
Bitbots: Simple Robots Solving Complex Tasks∗

Anna Yershova† Benjamı́n Tovar† Robert Ghrist‡ Steven M. LaValle†

†Department of Computer Science ‡ Department of Mathematics
University of Illinois University of Illinois

Urbana, IL 61801 USA Urbana, IL 61801 USA
{yershova, btovar, lavalle}@uiuc.edu ghrist@math.uiuc.edu

Abstract

Sensing uncertainty is a central issue in robotics. Sen-
sor limitations often prevent accurate state estimation,
and robots find themselves confronted with a compli-
cated information (belief) space. In this paper we define
and characterize the information spaces of very simple
robots, called Bitbots, which have severe sensor limi-
tations. While complete estimation of the robot’s state
is impossible, careful consideration and management of
the uncertainty is presented as a search in the informa-
tion space. We show that these simple robots can solve
several challenging online problems, even though they
can neither obtain a complete map of their environment
nor exactly localize themselves. However, when placed
in an unknown environment, Bitbots can build a topo-
logical representation of it and then perform pursuit-
evasion (i.e., locate all moving targets inside this en-
vironment). This paper introduces Bitbots, and provides
both theoretical analysis of their information spaces and
simulation results.

Introduction
Information spaces (also called belief spaces) lie at the heart
of planning for robots. The state of a robot system in-
cludes both the environment in which the robot is placed
and its position and orientation within the environment. A
common approach is to build a full map of the environ-
ment and localize the robot with respect to the map. Si-
multaneous localization and mapping (SLAM) has received
considerable attention in recent years (Thrun et al. 2001;
Choset & Nagatani 2001; Montemerlo et al. 2002) and can
be considered as a method for computing the information
states of sensing-intensive robot systems. Due to Bayesian
uncertainty models, the information space in this case is
probabilistic. Probabilistic information spaces also arise in
the study of POMDPs, for which algorithms for computing
optimal or near-optimal policies for small, finite state spaces
are used (Kaelbling, Littman, & Cassandra 1998). One of the
greatest challenges with probabilistic information spaces is
that the dimension is proportional to the number of states

∗This work is partially supported by DARPA HR0011-05-1-
0008 and ONR N000014-02-1-0488 grants.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cave
cut

cave

vc

vc

v

cut

v

Figure 1: A polygon and all its cuts are shown on the left.
For a cut [v, vc] its cave is shaded. The corresponding cut
diagram is shown on the right.

(information spaces are infinite-dimensional for continuous
state spaces).

Large, complicated information spaces are difficult to
handle. It is therefore preferable to design robotic systems in
a way that leads to simpler information spaces. One possibil-
ity that has been highly successful in the past is to use nonde-
terministic uncertainty models and consider worst-case anal-
ysis, as opposed to probabilistic models and expected-case
analysis. For example, for the problem of visibility-based
pursuit-evasion (Guibas et al. 1999; Gerkey, Thrun, & Gor-
don 2004), this approach led to exact, complete algorithms
that solve the problem by partitioning the information space
into equivalence classes. The resulting finite cell decomposi-
tion can be searched completely and systematically, instead
of relying on approximations.

Another crucial step toward reducing the complexity of
information spaces is to reduce the sensing requirements. Is
it necessary for a robot to build an exact map of its environ-
ment? Is knowing its exact position important for solving
basic navigation tasks? What about pursuit-evasion tasks?
It has been shown in numerous robotics works that sim-
ple robots with little or no sensing can accomplish com-
plicated tasks. Much of the early work in this direction
was in the context of object manipulation (Goldberg 1993;
Mason 2001). Other work includes bug algorithms for nav-
igation (Lumelsky & Stepanov 1987; Kamon, Rivlin, & Ri-
mon 1999), gap navigation trees for optimal navigation and
on-line algorithms for pursuit-evasion (Kameda, Yamashita,
& Suzuki 2003; Tovar, Guilamo, & LaValle 2004). The fo-



cus on minimal sensors and simple robots also appears in
(Vaughan et al. 2000; Brown et al. 2002); these works, how-
ever, do not address the theoretical problem of connecting
minimal sensor requirements with the difficulty of a given
robotic task.

