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Abstract This paper introduces a problem of validating the claimed behavior of
an autonomous agent (human or robot) in an indoor environment containing one
or more agents, against the observation history from a sparse network of simple,
stationary sensors deployed in the same environment. Following principles of dy-
namic programming, we partition the decision problem into incremental search over
a sequence of connectivity subgraphs induced by sensor recordings, which yields ef-
ficient algorithms for both single and multiple agent cases. In addition to immediate
applicability towards security and forensics problems, the idea of behavior valida-
tion using external sensors complements design time model verification.

1 Introduction

One night, a crime was committed in an office building with complex interior struc-
ture. The next morning, a few suspects were identified but none of them would come
forward. Instead, all of them provided seemingly convincing stories that excused
them from being present at the crime scene. Unknown to the suspects, however, the
building’s security system, composed of a set of sensors with different capabilities,
had made a sequence of recordings of passing people. Knowing that the criminal
among the suspects was lying, can we use the sensor recordings to help solve the
crime?

Similarly, in computer science, robotics, and control, a frequently encountered
problem is verifying that an autonomous system, be it a program or a robot, is per-
forming as designed. For example, a service robot may plan a path to clean office
rooms one by one. Due to internal (sensor/actuator/computing units malfunction-
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ing) or external factors (strong electromagnetic interference for example), the robot
may mistake one room for another and fail to accomplish its task without knowing
that it has failed. A robot or a system may also be compromised for malicious pur-
poses, producing intentionally bogus records of its actual path to hide the fact. In
such cases, it would be highly desirable if external monitoring could automatically
determine that a robot has faltered.

In this paper, we introduce realistic abstractions of above problems and show that
such formulations are computationally tractable. Specifically, one or more agents
(robots or people) are assumed to move in an indoor environment, of which regions
are monitored by external sensors (beam detectors and occupancy sensors). We as-
sume that the agents are not aware of these sensors. From a story told by an agent,
which is a sequences of places in the environment it has visited, and combined
recordings of these sensors, we provide polynomial time algorithms (with respect
to the complexity of the environment, the length of the story, as well as the length
of the observation history) for the inference problem of whether the given story is
consistent with the sensor recordings.

Our work takes inspirations from two active research topics in robotics and con-
trol. If one assumes that the behavior of a set of moving bodies is largely unknown,
above problem becomes inferring various properties of these moving bodies with a
network of simple sensors. Binary proximity sensors have been employed to esti-
mate positions and velocities of a moving body using particle filters [3] and mov-
ing averages [17]. The performance limits of a binary proximity sensor network in
tracking a single target are discussed and approached in [25], followed by an exten-
sion to the tracking of multiple targets [26]. The task of counting multiple targets
is also studied under different assumptions [4, 15]. In these works, the sensor net-
work’s aggregate sensing range must cover the targets of interest at all times, which
is much more difficult to implement than guarding critical regions of an environ-
ment. When only subsets of an environment are guarded, word problems in groups
[12, 14] naturally arise. For the setup in which targets moving inside a 2D region
are monitored with a set of detection beams, [28] characterizes possible target lo-
cations, target path reconstruction up to homotopy, and path winding numbers. In
this domain, the surfacing of more interesting behaviors also induces an increase in
complexity; few efficient algorithms exist. This prompts us to ponder: Can we do
better if partial knowledge of a target’s behavior is available? In viewing its resem-
blance to the questions asked in [3, 25, 28], our problem requires the design of a
combinatorial filter, similar to those in [20, 29, 30]. These combinatorial filters are
minimalist counterparts to widely known Bayesian filters [6, 9, 13, 21, 22, 27, 31].

On the other hand, if sensors external to moving bodies are ignored, one is left
with the task of systematically verifying that the moving bodies do not have un-
expected behaviors. Complex moving bodies such as robots are often modeled as
hybrid systems. Existing verification techniques either address subclasses of hybrid
systems or approximate reachable sets of such systems [2, 8, 10], because the prob-
lem of verifying a system with continuous state space and control input is generally
undecidable [1]. In practice, this difficulty translates into the necessity of external
measures to safeguard the unverified portion of a system. Alternatively, when high
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level task specifications can be coded as General Reactivity(1) formulas [23], the
task of composing controllers into verifiably correct hybrid automata can be car-
ried out automatically using linear temporal logic [11, 18]. Even for such provably
correct designs, malfunction can still occur due to sensor/actuator/computer errors.
Keeping these systems in check again requires monitoring with external sensors.

