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Abstract— We study minimalism in sensing and control by
considering a multi-agent system in which each agent moves
like a Dubins car and has a limited sensor that reports only the
presence of another agent within some sector of its windshield.
Using a very simple quantized control law with three values,
each agent tracks another agent assigned to it by maintaining
that agent within this windshield sector. We use Lyapunov
analysis to show that by acting autonomously in this way,
the agents will achieve rendezvous if the initial assignment
graph is connected. A distinguishing feature of our approach
is that it does not involve any estimation procedure aimed
at reconstructing coordinate information. Our scenario thus
appears to be the first example in which an interesting task
is performed with extremely coarse sensing and control, and
without state estimation. The system was implemented in
computer simulation, accessible through the Web, of which
the results are presented in the paper.

I. INTRODUCTION

The question of how to perform tasks while requir-
ing a minimal amount of sensing and control information
arises in many contexts. Across many subfields of control
and robotics, research that focuses on minimalism is of
significance for two main reasons: 1) It has fundamental
importance because it helps to understand the least amount
of information or data rate required for a given problem,
which in turn offers better insights into a problem’s inherent
complexity; 2) From a practical standpoint, minimalism in
sensing or control immediately leads to less complicated
system design, improved robustness, lower production cost,
and possibly reduced energy consumption.

In control theory, the problem of controlling a plant using
coarse quantized measurements of its state (or output) has
received much attention in recent years. Quantized control,
an active branch of control theory, focuses particularly on
minimal data rate control laws. The motivation for studying
such control problems comes from situations in which the
rate of information flow between the plant and the controller
has to be minimized due to communication bandwidth
constraints, shared network resources, security concerns, or
other considerations. For some classes of systems, most
notably linear ones, precise conditions have been obtained
on how much information is needed for control; see, e.g.,
[4], [7], [9], [12], [13], [17], [24], [25], [29], [31]. Minimal-
ism also appears in robotics research that vies for simple
abstract sensors. Some earlier efforts are bug algorithms for
navigation in environments with obstacles [15], [22] and
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Fig. 1. Screen captures from simulation program. a) - d) Four snapshots
of a seven-agent rendezvous, one running after the other. e) Plot of the
Lyapunov function of the rendezvous, with a-d on the plot corresponding
to the four snapshots.

algorithms for manipulating convex polygonal parts using
sensorless robots [10], [11]. Recently, gap navigation trees
for optimal navigation were introduced in [30].

Although quantized control and reduced sensing both
emphasize minimal information, they are not minimal in
certain other aspects. Quantized control usually bases the
control decisions on estimation of state coordinates, which
requires significant computational resources as well as so-
phisticated analysis tools. Furthermore, to reduce sensing,
relatively powerful motion primitives are given to the robots.



For example, [30] requires the robot to reliably move toward
depth-map discontinuities. Given these developments, it
seems that tradeoffs are unavoidable among the various
elements of an autonomous system. It is then logical to
ask an intriguing question: Is any interesting task even
possible with extremely coarse sensing and control, to the
point of having only a several-level quantized control but
no coordinate data to even enable state estimation?

In this paper we give a “Yes” answer to the above
question. We show that, using both minimal sensing and
quantized control, a group of agents with nonholonomic
constraints can rendezvous by simply maintaining target
agents within some sector in the “windshield”, without ever
estimating the current state. Each agent moves as a Dubins
car (a restricted unicycle which can move straight or turn
left/right with a fixed angular velocity [8], [16]). The agent
also has very limited sensors, which cannot measure angles
or distances. The sensor output is triggered only when the
agent’s quantized angle observation changes among one of
three possible values. Additionally, agents are not allowed
to communicate at all: They are fully autonomous. For this
severely restricted system, we find a sufficient condition,
using a simple control law, that guarantees rendezvous for
any number of randomly placed agents. The results are also
verified in simulation (see Figure 1 and Section V).