The current paper continues even further along the lines
of reducing sensor requirements for given tasks, leading to
robots that are so simple and sensor-limited that it appears
absurd to expect them to solve these tasks. It is assumed that
the robot has a single sensor that indicates whether or not the
robot is in contact with a wall. The robot is called a Bitbot.

In this paper several challenging online tasks will be as-
signed to Bitbots. A single Bitbot will be placed in an un-
known environment and asked to learn the environment, to
localize itself, and to locate any moving targets. At first it
seems impossible to accomplish these tasks with such a sim-
ple robot. However, in this paper we carefully model the
Bitbots and show how the actions and sensor measurements
change the representation of their belief about the environ-
ment and the moving targets. We formally characterize these
spaces of information and present the solutions to the online
tasks.

This work provides an illustration of the advantages of
reasoning in terms of information spaces, and in the design
of minimalist robotic systems. Designing a robotic system so
that the resulting information space is manageable is crucial
to the success of planning algorithms.

Bitbot Model
We define a Bitbot as a robot which can choose among two
types of movements in a polygonal environment. First, it can
follow the walls in either direction. Second, when approach-
ing a reflex vertex v (Figure 1), it can choose to go straight
of the reflex vertex along the continuation of the edge, called
the cut, and land on the opposite edge of the environment.
The Bitbot is equipped with a contact sensor, which indi-
cates whether or not there is a contact with the boundary of
the environment. These movements and sensor capabilities
allow a Bitbot to differentiate between the states where it is
in the contact with the walls and the states where it is mov-
ing along the cuts. Moreover, this information can be further
reduced for determining whether there is a contact with a re-
flex vertex, a non-reflex vertex, or the Bitbot has just landed
on an edge after following a cut.

First, we give some preliminary definitions, followed by
the formal model of a Bitbot. Although we present a purely
abstract model, it closely corresponds to a real robot model
developed by (Lamperski et al. 2005).

Preliminaries
Consider the set of all the environments E for a Bitbot, such
that each e ∈ E has a simple polygonal boundary in R

2 with
the set of vertices V e = {vi | i = 0, . . . , n− 1}. We call the
set of all reflex vertices V e

r .
Given a reflex vertex v ∈ V e

r , consider an edge incident
to this vertex and the interval [v, vc], which is the maximal
extension of this edge inside e. This interval is called a cut
at v, with vc being the cut’s endpoint (Figure 1).

For each reflex vertex there are two cuts, corresponding to
the two incident edges at this vertex. An example of a poly-
gon with the set of all of the cuts is shown on Figure 1. We
make a general position assumption, that no cut can con-
tain a reflex vertex. Call V e

c the set of all the endpoints vc

of the cuts in e, and Ce the set of all the cuts in e. Call
Qe = V e ∪ V e

c the states of a Bitbot for the environment e,
that is the set of all the points on the boundary of the envi-
ronment between which the Bitbot can differentiate.

Formal Model
Formally, a Bitbot can be described as a collection of the
following: the set of states where the Bitbot can be, but that
is unknown to the Bitbot; the set of observations, or sensor
readings that the Bitbot can obtain at any state; the actions
it can perform and the information about the transition that
might occur in the state following such actions. We define
all of these formally.

• The state space, X = R
2 × E, where each valid state

x = (q, e), q ∈ Qe, e ∈ E represents the Bitbot position
q with respect to the environment e it is in.

• The observation space for the contact sensor, Yc =
{reflex, nonReflex, cutEnd}.

• The action space, Uc = {goRight, goLeft, goRightOf,
goLeftOf}, which represents the actions to move right
and left along the walls, or right and left along the walls
followed by going of along the cut.