The main contributions of this paper are twofold. First, using a sparse network
of simple sensors to validate the claimed behavior of an autonomous agent intro-
duces a new methodology that complements traditional system verification tech-
niques such as [2, 8, 10]. We believe this is a necessary approach given that most
verification processes focus on high level abstractions of an autonomous system,
which only models simplified, ideal behavior. Second, applying principles of dy-
namic programming [5], we show that polynomial time algorithms exist for the
proposed decision problems, providing insights into the structure of these detective
game like problems. Moreover, the practical algorithmic solution may readily find
its way in real world applications, such as system design/monitoring/verification,
security, and sensor-based forensics.

The rest of the paper is organized as follows. Section 2 defines the two detec-
tive games we study in this paper. For the case in which a single agent triggers all
sensor recordings, Section 3 extracts a base graph structure that captures the con-
nectivity of the environment, which is subsequently broken down into pieces for
the incremental search introduced and analyzed in Section 4. Section 5 extends the
graphs and search algorithm to account for additional agents that are present in the
environment1. Section 6 discusses many open questions and concludes the paper.

2 Problem Formulation

2.1 Workspace, Agents and Stories

Let the workspace W ⊂R2 be a bounded, path connected open set with a polygonal
boundary, ∂W . Let one or more point agents move around in W , carrying out un-
known tasks. Every agent has a map of W and may move arbitrarily fast along some
continuous path τ : [t0, t f ]→W . The initial time t0 and the final time t f are common
to all agents. Assume that we are interested in a specific agent x with a story of its
own, which may be truthful or fictional. Since an agent may not always have an
accurate estimate of its state, a truthful story is not necessarily what has happened.
For example, a human can usually recall a (partial, possibly inaccurate) sequence of
events after she has performed a task in an environment. In this iteration we let the
story have a very basic form: A sequence of places in W that agent x has visited in
increasing chronological order,

p = (p1, p2, . . . , pn), pi ⊂W,

1 An interactive implementation of algorithms from Section 4 and 5 is available at
http://msl.cs.uiuc.edu/~jyu18/pe/cd.html. A web browser with Java 1.5 support
is required to access the page.
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such that the unique elements of p are each a simply connected region with a polyg-
onal boundary and pairwise disjoint. The set of all unique elements of p is denoted
Cp. We assume that for every p ∈ Cp, x has accounted for all its visits to p in p. As
an example, agent x may simply report “I went from room A to room B, then came
back to room A, and eventually arrived room C, at which point I stopped.”

2.2 Sensors and the Observation History

a

b

c

Fig. 1 A simple workspace with an occupancy sensor and a beam detector. The occupancy sensor
guards the shaded area with three doorways a,b, and c. The beam detector guards the vertical line
segment at the top.

Let a subset of the workspace W be guarded by a heterogeneous set of sensors.
The placement of sensors in W is unknown to all agents. Among the commonly
available sensors for surveillance, we focus on occupancy sensors and beam detec-
tors. An occupancy sensor is assumed to detect the presence of an agent in a fixed,
convex subset s⊂W . For example, a room may be monitored by such a sensor (the
shaded area in Fig. 1). A data point recorded by an occupancy sensor o i has two
parts, an activation,

roa = (oi, ta),

and a deactivation,
rod = (oi, td),

in which ta is the time when the first agent enters an empty s and td is the time
when the last agent exits s. A beam sensor, on the other hand, guards a straight line
segment, � ⊂W , between two edges of ∂W (for example, the red line segment in
Fig. 1). A data point of such a sensor, bi, is recorded as an agent crosses �, which
can be represented by a 2-tuple:

rb = (bi, t).