The rendezvous problem itself has received much at-
tention. A first formulation and algorithmic solution of
the multi-agent rendezvous problem is introduced in [1],
in which agents have limited range sensing capabilities.
Synchronous and asynchronous Stop-and-go strategies ex-
tending the algorithm in [1] are proposed in [18], [19].
Later, an n-dimensional rendezvous problem is approached
via proximity graphs in [6]. A research area that is closely
related to rendezvous is cyclic pursuit or the n-bug problem,
in which each agent pursues the next one in a cycle. The
mathematical study of pursuit curves and pursuit polygons
with differential constraints [2], [5], [26] originated this
line of research. In the last several years, cyclic pursuit
problems with feedback controls were further explored [21],
[23], [27], [28]. For history and review on cyclic pursuit,
see [23]. Note that the studies mentioned above assume the
availability of perfect coordinate information within sensing
range, whereas we do not. Other differences include our
simple Dubins-based control primitives and our Lyapunov
analysis. In particular, we introduce an unusual linear-
form (in distance) Lyapunov function that simplifies the
analysis. Lyapunov analysis has also been applied to study
autonomous group coordination over graphs in [14], but that
paper focuses on a different problem of which the solution
requires the agents’ awareness of their local environments.
Our study is partly inspired by work on planning for a
differential drive with a limited field-of-view [3], which
does not, however, consider minimalism. To the best of our
knowledge, there has been no attempt to reduce sensing and
control, to the extreme minimal combination considered in

our paper, to complete interesting tasks, such as rendezvous.

II. PROBLEM FORMULATION

A. Vehicle model
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Fig. 2. a) An agent’s vehicle. b) Agent’s windshield, or field-of-view

Consider a set of n agents, in which agent i is a
point vehicle located at pi = (pi1, pi2) in the plane with
orientation ψi (Figure 2(a)). Each vehicle moves as a Dubins
car:

ṗi1 = vi cosψi

ṗi2 = vi sinψi

ψ̇i = ui,
(1)

in which vi is the constant forward speed, and the only
control is ui ∈ {−ωi, 0, ωi} for some fixed ωi > 0. Let
X = SE(2)n denote the state space, in which x ∈ X
yields the position and orientation of all agents. The control
switches between discrete angular velocities. We sometimes
consider agents to be identical, which means vi = vj and
ωi = ωj for all pairs, i, j, of agents.

B. Sensing model

The vehicle sensor has a limited angular field-of-view,
centered at ψi with a span (−φ, φ) for some given φ ∈
(0, π); see Figure 2(b). By imagining that you are in
the driver’s seat, the field-of-view can be considered as
a windshield. In spite of limited angle, the sensor has
unlimited range. Also, an agent cannot occlude another in
terms of the sensor view.

For each agent i, the sensor does not provide metric
information, but instead indicates one of three simple events
that may occur with respect to some agent j and the
windshield. Let the observation space of the sensor be
Y = {−1, 0, 1}, in which an observation yi for agent i
is obtained as

yi =

⎧⎨
⎩

1 agent j disappears to the right
0 agent j appears in the windshield

−1 agent j disappears to the left
(2)

Disappearance to the right indicates that agent j was in the
windshield and then disappeared across the right windshield
boundary. Disappearance to the left is defined similarly. The
case of yi = 0 indicates that agent j has appeared in the
windshield, from either boundary.

Several implementations of this sensor are possible.
Simple image-based detectors could be applied at the two
windshield boundaries. To implement it as a simple instan-
teous mapping, h : X → Y , the 2π range of viewing



directions could be partitioned into three detection zones,
rather than inferring boundary crossing directions, which
implies that time history is needed.

In the previous section we mentioned that agents will try
to maintain targets in some sector of the windshield; this
appears to require the initial condition in which each agent
has in the windshield its target. Assume this initial condition
for the moment; we later show that this requirement is not
necessary.

