path taken
by the robot during execution is not critical. Figure
4.d shows another result for a 2D point robot. In this
case, the robot travels into a narrow corridor, and the
RNG contains a single connected component,.

For higher-dimensional configuration spaces, we on-
ly show robot trajectories, even though much more in-
formation is contained in the RNG. Figure 5 shows a
complicated path followed by the robot for an RNG
that was computed for a 2D rigid robot that can rotate
and translate in a 2D environment. The RNG took an
hour to construct. Figure 6 shows paths that were ob-
tained by constructing an RNG in a 5D configuration
space for an articulated robot that consists of three
links. The computation time to construct this RNG
was about twenty minutes. Significant improvement
can be made to the computation times by designing a
better termination condition and by performing more
efficient point location.

Recall that using the RNG, potential functions with
no local minima can be constructed for any configura-

» Vil v&%

g 1 I

il
b)

Figure 4: (a) The RNG for a 2D point robot (b), (c) t-
wo navigation functions computed from a single RNG;
(d) another example for a 2D point robot.

tion that is covered by the balls. Thus, it is important
not to compare the computation times with those ob-
tained by standard path planning algorithms. Instead
of determining a path or a network of paths, we build
a data structure that can be repeatedly used many
times for different execution tasks.

6 Discussion

We have introduced a randomized planning method
that computes feedback motion strategies based on the
Random Neighborhood Graph. The choice of simple
geometric primitives enables the efficient construction
of a volumetric representation of Csrc., and a simple
Bayesian termination condition. Because navigation
functions can be quickly computed and recomputed on
an RNG, our work is expected to have applications to
robotics systems that involve changing environments,
moving obstacles, unexpected obstacles, sensing un-
certainties, and uncertainties in control.

Our preliminary implementation and experimental
results have been encouraging; however, more experi-
mentation is needed, especially in higher-dimensional
configuration spaces. This transition to higher dimen-
sions is expected to proceed smoothly because our
representation is not sensitive to dimension [21], in

Figure 5: A path constructed from a 3D RNG, for a
rigid robot.

comparison to a traditional cell decomposition method
such as 2™ trees [13]. The key difficulty will be se-
lecting a good parameterization of C to increase the
likelihood that large balls can be placed at random in
Cfree- One possible improvement for higher dimen-
sions is to combine cylinders with balls; for example,
a region might exist in C in which the robot is able to
rotate freely without collision. In this case, it might
be preferable to allow any value for orientation, which
generates a cylinder. Another reasonable alternative
is to define rectangular neighborhoods, as opposed to
spheres.

Our method is expected to suffer, along with other
randomized planning methods, from the narrow pas-
sage problem [6]. Although our algorithm converges in
volume to a covering of C¢ree, it does not indicate the
probability that the topology of B will follow the topol-
ogy of Csree. Randomized path planning techniques,
such as probabilistic roadmaps [10], rapidly-exploring
random trees [15, 14], or even random walks might be
helpful to locate locations for balls that will improve
RNG performance in narrow passages. Another issue
to address is the increasing number of wasted samples
that are generated as the RNG covers a larger frac-
tion of C¢ree. With improved sampling methods, it
might be possible to significantly improve computa-
tion times.

Acknowledgments

This work was funded in part by NSF CAREER
Award IRI-9875304 (LaValle). We thank Ahmad Mas-
soud for a helpful discussion.

Figure 6: A path for an articulated robot, constructed
from a 5D RNG.

References

[1]

2]

[10]

[11]

N. M. Amato and Y. Wu. A randomized roadmap
method for path and manipulation planning. In JEEE
Int. Conf. Robot. & Autom., pages 113-120, 1996.

J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach. Int.
J. Robot. Res., 10(6):628-649, December 1991.

C. Connolly and R. Grupen. The application of har-
monic potential functions to robotics. J. Robotic Sys-
tems, 10(7):931-946, 1993.

E. G. Gilbert and D. W. Johnson. Distance functions
and their application to robot path planning in the
presence of obstacles. IEEE Trans. Robot. & Autom.,
1(1):21-30, March 1985.

L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierar-
chical distance computation for moving convex bod-
ies. In Proc. ACM Symposium on Computational Ge-
ometry, pages 265-273, 1999.