A beam detector is deactivated right after activation. We further assume that when
a beam detector is triggered by an agent, the agent must pass from one side of
the beam to the other side. We denote the collection of all unique sensors in W as
Cs. With the introduction of occupancy sensors and beam detectors, we define the
observation history simply as:

r = (r1,r2, . . . ,rm),
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in which each ri = roa,rod , or rb, is indexed by the time when it occurs, incremen-
tally.

Both occupancy sensors and beam detectors are weak sensors in the sense that
they cannot tell an agent’s passing direction. In the example given in Fig. 1, a sensor
recording of the occupancy sensor could imply that the agent enters and exits from
any of the doorways a,b, or c. Similarly, when the beam detector is triggered, an
agent could be passing it from left to right or in the other direction. These sensors
certainly cannot distinguish among different agents. We choose to work with these
two typical but weak sensors so that the algorithms we present apply to a wider
range of sensors, provided that they are at least as powerful (although the algorithms
may not take full advantage of these stronger sensors). For example, a video camera
is a stronger occupancy sensor, capable of providing both passing direction and
identification of agents.

Observation history for a single agent. Without loss of generality, we assume
that the sensors’ detection regions (field of view) are pairwise disjoint: When two
or more sensors have overlapping detection regions, we may create virtual sensors
by repartitioning these sensors’ detection regions so that the virtual sensors have
disjoint detection regions [20]. This implies that when agent x is the only agent in
W , the activation of any sensor must be followed by the deactivation of the same
sensor, with no other sensor activities in between. In particular, in the observation
history for a single agent, there can be no other sensor activations or deactivations
between one activation/deactivation of an occupancy sensor.

Observation history for multiple agents. When there are multiple (an unknown
number) agents in the workspace, it is no longer reasonable to assume that all sen-
sor recordings have activation-deactivation intervals that are pairwise disjoint. For
example, one agent may pass a beam detector while another one occupies a room
monitored by an occupancy sensor. Different occupancy sensors can also have over-
lapping intervals of activation. When multiple agents are present in W , we assume
that all sensor activation and deactivation times are distinct, since the likelihood of
simultaneous sensor triggering is very low.

2.3 The Verification Problem

Given W , Cp,Cs, agent x’s story p and the observation history r, we are interested
in determining whether p is consistent with r. For the comparison to make sense,
we require that both p and r span the same time interval, [t0, t f ]. That is, we must
determine whether there exists an agent path containing the locations given in p in
the specified order that triggers the sensor recordings given by r. For the purpose of
introducing algorithms, we use the example workspace given in Fig. 2 and let agent
x’s story be:

p = (A,C,B,A,C). (1)

In English, agent x told the story that it started in room A and went through room
C,B,A, and C, in that order. When there is a single agent in the workspace, we let
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Fig. 2 A workspace with two beam detectors b1,b2, two occupancy sensors o1,o2, and three la-
beled rooms A,B and C. Thus, Cp = {A,B,C}, Cs = {b1,b2,o1,o2}. There are four connected
components R1 through R4 when regions guarded by sensor range and rooms in agent x’s story are
treated as workspace obstacles.

the observation history be:

r = ((b1, t1),(o1, t2),(o1, t3),(b2, t4),(o2, t5),(o2, t6)). (2)

For this simple example, it is not hard to see that p is not consistent with r: B can
only be visited after agent x passes b2 from left to right; however, after visiting B,
either b2 or o2,o1 must be triggered for x to visit A once more. When there are
multiple agents in the workspace, we let the observation history be slightly different
(with which p is consistent):

r = ((b1, t1),(o1, t2),(o2, t3),(b2, t4),(o2, t5),(o1, t6)). (3)

In the example, we have implicitly made the assumption that elements of C p and
elements of Cs have coverage regions that are pairwise disjoint; overlapping cases
will be handled after the main algorithms are introduced.