C. Expressing a control law

Using (2), a simple sensor-feedback control law γ : Y →
U is given by

ui = ωiyi. (3)

Using such a simple control law, which involves no state
estimation or observation histories, we want to determine
the conditions under which agents are guaranteed to ren-
dezvous.

III. LIVENESS AND CONNECTIVITY

In this section we define a Lyapunov function over
a digraph (directed graph) G, of which each vertex is
associated with an agent i, which has position pi and
orientation ψi. We then derive the connectivity condition
that G must satisfy for the agents to achieve rendezvous.

A. A suitable Lyapunov function

For a pair of vertices i and j in a digraph G, let � i,j

denote the distance between the agent positions in R2. We
define a candidate Lyapunov function V : R

2n → R as

V =
∑

ei,j∈E(G)

�i,j , (4)

in which ei,j is the directed edge from vertex i to vertex
j; E(G) is the edge set of G. We call this V a graph-
compatible Lyapunov function since it is based on some
digraph G. Note that V is insensitive to edge directions in
G.

Unlike conventional quadratic Lyapunov functions, this
specific V takes a form linear in �i,j , which means that
the corresponding time derivative is not linear in � i,j or pi.
We justify the choice of this Lyapunov function in the next
section. For moving agents, V can be considered a function
of time; its time derivative is then

V̇ =
∑

ei,j∈E(G)

�̇i,j . (5)

B. Liveness and connectivity conditions

To rendezvous, agents must move closer to each other in
some way. We say that agent i is assigned to agent j if ṗi is
nonzero until i and j rendezvous. One such scenario is when
agent i moves at some constant speed and maintains agent j
within some sector of its windshield. A special case is when
agent i moves directly toward agent j. Since φ may take
values larger than π/2, assignment alone does not imply a

pursuit between agents. We define an assignment graph G
in an obvious way: G initially has n vertices, one for each
agent, and there is an edge from i to j if and only if agent
i is assigned to agent j.

Once agent i catches up with agent j, they may combine
into a single agent. We call this operation merging, which
happens within some very small distance ρ, in which ρ is
the merging radius. Merging of i and j is then triggered if

ei,j ∈ E(G) and �i,j ≤ ρ. (6)

After a merge of agent i reaching agent j, vertex i and
edge ei,j are deleted from G. Any ek,i that existed in E(G)
before the merge is replaced by ek,j , if such an edge does
not already exist. For merging to occur in practice, it seems
that agents need a short-range proximity detector, but this
is not pursued formally.

We say that G is live if it has at least one edge. If a graph
only has a single vertex, we call it live by definition. It is
desirable to maintain liveness in G at all times. If G is not
live, then it has more than one vertex but no edges; it is then
not possible for the system to rednezvous without additional
assumptions. Since liveness is not preserved under merging,
we need a stronger property from the initial graph.

Lemma 1 The assignment graph G is live for all t ≥ 0,
under arbitrary evolution of the agent positions, if and only
if it is connected at time t = 0.

PROOF. “If” A connected graph is live and the connectivity
of the graph is preserved under merging. (Indeed, connec-
tivity means that there exists a path from any vertex to
any other vertex, and merging vertices does not destroy any
paths.)

“Only if” If G is not connected, then it has more than
one connected component. By merging we can collapse
each connected component to a single point. This results
in a graph with no edges, which is not live. �

By “connected”, we mean that the digraph G is at least
weakly connected or equivalently, its underlying undirected
graph is connected.

We call a candidate Lyapunov function V rendezvous
positive definite if V = 0 while all agents are in the same
(unspecified) location, and V > 0 otherwise. This leads to:

Lemma 2 A graph-compatible Lyapunov function V is
rendezvous positive definite if and only if its assignment
graph G is connected.

PROOF. “If” It is clear that V ≥ 0. Suppose that G is
connected and V = 0. Since G contains a path connecting
all agents, and since the lengths of all edges in this path
must be zero, we have rendezvous.