• The contact sensor mapping, hc : X → Yc, defined as

hc(q, e) =

{
nonReflex, if q ∈ V e \ V e

r in e;
reflex, if q ∈ V e

r in e;
cutEnd, if q ∈ V e

c in e.

• The state transition function, fe
c : Qe×Uc → Qe, defined

for each e ∈ E as

fe
c (q,u)=




v+
i , if q=vi, u=goLeft;

v+
i , if q ∈ V e

c , q ∈ [vi, v
+
i ], u = goLeft;

v−
i , if q=vi, u=goRight;

vi, if q ∈ V e
c , q ∈ [vi, v

+
i ], u = goRight;

vc, if v = fe
c (q, goRight) ∈ V e

r ;
[q,vc]⊃ [v,vc]∈Ce,u=goRightOf;

vc, if v = fe
c (q, goLeft) ∈ V e

r ;
[q, vc]⊃ [v, vc]∈Ce,u=goLeftOf,

where v+
i−1 = v(i+1)modn and v−

i−1 = v(i−1)modn.

Task 1: Learning the Environment
This section formulates the first task for a Bitbot. When
placed in an unknown environment, what can a single Bitbot
learn about the geometry of this environment and about its
position with respect to this environment?

The sensing limitations of Bitbots are so strong that learn-
ing sufficient information is impossible without an addi-
tional capability. The Bitbot is given a pebble in this section
in order to complete the task.

We first describe the data structure that holds the topo-
logical representation of the environment that the Bitbot can



Figure 2: Some polygons having the cut diagram shown in
Figure 1.

learn. Next we formulate the task as the search in the in-
formation space and give the solution. We also prove that a
pebble is crucial for performing this task. A Bitbot with no
pebble cannot learn this information about the environment.

Cut Diagram
In correspondence to the environment e = (Qe, Ce) con-
sider a circle, s, with the set of points on the boundary, Qe

D,
and the set of chords, Ce

D.

Definition 1 A collection De = {s,Qe
D, Ce

D} is called a
cut diagram corresponding to the environment e iff

• There is a bijection g1 : Qe → Qe
D, such that the ordering

of points in Qe along the perimeter of e is preserved by g1

in Qe
D along the circle s.

• There is a bijection g2 : Ce → Ce
D, such that for every

cut [v, vc] ∈ Ce, g2(c) = [g1(v), g1(vc)] ∈ Ce
D.

That is, a cut diagram represents all the cuts in the poly-
gon drawn as chords on the circle between the correspond-
ing vertices. An example of a cut diagram corresponding to
a polygon is shown on Figure 1. The following property can
be observed about the cut diagram.

Proposition 2 A pair of chords in the cut diagram intersect
iff the corresponding cuts intersect in the polygon.

Proof: For all the proofs please refer to (Yershova et al.
2005)

Problem Formulation
In this section we enhance a formal model of the Bitbot with
the pebble and pose the problem of building the cut diagram
of an environment by such a robot. This can be viewed as
the search for the correct cut diagram in the space of all pos-
sible cut diagrams of all the environments. Therefore, the
space of all the cut diagrams is the information space for
this problem, and the task for the Bitbot can be considered
as the search for the right cut diagram in this information
space. The initial information state is an empty cut diagram,
which represents the Bitbot’s absence of knowledge about
the number of vertices in the diagram or the cuts. Whenever
the Bitbot discovers the first cut it can fill in a part of the cut
diagram, reducing the uncertainty. This change in the infor-
mation space is represented by the information state transi-
tion function. The final information state is the correct cut
diagram of the environment. The goal for the Bitbot is to
reach this state. It should be noted that a correct cut diagram

still does not eliminate complete uncertainty about the ge-
ometry of the polygon. For example, Figure 2 shows some
polygons having the cut diagram shown in Figure 1.

Now we define the problem of learning the environment.

• The state space, X = R
2 × {R2 ∪ ∅} × E, where each

valid state x = (qr, qp, e), qr ∈ Qe, qp ∈ {Qe ∪ ∅}, e ∈
E represents the Bitbot position, pebble position and the
environment they are in.