D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani,
and S. Sorkin. On finding narrow passages with prob-
abilistic roadmap planners. In et al. P. Agarwal, ed-
itor, Robotics: The Algorithmic Perspective, pages
141-154. A.K. Peters, Wellesley, MA, 1998.

H. Jacob, S. Feder, and J. Slotine. Real-time path
planning using harmonic potential functions in dy-
namic environment. In IEEE Int. Conf. Robot. &
Autom., pages 874-881, 1997.

I. Kamon and E. Rivlin. Sensory-based motion plan-
ning with global proofs. IEEE Trans. Robot. & Au-
tom., 13(6):814-822, December 1997.

I. Kamon, E. Rivlin, and E. Rimon. Range-sensor
based navigation in three dimensions. In IFEE Int.
Conf. Robot. & Autom., 1999.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Tran-
s. Robot. & Autom., 12(4):566-580, June 1996.

O. Khatib. Real-time obstacle avoidance for manipu-
lators and mobile robots. Int. J. Robot. Res., 5(1):90—
98, 1986.

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

(23]

[24]

25]

26]

27]

28]

R. Kimmel, N. Kiryati, and A. M. Bruckstein. Multi-
valued distance maps for motion planning on surfaces
with moving obstacles. IEEE Trans. Robot. & Au-
tom., 14(3):427-435, June 1998.

J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

S. M. LaValle. Rapidly-exploring random trees: A
new tool for path plan-
ning. Computer Science Dept., Iowa State Univer-
sity. <http://janowiec.cs.iastate.edu/papers/rrt.ps>,
Oct. 1998.

S. M. LaValle and J. J. Kuffner. Randomized kin-
odynamic planning. In Proc. IEEE Int’l Conf. on
Robotics and Automation, 1999. To appear.

M. C. Lin and J. F. Canny. Efficient algorithms for in-
cremental distance computation. In IEEE Int. Conf.
Robot. & Autom., 1991.

M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk.
Collision detection: Algorithms and applications. In
J.-P. Laumond and M. Overmars, editors, Algorithms
for Robotic Motion and Manipulation, pages 129-142.
A K Peters, Wellesley, MA, 1997.

V. J. Lumelsky and T. Skewis. A paradigm for in-
corporating vision in the robot navigation function.
In IEEFE Int. Conf. Robot. & Autom., pages 734-739,
1988.

V. J. Lumelsky and A. A. Stepanov. Path planning s-
trategies for a point mobile automaton moving amidst
unknown obstacles of arbitrary shape. Algorithmica,
2:403-430, 1987.

A. Massoud. Robot navigation using the vector poten-
tial approach. In IEEE Int. Conf. Robot. & Autom.,
pages 1:805-811, 1993.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A.
Vavasis. Separators for sphere-packings and nearest
neighbor graphs. Journal of the ACM, 44(1):1-29,
January 1997.

B. Mirtich. V-Clip: Fast and robust polyhedral colli-
sion detection. Technical Report TR97-05, Mitsubishi
Electronics Research Laboratory, 1997.

S. Quinlan. Efficient distance computation between
nonconvex objects. In IEEE Int. Conf. Robot. € Au-
tom., pages 3324-3329, 1994.

S. Quinlan and O. Khatib. Elastic bands: Connecting
path planning and control. In IEEE Int. Conf. Robot.
& Autom., pages 802-807, 1993.

S. Ratering and M. Gini. Robot navigation in a
known environment with unknown moving obstacles.
In IEEE Int. Conf. Robot. & Autom., pages 25-30,
1993.

E. Rimon and D. E. Koditschek. Exact robot nav-
igation using artificial potential fields. IEEE Trans.
Robot. & Autom., 8(5):501-518, October 1992.

A. M. Shkel and V. J. Lumelsky. Incorporating body
dynamics into sensor-based motion planning: The
maximum turn strategy. IEEE Trans. Robot. & Au-
tom., 13(6):873-880, December 1997.

S. Sundar and Z. Shiller. Optimal obstacle avoid-
ance based on the Hamilton-Jacobi-Bellman equation.
IEEE Trans. Robot. & Autom., 13(2):305-310, April
1997.