“Only if” If G is not connected, then it has more than
one connected component. If each connected component
collapses to a single point, V becomes zero, even though



we do not have rendezvous of all agents. �

As an alternative to the above direct proof, we could
deduce Lemma 2 from Lemma 1: by liveness, the graph
will have at least one edge (and thus V will be positive) as
long as rendezvous does not occur.
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Fig. 3. a) An assignment graph, G, with n edges of which the underlying
undirected graph is connected and contains a cycle (polygon) that encloses
the shaded area. b) Two Dubins-car agents in a cyclic pursuit.

The analysis of Section IV will be organized into two
main parts, based on whether G is a tree or is cyclic. By
Lemma 1 and 2, for a graph-compatible Lyapunov function
to be rendezvous positive definite, the assignment graph
G must have at least n − 1 edges that span the vertices.
The graph G can also have n edges since G has n vertices
and every vertex may have one assignment by our limited
sensing model and control law. If G has n − 1 edges and
is connected, it is an intree (a directed tree with all paths
pointing to its root). The agent at the root of the tree has no
target; hence, it does not move. In Section IV, we show that
this system must rendezvous, which holds because every
agent that is assigned to the root agent will merge into it;
the other agents will follow by induction.

If G has n edges, the extra edge induces a cycle;
therefore G has a single cycle in which each agent is
assigned to the next one. The assignment also guarantees
that any agent not on a cycle has a directed path to agents
on the cycle (Figure 3(a)). The behavior of the agents on the
cycle is not affected by any agent not on the cycle. If the
agents on the cycle rendezvous, then they become stationary,
and the assignment graph becomes an intree. Thus, we have
reduced the rendezvous problem to two subproblems: 1)
Rendezvous of agents on a cycle, and 2) rendezvous of
agents on an intree.

IV. GUARANTEED RENDEZVOUS OF AGENTS

A. The cyclic case

We begin by examining cyclic pursuit in which the
pursuit cycle is a simple polygon. Given the Dubins car
model (1) and our control law (3), for two consecutive
agents i and i+1 on a simple polygon, let φi be the angle
between ṗi and the segment from pi to pi+1 (Figure 3(b)).
The angle φi is positive if ṗi is on the left of the segment
from pi to pi+1. Let θi be the internal angle of the simple
polygon at vertex i. The derivative of the � i,i+1 is then

�̇i,i+1 = −vi cosφi − vi+1 cos(θi+1 + φi+1). (7)

After summing up (7) for all i and rearranging, we have

V̇ =
∑

i

− vi(cosφi + cos(θi + φi)). (8)

For identical agents with unit speed, (8) becomes

V̇ =
∑

i

− (cosφi + cos(θi + φi)). (9)

We want to keep V̇ negative at all times prior to rendezvous.
Note that for V̇ in (9):

Lemma 3 For any integer n ≥ 2, the windshield angle
φ = π/n permits trajectories for which V̇ = 0.

PROOF. The case of n = 2 is trivial; hence, assume n ≥ 3.
Since agents may take arbitrary initial formation, they may
lie exactly on the vertices of a regular polygon and have
the agents on the next vertex as their targets; all agents can
also have φi = φ = π/n. In this case, since θi = n−2

n π for
all i,

V̇ =
∑

i

− (cos
π

n
+ cos

n− 1
n

π) = 0. (10)

�
For any φ ∈ (π/n, π], trajectories exist for which V̇ ≥ 0
for the same reason. We now give a sufficient condition
on φ for rendezvous for both simple and self-intersecting
polygons:

Theorem 4 Unit speed cyclic pursuit of n Dubins car
agents will rendezvous if the agents maintain their targets
in the windshields of span (−φ, φ) with:

0 < φ < min
{π
n
, cos−1 n− 1

n

}
. (11)

PROOF. We want to show that if φ satisfies (11), then V̇ < 0.
To facilitate the discussion, define the first and second terms
of V̇ in (9) as

h(φ1, . . . , φn) :=
∑
i

− cosφi,

f(θ1, . . . , θn, φ1, . . . , φn) :=
∑
i

− cos(θi + φi).
(12)