3 The Connectivity Graph and Sensing Induced Subgraphs

Both occupancy sensors and beam detectors, when not triggered, act as obstacles
that change the workspace connectivity. When a sensor is triggered, the part of the
workspace blocked by that sensor is temporarily connected. To explore the structure
from this intuition, we first build a connectivity graph G that captures the topolog-
ical features of W . As we are only interested in finding a path2 through p that is
compliant with r, we only need G to capture how elements of C p are connected and
how they are connected to the sensors, Cs. Therefore, we treat these elements as
vertices of G. Since there are two possible directions that an agent may pass a beam
detector, two vertices are needed for each beam detector. A single vertex is needed

2 In graph theory, a path does not visit one vertex multiple times. Therefore, the image of a con-
tinuous path, when discretized, becomes a walk in graph theory terminologies, since it may visit
a vertex multiple times. In this paper, we abuse the term path slightly to denote both a continuous
function τ : [t0, t f ]→W and the corresponding walk in a discrete graph.
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for each element of Cp and for each location guarded by an occupancy sensor. For
the example from Fig. 2, the collection of vertices is

V = {A,B,C,o1,o2,b1u,b1d,b2l ,b2r},

in which b1u,b1d are the upper and lower sides of b1, respectively (these two sides
are naturally obtained if a beam is represented as two oppositely oriented edges, as
commonly used in computations involving polygons). Similarly, b 2l,b2r are the left
and right sides of b2.

A

C

B

b1u

o1
o2

b2rb2l

b1d

A

C
B

o1 o2

b2
b1

R  1
R  4

R  2

R  3

(a) (b)

Fig. 3 a) The connectivity graph of the example given in Fig. 2. b) An alternative connectivity
graph including connected components of Wfree as vertices.

To connect the vertices, we need to obtain the connectivity of the workspace al-
gorithmically, treating the regions occupied by elements of C p and Cs as obstacles.
Denote the workspace excluding these obstacles as W f ree. Determining the connec-
tivity of Wf ree is equivalent to finding the connected components of W f ree. We call
the subroutine that does this BUILDCONNECTIVITYGRAPH but omit the code since
it is a fairly standard procedure 3. Applying this procedure to our example yields the
connectivity graph G = (V,E) given in Fig. 3(a). We point out that there are other
choices in constructing the connectivity graph. For example, following an (more
natural) equivalence class approach, we may alternatively build the graph based on
how regions R1 through R4 are connected (Fig. 3(b)). We may further treat sensors
and rooms as directed edges. There are no fundamental differences between these
choices for our purpose: Although the later two provide simpler graphs, slightly
more sophisticated graph search routines would then be needed.

Algorithm 1 GETSUBGRAPH

Input: G = (V,E), the start vertex s, Cp, and goal vertices VG

Output: G′ = (V ′,E ′), the part of G that is reachable from s

1: VC ← Cp∪{s}
2: return GETREACHABLESUBGRAPH(G, s,VC ,VG)

3 One efficient way of doing this is to apply a cell decomposition procedure (see [19],
Chapter 6), such as vertical cell decomposition [7], to Wfree and then combine the cells
that share borders. For more details, please refer to the extended version of the paper at
http://msl.cs.uiuc.edu/~jyu18/wafr10/full.pdf
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Algorithm 2 GETREACHABLESUBGRAPH

Input: G = (V,E), s, VC , VG

Output: G′ = (V ′,E ′)

1: for all edges (vi,v j) ∈ E such that vi,v j ∈VC do
2: add (vi,v j) to E ′ // V ′ is also updated.
3: end for
4: G′ ← CONNECTEDCOMPONENT(G′, s)
5: if VG is not empty then
6: for all vi,v j such that vi ∈V ′,v j ∈VG do
7: if (vi,v j) ∈ E then
8: add (vi,v j) to E ′
9: end if

10: end for
11: V ′ ←V ′ ∪VG

12: end if
13: return G′

With G constructed, we can now explore the extra information provided by the
observation history: The relative timing of sensor recordings. This information es-
sentially partitions G into different pieces at different time instances. In this section
we focus on the case of workspace with a single agent. In the observation history
given in (2), b1 is the first sensor that is set off. This means that at the time right
before t1 when the sensor is activated, the agent must be at either b1u or b1d . Dur-
ing the time interval [t0, t1), since b2,o1, and o2 are inactive, they act as obstacles.
The part of G that the agent may travel during [t0, t1) is then given by G1 in Fig.
4, in which A is the start vertex and b1u,b1d are the possible goal vertices. Vertex
B does not appear in G1 because it is not reachable. Similarly, we obtain the sub-