• The observation space, Y = Yc × Yp, where Yp =
{seePebble, seeNoPebble}.

• The action space, U = Uc × Up, where Up =
{dropPebble, pickPebble}.

• The contact sensor mapping, hc, defined as before.

• The pebble sensor mapping, hp : X → Yp, defined as

hp(qr, qp, e) =
{

seePebble, if qr = qp in e;
seeNoPebble, if qr �= qp in e.

• The state transition function, f : X ×U → X , defined as

f((qr,qp, e),u)=

{ (fe
c (qr, u), qp, e), if u ∈ Uc;

(qr,qr,e), if qp =∅,u=dropPebble;
(qr,∅,e), if qp =qr,u=pickPebble.

• The set of information states, ηk = ({yi}k
i=1, {ui}k−1

i=1 ).
Each of the information states ηk represents the current
subset De

k of the cut diagram De through the mapping
η(ηk) = De

k.

• The initial information state, η0, represents an empty cut
diagram, which holds no information about cuts or ver-
tices. That is η(η0) = De

0 = (s, ∅, ∅).
• The information state transition function represents the

change in the current cut diagram after a new action has
been performed and a new observation has been received.
We do not specify it explicitly due to its size; however, the
algorithm in the next section uses it implicitly.

• The goal is to find a sequence {u′
i}m

i=1, ui ∈ U ,
such that η({y′

i}m+1
i=1 , {u′

i}m
i=1) = De for any possible

{y′
i}m+1

i=1 , y′
i ∈ Y .

The Algorithm
To solve the problem the Bitbot proceeds in several stages
(see Figure 3). First, it learns the number of edges in the
environment. It achieves it by dropping a pebble and mov-
ing along the perimeter while counting the vertices until the
pebble is reached again. Next, it systematically learns all the
cuts in the environment, by executing the trajectory, which
follows the perimeter just before and after the cut, for each
of the cuts. Note, that the Bitbot builds the cut diagram by
keeping track of its current position in it. Therefore, it is al-
ways localized with respect to the cut diagram.

So far the Bitbot has learned which cuts land at which
edges. It can learn the cut diagram further and, by placing
the pebble at the endpoint of each cut, learn the ordering of
all the endpoints of all the cuts landed on the same edge.

Proposition 3 A Bitbot with no pebble is not able to con-
struct a cut diagram of the environment.



CONSTRUCT CUT DIAGRAM
Given The set of actions U , the set of observations Y , the
sensor mappings hc and hp, the state transition function f
Output The cut diagram D

1 dropPebble; i = 0
2 do goLeft
3 if yc = reflex add vi to V e

rD
4 add vi to V e

D and i++
5 until yp = seePebble
6 for each v ∈ V e

rD
7 for each u ∈ {goLeft, goRight} ⊂ Uc

8 apply u index in V e
D(v) times

9 if u = goLeft
10 then goLeftOf at v reaching vc

11 else goRightOf at v reaching vc

12 apply u and count index in Qe
D(vc)

13 until yp = seePebble
14 initialize the cut [v, vc] in CD

Figure 3: The algorithm for constructing the cut diagram of
an unknown environment

Task 2: Pursuit-Evasion
The second task for a Bitbot is more challenging. Consider
arbitrarily moving targets in the environment. Can the Bitbot
locate them? Having no vision sensors, can it learn where the
targets may be?

Of course, without any additional sensor for detecting the
targets the Bitbot can never “detect” them in the usual sense.
However, we consider a slightly modified pursuit-evasion
problem, in which the evaders are moving unpredictably but
are willing to be found (for example, lost people in the build-
ing on fire). When they (the evaders) see the Bitbot, they are
considered to be detected. Alternatively, an additional sen-
sor for detecting the presence (though not the location) of
targets can be given to a Bitbot.

In this section we show how a Bitbot can find all of the
moving targets in the environment. We also prove the com-
pleteness of the algorithm.