Obviously, f ≤ n. If for any fixed n, there exists some
δ > 0, such that f < n− δ, then we can choose some small
φ to make h arbitrarily close to −n to obtain V̇ < 0. The
bound φ < π/2 suffices for n = 2, which is easy to verify;
hence, we work with some n ≥ 3. We first consider a simple
(non-self-intersecting) polygon, which has the property that
its internal angles sum up to (n−2)π. If we fix φi’s in f , it is
bounded and continuous in θ i’s; thus, applying the method
of Lagrange multipliers with the constraint g(θ1, . . . , θn) :=∑
θi − (n− 2)π = 0 captures all the potential extrema of

f for each fixed set of φi’s. Examining ∇f = λ∇g yields

sin(θi + φi) = λ (13)

for all i from 1 to n. There is an infinite number of solutions
to (13), of which most do not correspond to valid simple



polygons. Fortunately, we do not need to check many.
Lemma 3 suggests that for all i, −π/n < (θi + φi) <
2π + π/n. We partition the θi’s, constrained by g and
satisfying 0 < θi < 2π, into two sets: Dout is the set
such that θi + φi ∈ (−π

n ,
π
2 ] ∪ [3π

2 , 2π + π
n ) for some i,

and Din is the rest, in which all θi +φi ∈ (π
2 ,

3π
2 ). We can

see immediately that f ≤ n − 1 on Dout. Geometrically,
Dout forms an annulus on the hyperplane g, and D in is
the inside of that annulus. Din can be empty for n = 3.
Dout ∪Din contains all valid non-self-intersecting polygon
angle assignments and maybe some more. By continuity
and boundedness of f , f is upper bounded on D in by the
max among n − 1 and extremum of f on D in. Since we
need |φi| ≤ φ < π

n , (n − 3)π <
∑

(θi + φi) < (n − 1)π.
Solving (13) on Din gives a single extremum in which all
(θi + φi)’s are equal and less than π. Hence,

f =
∑
i

− cos(θi + φi)

= −n cos (n− 2)π +
∑
φi

n
.

(14)

By (14), this extremum of f only depends on the sum of φ i’s
but not on the individual φi’s. Also, fixing θi’s, f increases
as

∑
φi increases; hence, the upper bound of this extremum

is given by:

f ≤ −n cos (n− 2)π + nφ

n
. (15)

We obtain for any simple n-gon,

f ≤ max
{
− n cos

(n− 2)π + nφ

n
, n− 1

}
. (16)

Solving h + f < 0 with (16) for φ gives (11). When the
polygon is self-intersecting, the internal angles are no longer
well defined. However, for our purpose of calculating �̇i,j ,
we can always pick the smaller of the two angles at any
vertex of the polygon. We call these angles θ ′i and look at∑

(π − θ′i). If we start from any edge of a polygon, self-
intersecting or not, and walk along the edges to get back
to the starting edge, all the (π − θ ′i)’s must add up to at
least 2π. This is true since the walker must turn at least
a cycle to get back and

∑
(π − θ′i) is exactly the sum of

angles turned. Thus
∑
θ′i ≤ (n − 2)π. We can then apply

the method of Lagrange multipliers similarly. Although we
do not have a fixed constraint g in this case, it is only to
our advantage: Smaller

∑
θ′i only loosens the requirement

on φ. Thus, (11) still ensures V̇ < 0.
Having proved that the agents may choose a windshield

span size to ensure V̇ < 0, by the standard Lyapunov
theorem on asymptotic stability with respect to a set [20],
all agents will rendezvous. The attractive set here is the
“diagonal” in R

mn, in fact, its ρ-neighborhood in which ρ
is the merging radius. Note that the introduction of ρ also
addresses the issue that our V is not differentiable when
some agents are in the same location; however, the result
is valid even without this regularization. �

Note that for all n ≥ 5, we have π/n < cos−1((n −
1)/n), which implies that the regular n-gon formation
maximizes V̇ for most n and the condition on φ is also
necessary. By Theorem 4, once φ is fixed and satisfies (11),
the there exists some δ > 0 for which V̇ < −δ for all time.
This yields:

Corollary 5 System in Theorem 4 achieves rendezvous in
finite time.