A

C

b1u

b1d

A

C o1

b1d

A

C o 1

b2l B

o 2

b2r B

o 2

G 1

G  3 G  5G  4

G 21

A

C

b1u

o1G  22

G  2

Fig. 4 The subgraphs of G induced by the sensor observation history. The green vertices are pos-
sible start positions and the red vertices are possible goal positions.

graphs of G during time intervals (t1, t2),(t3, t4),(t4, t5),(t6, t f ] as G2 through G5 in
Fig. 4, respectively. Graph G2 has two parts since there are two possible start ver-
tices. Note that when the start and goal vertices in these subgraph correspond to
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sensor vertices, they can be visited only once as the start vertex or the goal vertex.
The pseudocode is given in GETSUBGRAPH (Algorithm 1). The algorithm calls the
subroutine GETREACHABLESUBGRAPH(G,s,VC,VG) (Algorithm 2), which returns
the part of G reachable from s, passing only vertices in VC. If VG is not empty, then
a path from s must also end at vertices of VG. We separate this subroutine since it
will be reused. In Algorithm 2, subroutine CONNECTEDCOMPONENT(G,s) returns
the connected component of G containing s. We note that, although it is possible to
work with G directly instead of working with these subgraphs, they will be help-
ful in understanding the algorithm and in complexity analysis. Moreover, it can be
a good heuristic to build these subgraphs to restrict search in problems with large
workspaces.

The correctness of Algorithm 1 through 2 is by construction, which is straight-
forward to verify. We now give an estimate of the worst case performance of these
algorithms. Let Wf ree have an input size of nw, BUILDCONNECTIVITYGRAPH has
time complexity O(n2

w). In subroutine GETREACHABLESUBGRAPH, the subroutine
for obtaining connected components takes time linear in n w [16]. The complexity is
then decided by the for loop at line 6 and the membership check at line 7, which
takes no more than O(|VG|nw lgnw) in total.

4 Validating a Single Agent’s Story Against an Observation
History of a Single Agent

When there is a single agent in the workspace, every sensor recording is triggered
by that agent. In this case, supposing that we have the subgraphs of G, the rest of
the work becomes searching through these graphs, one by one, for a path that agrees
with the agent’s story. A straightforward approach is to connect one subgraph’s
goal vertices to the next subgraph’s start vertices and perform an exhaustive search
through paths to see whether there are matches. Such naive algorithms are not scal-
able, however, since every beam detector can require connecting the subgraphs in
two ways (for example, G21,G22 in Fig. 4). The number of search paths through the
subgraphs is then exponential in the number of sensor recordings on average. In the
worst case, breadth-first or depth-first search through all these graphs may take an
exponential amount of time.

To organize the search more efficiently, we first connect the subgraphs to get
a better understanding of the topology of the graph to be searched. To make the
structure more explicit for search, we also make the subgraphs directed. Doing this
to all sensing induced subgraphs of G yields the graph illustrated in Fig. 5. Denote
this graph Gs. The problem of validating p against r becomes searching through G s

for a path p′ such that, after deleting the vertices corresponding to sensors from C s,
p′ is exactly p. We observe that, since Gs contains at most 2(m+1) copies of G, any
element of Cp ∪Cs cannot appear more than O(m) times in Gs. This observation
indicates it may be possible to apply the principles of dynamic programming to
partition of the search problem into subproblems: Each subproblem is validating a
tail (pi, . . . , pn) of p, starting from a subset of vertices of Gs corresponding to pi−1.
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Fig. 5 Part of the composite graph Gs built from the connectivity graph G and sensor observation
history r.

The total number of subproblems per pi is O(m); if going from one subproblem to
a smaller subproblem takes polynomial amount of time, then the total time spent on
searching Gs is also polynomial.

This turns out to be the case for our problem. Before formally introducing the
algorithm, we illustrate how it operates with the provided example. We write the
agent’s story compactly as p = ACBAC. Since agent x starts in A, we are done with
p1 = A, leaving CBAC to validate. For p2 =C, it is possible to reach from A in G1 to
copies of C in G1, G21 (passing b1u,b1d) , and G3 (passing b1d,b1u,o1). The copy of
C in G22 is not directly reachable from A in G1, passing only vertices from sensors.
We may write the three subproblems as (For P ∈ C p, PGi denotes that the copy of P
is from the subgraph Gi. For example, AG1 denotes the copy of A from the subgraph
G1):

AG1CG1 BAC,
AG1b1ub1dCG21 BAC,

AG1b1db1uo1CG3 BAC.