Visibility Information of the Cut Diagram
The visibility region which can be seen from the Bitbot po-
sition defines the set of points, from which the Bitbot itself
is visible. Therefore, if the goal of the Bitbot is to make it-
self visible by the evaders in the environment, the standard
visibility concepts can be adapted to this problem.

First, we define the visibility region, V (x), which is the
set of all points in e that are visible from x. Call e\V (x) the
shadow region, which is the set of all the points in e that are
not visible from x. There may be several connected compo-
nents in the shadow region. Each of them can be associated
with some reflex vertex in the environment. We call each of
them a shadow component. The common boundaries of the
visibility region and the shadow region are called gaps in the
visibility. That is, each gap corresponds to a line segment in
e, which touches ∂e in two places, and if extended to a line,
contains x.

cave
2

shadow
component

gapv

x
2

shadow

v
gap

component

1
cave

cave
22

1

cut

cu
t

1

2 1x
cave

cu
t 1

cut

Figure 4: For a reflex vertex v the two cuts and correspond-
ing caves are shown. For different positions x1 and x2 on
the boundary, the gap associated with v and corresponding
shadow component may be inside only one of the caves.

Traditionally, the pursuit-evasion problem is solved by
keeping track of all the shadow components in the environ-
ment, since they are the only places where the evaders can
hide (Guibas et al. 1999). This is done by labeling each gap
as contaminated (an evader may be hiding behind the gap),
or cleared (there is no evader behind the gap).

It was shown in the pursuit-evasion literature that the la-
beling of the gaps change only when certain critical events
happen, i.e. when the robot crosses certain lines in the envi-
ronment. These critical gap events are: 1. Crossing the cut.
In this event either a new gap appears or an old gap disap-
pears. 2. Crossing the bitangent between two reflex vertices.
In this case either two gaps merge, or one gap splits into
two. The gap labels change when the critical events happen.
When the gap emerges, it is labeled as clear, since this por-
tion of the environment was just visible. When the gap splits
into several gaps, all of them inherit the label of the original
gap. When the gaps merge into one, the new gap is labeled as
contaminated, if one of the children gaps was contaminated.

A Bitbot does not have a sensor for tracking the gaps,
however it can detect the cuts. This section shows how cuts
can be used to label the gaps. With each cut in the environ-
ment we associate corresponding cave (Figure 1) and the gap
that might or might not lie in the cave (Figure 4). Therefore,
each gap can be associated with two cuts in such a way that
the two cuts labels fully define the gap label.

We call a cut associated with the reflex vertex v clear, if
the shadow region of v inside the cave of the cut is either
clear or there is no shadow region associated with v in the
cave. We call the cut contaminated if the shadow region of
v inside the cave is contaminated. Then, one of the two cuts
of each reflex vertex has a label clear, since the gap can only
belong to one cave. Another one has the same label as the
gap. The critical cut events are the same as the critical gap
events: crossing the cut and crossing the bitangent. The dif-
ficulty is that the Bitbot does not know where the bitangents
are. Instead, it has to learn the regions in the cut diagram,
where the recontaminations may happen. Entering such re-
gions leads to merges of the corresponding shadow compo-
nents and therefore possible relabeling of the cuts.

To obtain recontamination regions in the cut diagram, re-
call that the cut diagram preserves two-intersections of the
cuts (Proposition 2). Therefore, the positions of the bitan-



Figure 5: The configurations of the cuts of two reflex vertices
which may result in a bitangent or recontamination region.
The shaded regions are the places where recontamination
may happen (where the bitangent may be crossed).

gents are inferred from the information of how the corre-
sponding chords intersect in the cut diagram.

Proposition 4 The only mutual configurations of the cuts in
the cut diagram which may lead to recontaminations are the
six cases shown on Figure 5.

The recontamination regions have to be reduced even fur-
ther when other cuts are present in the cut diagram. It should
be done in such a way, that for any cut crossing the re-
contamination region the corresponding environment can be
constructed, such that recontamination happens between the
corresponding shadow components in the environment. We
do not specify the details due to the space limit.