B. The intree case

We now look at the case in which the assignment graph
is a tree with one agent staying stationary, without the
unit speed assumption. Supposing the stationary agent is
j, at least one agent, say i, is assigned to j. Thus, �̇i,j =
−vi cosφi < 0 whenever φ < π/2. Hence, agent i will
merge into agent j, and any agent after i will eventually
follow. We have proved:

Lemma 6 Pursuit of Dubins car agents with an intree
assignment graph will rendezvous in finite time if the agents
maintain their targets in the windshields of span (−φ, φ)
with φ < π/2.

An overall sufficient condition is then:

Theorem 7 Identical Dubins car agents with connected
assignment graph will rendezvous in finite time if the agents
maintain their targets in the windshields of span (−φ, φ)
with φ obeying (11).

C. Interesting detour: Direct cyclic pursuit

If the windshield of an agent is a single point (φ = 0),
every agent moves directly toward its target, and we obtain
a version of the classic cyclic pursuit, or n-bug problem.
We call this variety the direct cyclic pursuit problem to
distinguish it from the Dubins car cyclic pursuit. If we are
not sure whether such pursuit is cyclic, we call it direct
pursuit. Allowing the pursuit formation to be an arbitrary
polygon and using the general form of θ i defined for self-
intersecting polygon, (8) becomes:

V̇ =
∑

i

− vi(1 + cos θi), (17)

with 0 < θi ≤ π and
∑
θi ≤ (n− 2)π. We also allow vi’s

to change over time. In (17), V̇ is always less than zero. For
fixed n and any set of vi ≥ ε for some fixed ε > 0, applying
the method of Lagrange multipliers shows that there exists
some δ > 0 for which V̇ ≤ −δ for all time. The steps are
similar to that of Theorem 4; the complication introduced
by variables vi’s is compensated by the fact that φ = 0.
The intree assignment graph case also follows. We obtain
the following corollaries:

Corollary 8 Agents in a direct cyclic pursuit will ren-
dezvous in finite time.



Corollary 9 Agents in a direct pursuit with an intree con-
nected assignment graph of n− 1 edges will rendezvous in
finite time.

Corollary 10 Agents in a direct pursuit with any connected
assignment graph will rendezvous in finite time.

We can say a little more if vi = 1 holds for all agents:

Corollary 11 Agents in a unit speed direct pursuit with
connected assignment graph has the property

V̇ ≤ max
{
− 1,−n(1 + cos(

n− 2
n

π)
}
:= −δ, (18)

and will rendezvous in time no more than V0/δ, in which
V0 is the value of V at t = 0.

D. Merging radius and angular velocity requirements

Theorem 4 suggests that, if the agents maintain their
targets in some (−φ, φ) range not violating (11), they will
rendezvous. There is a problem, however, since the agents
move as Dubins cars which cannot turn arbitrarily fast. As
the agents are getting closer, at some point they could form
cycles in which they all move along the tangents forever.
We resolve this by introducing merging radius ρ, with which
we remove the arbitrarily fast turning requirement.

Proposition 12 In unit-speed Dubins-car pursuit, for any
ρ > 0, selecting ω > 2/ρ is sufficient for an agent to track1

its target or to merge with its target.

i

i + 1

r

pi
.

Fig. 4. Dubins car agents that cannot get any closer to their targets.

PROOF. We check the boundary case in which agent i
immediately loses sight of agent i + 1 and can no longer
see it by turning around. Since agent i keeps turning, its
trajectory is a circle with radius r = 1/ω. On the other
hand, agent i + 1 cannot move faster than agent i, so it
must move within that same circle to avoid being found
(Figure 4). By letting the ρ > 2r, we guarantee agents i
and i+ 1 will merge. �

If all vi are identical but not equal to one, a similar
relationship between ω and ρ can be obtained.