Since there are multiple subproblems for p3 = B, going through these subproblems
individually may introduce a factor of O(m) per problem; there can be O(m) sub-
problems, which will contribute a factor of O(m2) to the overall running time. To
avoid this, we again use the sequential nature of Gs. Instead of processing each sub-
problem individually, we process all of them together, staged at each G j. For our
example, the first subproblem starts with the copy of C in G1: It is possible to go
through b1d,b1u and get to o1. We now pick up the second subproblem and see that it
is possible to go from C in G21 to o1 as well. At this point, the first two subproblems
collapse into a single subproblem. Going into G3, we pick up the third subproblem.
For the copy of C in G3, since it must pass A to reach B, this subproblem dies; we are
left with a single subproblem to reach B from b21 in G3. Following above procedure,
we obtain two subproblems after processing p3 = B:
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AG1b1ub1dCG21o1b21b2rBG4 AC,
AG1b1ub1dCG21o1b21b2ro2BG5 AC.

Note that we do not keep all valid paths in this search; doing so will require space
exponential in m. After all of p is processed, if some subproblems survive, then p is
consistent with r; any surviving subproblem also provides a feasible path.

Algorithm 3 VALIDATEAGENTSTORY

Input: G, p = (p1, . . . , pn),r = (r1 , . . ., rm)
Output: true if p is consistent with r, false otherwise

1: VI ←{p1}
2: for j = 1 to m+1 do
3: initialize VG as an empty set
4: if ISDEACTIVATION(r j) then
5: continue
6: end if
7: if ( j �= m+1) then
8: VG ← SENSORVERTICES(ri)
9: else

10: empty VG

11: end if
12: Gj← GETSUBGRAPH(G,VI ,Cp,VG)
13: VI ←VG

14: end for
15: Gs← CHAIN(G1, . . . ,Gm+1)
16: initialize Vs,V ′s as empty sets of two tuples
17: Vs←{(p1,1)} // A two tuple is a vertex of Gs

18: for i = 2 to n do
19: for j = 1 to m+1 do
20: if (pi, j) adjacent to (pi−1,k) ∈Vs for some k ≤ j then
21: if i == n&& j == m+1 then
22: return true
23: end if
24: add (pi, j) to V ′s
25: end if
26: end for
27: Vs←V ′s ; empty V ′s
28: end for
29: return false

The pseudocode is summarized in Algorithm 3. Subroutine ISDEACTIVATION(r)
returns true only if r is the deactivation of an occupancy sensor. The subroutine
SENSORVERTICES(r) returns the vertices of G induced by the sensor in a sensor
recording r. The subroutine CHAIN(. . .) connects all input graphs sequentially based
on sensor crossings, which is trivial to implement. In the code, we use (p i, j) to de-
note the the copy of pi in subgraph G j. The correctness of VALIDATEAGENTSTORY

follows from its construction based on dynamic programming, which we briefly
corroborate. After each pi is worked on, there are up to O(m) subproblems since
there are no more than O(m) copies of pi in Gs. Because the further observation
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that Gs is sequential, the suproblems for each pi can be processed in a single pass
of Gs. We make O(m) calls to GETSUBGRAPH, which takes O(mnw lgnw) total
time (Since |VG| ≤ 2 in calls to GETSUBGRAPH). Going through the for loops, it is
straightforward to get that the rest of the algorithm has complexity no worse than
O(n ·m lgnw) = O(nm lgnw). The worst case running time is then upper bounded by
O(m(n+ nw) lgnw).