Unfortunately, the cut diagram does not preserve the
three-intersections. That is, if two intersecting chords are
intersected by a third chord, the order in which they are
crossed in the cut diagram may be different from that in the
polygon. This may affect the labeling of the cuts which the
Bitbot crosses when going of some other cut in the envi-
ronment. What if merging of the shadow components is not
considered in the correct order? Does it result in the wrong
labeling of the cuts? Fortunately, merging of the shadow
components has a transitive property in the cut diagram, and
therefore, any order, including the one that is formed in the
cut diagram, results in the same labeling of the cuts.

Proposition 5 Consider three reflex vertices in the cut dia-
gram forming three corresponding recontamination regions.
Any chord in the cut diagram intersecting any two of these
regions will always intersect the third one.

Problem Formulation
Given the cut diagram D of the environment e that the Bitbot
has already learned, the task now it to locate all the evaders
in the environment, which is equivalent to clearing all the
cuts. Next we formulate the pursuit-evasion task.

• The state space, X = R
2, where each valid state x ∈ QD

represents the Bitbot position in the cut diagram D.

PURSUIT EVASION(D, η, x)
Input The cut diagram D, initial information state η = η0,
initial state x
Output The sequence {u′

i}m
i=1, ui ∈ U

1 add (η, x) to S
2 for all (η, x) from S
3 for all inputs u ∈ U
4 compute next state x1 = f(x, u)
5 compute information state η1 = fI(η, x, u)
6 if (ηfinal = η1) return {u′

i}m
i=1

7 add (η1, x1) to S
8 remove (η, x) from S
9 return “ NO SOLUTION EXISTS “

Figure 6: The algorithm for pursuit-evasion

• The observation space, Y = X .

• The action space, U = Uc.

• The sensor mapping, h : X →X , defined as trivial map-
ping.

• The state transition function, f : X × U → X , such that
f(x, u) = g1(fc((g−1

1 (x), e(D)), u)).

• The set of information states, ηk = ({yi}k
i=1, {ui}k−1

i=1 ).
Each of the information states ηk represents the set of
labellings (l1, . . . , lm) of m cuts, through the mapping
η(ηk) = (l1, . . . , lm).

• The initial information state, η0, represents the labellings
of all the cuts that contain gaps as contaminated, and all
others as clear.

• The information state transition function, which corre-
sponds to the relabeling of the cuts while transferring
from state to state, fI((l1, . . . , lm), x, u) = (l′1, . . . , l

′
m),

in the following way. Consider a path from x to f(x, u)
in the cut diagram. Take all the labels {li}i∈I of the
cuts crossed by this path. Set l′i = li,∀i /∈ I , and
l′i = clear,∀i ∈ I . Reset the labels to contaminated
for those cuts, whose recontamination regions with con-
taminated cuts were entered.

• The goal is to find a sequence {u′
i}m

i=1, ui ∈ U , such that
η({y′

i}m+1
i=1 , {u′

i}m
i=1) = (clear, . . . , clear).

The Algorithm
The algorithm performs a breadth-first search on the graph
of all the information states. From a starting information
state all possible inputs are tried, relabeling is performed,
resulting information state is computed and checked with
the goal state. The same procedure is iterated over all the
resulting states.

Proposition 6 The algorithm presented above is Bitbot-
complete, that is a Bitbot will find the solution if one exists.

Implementation and Simulation Results
We have implemented both algorithms using Python. We
performed experiments with three different environments.



Figure 7: For the given environment, the cut diagram with all
the cuts and recontamination regions, generated by our pro-
gram, is shown on the left. The solution path for the pursuit-
evasion algorithm is shown on the right.

Figure 8: Computed solution paths for catching evaders in
the given environments.