1By tracking a target we mean that once the target is just out of an
agent’s windshield, the agent can turn fast enough to get its target back
into the windshield.

E. Rendezvous without connectivity

In the set of sufficient conditions stated above that guar-
antees rendezvous, we have assumed that the assignment
graph G is a single component initially. This requires a
one time off-line communication of assignment information,
or help from an oracle. We now show that the single
connected assignment graph assumption is not necessary
by allowing agents to choose random targets initially and
perform reassignment.

By letting the agents choose random targets initially,
the assignment graph G can have many components, with
each one having a cycle. Look at one such component Gm.
Once the agents on the cycle of Gm rendezvous and merge,
they no longer have any target. We may denote the merged
agents as agent m. All other agents in Gm will eventually
rendezvous with m, but there maybe other components that
rendezvous at different places in the plane. Thus, agent m
should not stay stationary; it needs to determine whether
the rendezvous of all components is complete. It can do
so by turning around. If agent m sees some agent j in
its windshield, it then selects j as a new target and starts
pursuing j. We call this process reassignment. Any agent
that has not merged with m can potentially be found by m
and get reassigned to m; each time, m only needs to turn
sufficiently long to detect whether there are further possible
reassignments. This is true because as agent m turns around
a circle C of radius ρ/2, an agent trying to avoid falling
into m’s windshield must also travel outside C in the same
direction, but it cannot do that forever without being found,
since it has the same speed as m. It can be shown that if
ω > 3/ρ, then m needs only to turn two full circles to either
find a new target or confirm that it has merged with every
other agent. The reassignment algorithm will always keep
the graph live until rendezvous. As a last note, agents can
also turn in circles to count the total number of other agents
to determine the proper windshield size as given by (11).
We have shown:

Proposition 13 By allowing merging and reassignment for
agents that have no targets, unit speed cyclic pursuit of
Dubins car agents will achieve rendezvous without initial
connectivity requirement.

V. IMPLEMENTATION AND SIMULATION RESULTS

In this section we discuss a Java implementation, which
we use to demonstrate the theoretical developments. We
focus on the two key scenarios of pursuit with cyclic and
tree formations. The program was developed adhering to the
Java 5 language standard under the Eclipse environment 2.
Results shown here are carried out on a workstation with an
Intel Core 2 Quad processor running at 2.4 GHz and 4GB
RAM.

2The program is fully accessible as a Java applet through web browser
at http://msl.cs.uiuc.edu/∼jyu18/pe/rendezvous.html



Discretization is necessary to implement the continu-
ously evolving system. The sensing needs to be discretized
because the Dubins car model allows jumps in angular
velocity, which means that there could be a large number
of control switches during a short time interval. In our
implementation, we divide the windshield into a left sector
and a right sector. The triggering event is simulated by
remembering the latest observation of the target agent j’s
relative position in pursuing agent i’s windshield at time
step k,

yi[k] =

⎧⎨
⎩

−1 agent j is in the left sector
0 agent j is out of view
1 agent j is in the right sector,

(19)

and comparing that with the next observation. If the agent
is near the center of the windshield, we can give it 1 or −1.
The quantized control can be encoded as

ui[k] =

⎧⎪⎪⎨
⎪⎪⎩

−ω yi[k] = 0, yi[k − 1] = −1
0 yi[k] ∈ {−1, 1}, yi[k − 1] = 0
ω yi[k] = 0, yi[k − 1] = 1
ui[k − 1] otherwise.