As mentioned in the problem formulation, we have assumed that C p and Cs do
not overlap in R2. These are not included in the above algorithm to avoid complicat-
ing the presentation. What if some p ∈ C p and s ∈ Cs do overlap? There are several
subcases. If the regions of p,s coincide (for example, there may be an occupancy
sensor in room A), this essentially breaks the problem into several smaller problems,
to which the above algorithm applies. If s � p, agent x then must go through p to
reach s, in which case we can build G to make s a vertex connecting to p only. The
same applies if p � s. In the last case s, p partially overlap but do not include each
other; we can treat s, p as three regions: s\p as an sensor, p\s as a room, and s∩ p as
a fully overlapping sensor and room (this case only happens to occupancy sensors,
not beam detectors). This will split the verification problem into several subprob-
lems, which may induce exponential growth in running time. However, the last case
is not likely to often happen since occupancy sensors are usually placed to guard an
entire room. We can also minimize such a problem by carefully placing the sensors.

5 Validating A Single Agent’s Story Against an Observation
History of Multiple Agents

When there are multiple agents (an unknown number) in the workspace, two com-
plications arise. First, as mentioned in Section 2, when multiple agents are in the
workspace, there can be many agents in the region monitored by an occupancy sen-
sor during one of its activation-deactivation time interval. Effectively, this allows
any agent to temporarily go through the region monitored by an activated occu-
pancy sensor. This suggests that the recordings from occupancy sensors should only
be treated as events that change the connectivity of the environment. That is, whether
agent x is the agent that triggered the activation/deactivation of an occupancy sen-
sor is not relevant. Second, agent x may not be responsible for all beam detector
recordings. Instead, it may trigger any subsequence of sensor recordings. For an
observation history sequence of length m, there are up to O(2 m) possible subse-
quences; agent x may have triggered any one of these subsequences, but not the rest
of r.

To overcome these difficulties, we start by examining how the composite graph
Gs changes. As analyzed above, only beam detector events need to be considered for
agent x. For occupancy sensors, we maintain an active list as r is processed; addi-
tional processing is needed only when deactivation of an occupancy sensor happens.
To illustrate the procedure for building the composite graph, we use p from (1) and
r from (3). Starting with the first beam detector recording, (b 1, t1), if agent x is re-
sponsible for it, then the reachable part before b 1 is crossed is the same as G1 from
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Fig. 4. To emphasize that this graph is built from t0 to t1, we denote it as G0
1. The

next two recordings in r are activations of o1 and o2. Since there are only activa-
tions, which only cause more locations of the environment to become reachable, we
store these in the active occupancy sensor list and continue.

A

C

B

o1 o2

b2rb2l A

C

B

b2r

b2l

(a) (b)

Fig. 6 a) One possible connectivity subgraph, G0
4, during (t4, t5) when mulitple agents are in the

workspace. b) Updated connectivity subgraph reflecting whether two vertices are reachable without
triggering additional sensor recordings.

Algorithm 4 GETSUBGRAPHMULTI

Input: G = (V,E), the start vertex s, Cp, the active occupancy sensors O, and goal vertices VG .
Output: G′ = (V ′,E ′), the part of G that is reachable from s.

1: VC ← Cp∪O∪{s}
2: G′ ← GETREACHABLESUBGRAPH(G, s,VC ,VG)
3: for all o ∈ (O∩V ′) do
4: add to E′ an edge between each pair of o’s neighbors
5: remove o from G′
6: end for
7: return G′

For the next recording, (b2, t4), three subgraphs need to be built, one start from A,
one start from b1u, and one start from b1d . Following the naming convention of G0

1,
these should have names G0

4, G11
4 , and G12

4 , respectively. To build G0
4, we need to

keep vertices {A,b2l,b2r,o1,o2}. We also add {B,C} since these are vertices of Cp

that are reachable from {A,b2l,b2r,o1,o2} without crossing additional sensors. This
gives us the subgraph in Fig. 6(a). To facilitate searching, for each pair of neigh-
bors of an active occupancy sensor, we add an edge between them and remove the
occupancy sensor vertex, which yields the graph in Fig. 6(b). The pesudocode for
building this subgraph, GETSUBGRAPHMULTI, is given in Algorithm 4. Assum-
ing we have obtained G11

4 and G12
4 similarly, the next sensor recordings is (o2, t5),

which corresponds to the deactivation of o2. For this event, we need to create five
subgraphs starting from A,b1u,b1d,b2l ,b2r with names G0