The first experiment is shown on Figure 7. We show the cut
diagram learned by a Bitbot with all the cuts and recontami-
nation regions. Using only the cut diagram and the algorithm
for pursuit-evasion, the Bitbot generates the plan for finding
all the evaders in the environment. The produced solution
path is shown. In the experiments shown on Figure 8 the
pursuit-evasion algorithm was used to produce the clearing
paths for the other two environments.

Conclusions
In this paper we introduced very simple robots called Bit-
bots. The sensor and control limitations of Bitbots allow
careful modeling of the information spaces arising when
presenting online tasks to these robots. We have formally
defined the tasks of map building, localization and pursuit-
evasion as planning problems in corresponding information
spaces and presented solutions and simulation results.

The notion of information spaces, which is the main
theme of this paper, is fundamental to robotics. However,
little or nothing is known about many aspects of informa-
tion spaces. Almost no work has been done on characteriz-
ing their topology or geometry. No general techniques are
available for planning in information spaces. Our goal is to
continue researching information spaces arising in robotics.

References
Brown, H. B.; Weghe, M. V.; Bererton, C.; and Khosla, P.
2002. Millibot trains for enhanced mobility. IEEE/ASME
Transactions on Mechatronics 7(4):452 – 461.
Choset, H., and Nagatani, K. 2001. Topological simul-
taneous localization and mapping (SLAM): toward exact
localization without explicit localization. IEEE Int. Conf.
Robot. & Autom. 17(2):125–137.
Gerkey, B. P.; Thrun, S.; and Gordon, G. 2004. Visibility-
based pursuit-evasion with limited field of view. In Proc.
Am. Assoc. Artif. Intell.
Goldberg, K. Y. 1993. Orienting polygonal parts without
sensors. Algorithmica 10:201–225.
Guibas, L. J.; Latombe, J.-C.; LaValle, S. M.; Lin, D.; and
Motwani, R. 1999. Visibility-based pursuit-evasion in a
polygonal environment. International Journal of Compu-
tational Geometry and Applications 9(5):471–494.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99–134.
Kameda, T.; Yamashita, M.; and Suzuki, I. 2003. On-line
polygon search by a six-state boundary 1-searcher. Techni-
cal Report CMPT-TR 2003-07, School of Computing Sci-
ence, SFU.
Kamon, I.; Rivlin, E.; and Rimon, E. 1999. Range-sensor
based navigation in three dimensions. In IEEE Int. Conf.
Robot. & Autom.
Lamperski, A. G.; Loh, O. Y.; Kutscher, B. L.; and Cowan,
N. J. 2005. Dynamical wall-following for a wheeled robot
using a passive tactile sensor. In IEEE Int. Conf. Robot. &
Autom.
Lumelsky, V. J., and Stepanov, A. A. 1987. Path planning
strategies for a point mobile automaton moving amidst un-
known obstacles of arbitrary shape. Algorithmica 2:403–
430.
Mason, M. T. 2001. Mechanics of Robotic Manipulation.
Cambridge, MA: MIT Press.
Montemerlo, M.; Thrun, S.; Koller, D.; and Wegbreit, B.
2002. FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In AAAI National Con-
ference On Artificial Intelligence.
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2001. Ro-
bust Monte Carlo localization for mobile robots. Artificial
Intelligence Journal.
Tovar, B.; Guilamo, L.; and LaValle, S. M. 2004. Gap nav-
igation trees: Minimal representation for visibility-based
tasks. In Proc. Workshop on the Algorithmic Foundations
of Robotics.
Vaughan, R.; Stoey, K.; Sukhatme, G. S.; and Mataric, M. J.
2000. Blazing a trail: insect-inspired resource transporta-
tion by a robot team. In Proc. 5th International Symposium
on Distributed Autonomous Robotic Systems, 111–120.
Yershova, A.; Tovar, B.; Ghrist, R.; and LaValle, S. M.
2005. Bitbots: Simple robots solving complex tasks. Tech-
nical Report, Computer Science Dept., University of Illi-
nois (http://msl.cs.uiuc.edu/∼yershova/ai2005/paper.pdf).