(20)
This control law can be expressed as an equivalent four

state automaton. The implementation of an agent is therefore
also quite minimal, which enables the simulation to scale
well with respect to the number of agents in the system.
Plotting the Lyapunov function for systems with more than
10,000 agents can be handled quickly on our computer with
a small memory footprint; smooth animation is possible for
100 agents, with the Lyapunov function and each � i,i+1

plotted simultaneously in a separate window.
To verify the cyclic pursuit theorems for the Dubins

car, each agent is assigned a unique integer identifier. We
initialize the system by positioning the agents randomly and
assigning each agent to the one with a preceding identifier;
the first agent is assigned to the last one. The behavior
of the cyclic pursuit is then observed by watching the
agents’ trajectories and a simultaneously drawn plot of the
Lyapunov function, under different parameter settings. Since
we want to observe the behavior of the cyclic pursuit with
all agents, the merging radius ρ is set to near zero to inhibit
merging. For every attempted set of n agents, the simulation
indicates that φ = π/n is a tight rendezvous bound. As
predicted, randomly positioned agents rendezvous when
φ < π/n, but they will eventually diverge of φ is only 1%
above π/n. In the latter case, the agents get closer quickly
in the beginning because the random arrangement induces a
negative V̇ . Interestingly, the agents then arrange themselves
on a circle and eventually form a regular polygon, making
V̇ positive. We speculate that the continuous system has the
same behavior. Additionally, preliminary simulation results
show that the system behavior is stable when sensing error
is introduced. Figure 5 shows both a converging and a
diverging case with n = 8. In the rendezvous case, V does
not go to zero because of the limit on ω and discretization.
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Fig. 5. a) Eight-agent cyclic pursuit, which converges, with φ = 0.35,
ω = 2.0, and Δt = 0.1s. b) Plot of the Lyapunov function for (a), with
numbered lines being individual �i,i+1 terms. c) Diverging case with φ
changed to 0.6 holding other conditions the same. The agents arrange
themselves on a cycle quickly as they spin away from each other. Dots
are the agents’ positions as of the last snapshot. d) Plot of the Lyapunov
function for (c).

VI. CONCLUSION AND FUTURE DIRECTIONS

We have pursued a minimalist approach to a multi-agent
rendezvous problem. Using a simple agent model with a
ternary output sensor, a three level quantized control, and a
Dubins car model, we have shown that a group of such mini-
mal agents can still achieve guaranteed rendezvous behavior
without coordinates and communication. Furthermore, by
exploring the geometric constraints on internal angles of
polygons, we have shown that the convergence behavior of
the system is precisely predictable based on the parameters
of the individual agents. Our simulation indicates that the
bounds derived in the theorems may be close to tight; early
results from simulation suggest that the simplistic system is
robust in the presence of significant sensing errors as well.

Several remaining problems clearly exist. Although we
are able to avoid global dynamics arguments, a better
understanding of how the system evolves over time will help
explain why a regular polygon is the “preferred” formation
(the agents seem to form it without much effort). This un-
derstanding could also lead to more accurate lower bounds
of the time that rendezvous takes for a given arrangement
of agents. Another open problem is prescribing the location
of rendezvous, which is theoretically appealing and useful
for practical purposes.

A couple of immediately ensuing questions are: 1) Is it
possible for an even simpler agent model to rendezvous? By



simpler we mean that one or more of sensing and control are
strictly less powerful, holding the rest of the agent model
unchanged. 2) Are there any other tasks achievable with
similar simple agents? For example, we see that it is possible
for the agents to get into clusters; can they form a regular
lattice structure? Can we get them to follow prescribed paths
up to homotopy? Or sweeping an area?

Even though we focus on the rendezvous task in this
paper, our motivation in this work lies with a more general
goal: Investigating what task classes are possible with
minimal information. For a given task, there seems to be an
intrinsic relation among the required strengths of the sensors
and the controller of an agent. For example, an agent can
move to and touch an object to learn its shape; alternatively,
it can take a picture and extract the same information. Thus,
there must be some equivalence between those two agent
models. A firm grasp of this relation will not only help
pin down the most basic requirements for a given task, but
also offer powerful design guidance for better autonomous
systems.
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