5,G
11
5 ,G12

5 ,G41
5 ,G42

5 , re-
spectively. Since during [t5, t f ], no new locations of G become reachable and no
other beam sensor recordings happen, this part of r can be ignored. After connect-
ing all these subgraphs based on sensor crossings, we obtain the composite graph
Gs as illustrated in Fig. 7.
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G 1
0

A

b1d

b1u

G 4
0

A

b2r

b2l

b1u

G 4
11 b2r

b2l

b1d

G 4
12 b2r

b2l
G 5

0

A

G 5
11

b1u

G 5
12

b1d

G 5
41

b2l

G 5
42

b2r

Fig. 7 Sketch of the composite graph Gs.

Before continuing with searching Gs, we make one observation from above graph
building procedure: Since each sensor recording may cause up to O(m) new sub-
graphs to be built, up to O(m2) subgraphs may be built altogether. This is the num-
ber of subgraphs in Gs since each subgraph appears once in Gs. To search through
Gs for a path matching p, the same strategy from VALIDATEAGENTSTORY can be
applied. That is, a dynamic programming approach can be used in which a subprob-
lem is a tail of p and a location in Gs. Since there are no more than O(m2) copies of
pi in Gs, there can be at most O(m2) subproblems after each pi is processed. Sim-
ilar to VALIDATEAGENTSTORY, during the processing of each p i each subgraph
only needs to be considered once. This limit the time complexity of searching G s

at O(nm2 logmw). To get the total time complexity, we need the time for building
Gs, which is m2 times the cost of the subroutine GETSUBGRAPHMULTI. The run-
ning time of GETSUBGRAPHMULTI is determined by the loop at lines 3 through 6,
which takes O(m3

w) time. This yields the overall time complexity O(m2(n logmw +
m3

w)). Since the algorithm operates much like VALIDATEAGENTSTORY, we omit
the pesudocode.

6 Conclusion and Open Questions

We introduced a decision problem in which a story of an autonomous agent is vali-
dated against the observation history gathered by simple sensors placed in the same
environment. We showed that sensor recordings act as temporary obstacles that con-
strain agents’ movements in the environment, effectively creating a sequence of
connectivity subgraphs of the environment. Based on this observation, we designed
polynomial time algorithms that decide whether the agent’s story is possible given
the observation history and retrieves a possible path if one exists.

As a first attempt at a new problem, more questions are opened than answered.
Some immediate ones are: What if the agent can only recall a partial story? In the
multiple agent case, what if every agent’s story is valid but the combined story
is inconsistent? In letting the agents move arbitrarily fast, we only addressed one
discrete aspect of a general problem in this paper. A natural next step is to work on
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a kinematic agent model with bounded control inputs, which seems to require more
careful analysis of the continuous state space and much richer behaviors. Since an
agent’s speed is limited, some plausible paths the agent could have taken will now
be ruled out. Continuous state space also makes it possible to study optimality: a
network of sensors can potentially detect whether an agent is performing its task
most efficiently, in terms of time or distance traveled. This becomes more relevant
as system designs become more and more complex; sometimes it is challenging to
just get a feasible plan [11, 18]. Another interesting direction is to study optimal
sensor placements for the detective task, which was discussed to some extent in
[24, 28]. Furthermore, the story in this paper only contains “when” and “where”. It
is an intriguing open problem to check stories involving “what”, “how”, and “why”?
Logic seems essential in investigating these elements of a story.

Probabilistic formulations of the story validation problem may also be fruitful
to explore. The agents in this paper are assumed to be nondeterministic in that the
algorithms treat all possible paths equally. In a real environment, however, a typi-
cal agent usually does have preferences when multiple choices are present. Models
considering the transition probability of an agent from room to room could then un-
cover the most likely path(s) taken by the agent. If none of the feasible paths taken
by the agent are probable, the agent could still be considered as misbehaving. Prob-
ability can also be introduced into sensor observation history. Sensors, no matter
how reliable they are, may have false positives and false negatives. For example, a
beam sensor may misfire (triggered by a mouse for instance) with small probability.
This implies that sensors, unlike walls, may be better treated as “soft” obstacles.
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